/*- * BSD LICENSE * * Copyright(c) 2010-2015 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include "spdk/nvme.h" #include "spdk/pci.h" struct ctrlr_entry { struct nvme_controller *ctrlr; struct ctrlr_entry *next; }; struct ns_entry { struct nvme_controller *ctrlr; struct nvme_namespace *ns; struct ns_entry *next; uint32_t io_size_blocks; int io_completed; int current_queue_depth; uint64_t size_in_ios; uint64_t offset_in_ios; bool is_draining; char name[1024]; }; struct perf_task { struct ns_entry *entry; void *buf; }; struct rte_mempool *request_mempool; static struct rte_mempool *task_pool; static struct ctrlr_entry *g_controllers = NULL; static struct ns_entry *g_namespaces = NULL; static uint64_t g_tsc_rate; static int g_io_size_bytes; static int g_rw_percentage; static int g_is_random; static int g_queue_depth; static int g_time_in_sec; static void register_ns(struct nvme_controller *ctrlr, struct pci_device *pci_dev, struct nvme_namespace *ns) { struct ns_entry *entry = malloc(sizeof(struct ns_entry)); const struct nvme_controller_data *cdata = nvme_ctrlr_get_data(ctrlr); entry->ctrlr = ctrlr; entry->ns = ns; entry->next = g_namespaces; entry->io_completed = 0; entry->current_queue_depth = 0; entry->offset_in_ios = 0; entry->size_in_ios = nvme_ns_get_size(ns) / g_io_size_bytes; entry->io_size_blocks = g_io_size_bytes / nvme_ns_get_sector_size(ns); entry->is_draining = false; snprintf(entry->name, sizeof(cdata->mn), "%s", cdata->mn); g_namespaces = entry; } static void register_ctrlr(struct nvme_controller *ctrlr, struct pci_device *pci_dev) { int nsid, num_ns; struct ctrlr_entry *entry = malloc(sizeof(struct ctrlr_entry)); entry->ctrlr = ctrlr; entry->next = g_controllers; g_controllers = entry; num_ns = nvme_ctrlr_get_num_ns(ctrlr); for (nsid = 1; nsid <= num_ns; nsid++) { register_ns(ctrlr, pci_dev, nvme_ctrlr_get_ns(ctrlr, nsid)); } } void task_ctor(struct rte_mempool *mp, void *arg, void *__task, unsigned id) { struct perf_task *task = __task; task->buf = rte_malloc(NULL, g_io_size_bytes, 0x200); } static void io_complete(void *ctx, const struct nvme_completion *completion); static unsigned int __thread seed = 0; static void submit_single_io(struct ns_entry *entry) { struct perf_task *task = NULL; uint64_t offset_in_ios; int rc; rte_mempool_get(task_pool, (void **)&task); task->entry = entry; if (g_is_random) { offset_in_ios = rand_r(&seed) % entry->size_in_ios; } else { offset_in_ios = entry->offset_in_ios++; if (entry->offset_in_ios == entry->size_in_ios) { entry->offset_in_ios = 0; } } if ((g_rw_percentage == 100) || (g_rw_percentage != 0 && ((rand_r(&seed) % 100) < g_rw_percentage))) { rc = nvme_ns_cmd_read(entry->ns, task->buf, offset_in_ios * entry->io_size_blocks, entry->io_size_blocks, io_complete, task); } else { rc = nvme_ns_cmd_write(entry->ns, task->buf, offset_in_ios * entry->io_size_blocks, entry->io_size_blocks, io_complete, task); } if (rc != 0) { fprintf(stderr, "starting I/O failed\n"); } entry->current_queue_depth++; } static void io_complete(void *ctx, const struct nvme_completion *completion) { struct perf_task *task; struct ns_entry *entry; task = (struct perf_task *)ctx; entry = task->entry; entry->current_queue_depth--; entry->io_completed++; rte_mempool_put(task_pool, task); /* * is_draining indicates when time has expired for the test run * and we are just waiting for the previously submitted I/O * to complete. In this case, do not submit a new I/O to replace * the one just completed. */ if (!entry->is_draining) { submit_single_io(entry); } } static void check_io(struct ns_entry *entry) { nvme_ctrlr_process_io_completions(entry->ctrlr); } static void submit_io(struct ns_entry *entry, int queue_depth) { while (queue_depth-- > 0) { submit_single_io(entry); } } static void drain_io(struct ns_entry *entry) { entry->is_draining = true; while (entry->current_queue_depth > 0) { check_io(entry); } } static int work_fn(void *arg) { uint64_t tsc_end = rte_get_timer_cycles() + g_time_in_sec * g_tsc_rate; struct ns_entry *entry = (struct ns_entry *)arg; nvme_register_io_thread(); /* Submit initial I/O for each namespace. */ while (entry != NULL) { submit_io(entry, g_queue_depth); entry = entry->next; } while (1) { /* * Check for completed I/O for each controller. A new * I/O will be submitted in the io_complete callback * to replace each I/O that is completed. */ entry = (struct ns_entry *)arg; while (entry != NULL) { check_io(entry); entry = entry->next; } rte_delay_us(1); if (rte_get_timer_cycles() > tsc_end) { break; } } entry = (struct ns_entry *)arg; while (entry != NULL) { drain_io(entry); entry = entry->next; } nvme_unregister_io_thread(); return 0; } static void usage(char *program_name) { printf("%s options\n", program_name); printf("\t[-q io depth]\n"); printf("\t[-s io size in bytes]\n"); printf("\t[-w io pattern type, must be one of\n"); printf("\t\t(read, write, randread, randwrite, rw, randrw)]\n"); printf("\t[-M rwmixread (100 for reads, 0 for writes)]\n"); printf("\t[-t time in seconds]\n"); } static void print_stats(void) { float io_per_second, mb_per_second; float total_io_per_second, total_mb_per_second; total_io_per_second = 0; total_mb_per_second = 0; struct ns_entry *entry = g_namespaces; while (entry != NULL) { io_per_second = (float)entry->io_completed / g_time_in_sec; mb_per_second = io_per_second * g_io_size_bytes / (1024 * 1024); printf("%-.20s: %10.2f IO/s %10.2f MB/s\n", entry->name, io_per_second, mb_per_second); total_io_per_second += io_per_second; total_mb_per_second += mb_per_second; entry = entry->next; } printf("=====================================================\n"); printf("%-20s: %10.2f IO/s %10.2f MB/s\n", "Total", total_io_per_second, total_mb_per_second); } static int parse_args(int argc, char **argv) { const char *workload_type; int op; bool mix_specified = false; /* default value*/ g_queue_depth = 0; g_io_size_bytes = 0; workload_type = NULL; g_time_in_sec = 0; g_rw_percentage = -1; while ((op = getopt(argc, argv, "q:s:t:w:M:")) != -1) { switch (op) { case 'q': g_queue_depth = atoi(optarg); break; case 's': g_io_size_bytes = atoi(optarg); break; case 't': g_time_in_sec = atoi(optarg); break; case 'w': workload_type = optarg; break; case 'M': g_rw_percentage = atoi(optarg); mix_specified = true; break; default: usage(argv[0]); return 1; } } if (!g_queue_depth) { usage(argv[0]); return 1; } if (!g_io_size_bytes) { usage(argv[0]); return 1; } if (!workload_type) { usage(argv[0]); return 1; } if (!g_time_in_sec) { usage(argv[0]); return 1; } if (strcmp(workload_type, "read") && strcmp(workload_type, "write") && strcmp(workload_type, "randread") && strcmp(workload_type, "randwrite") && strcmp(workload_type, "rw") && strcmp(workload_type, "randrw")) { fprintf(stderr, "io pattern type must be one of\n" "(read, write, randread, randwrite, rw, randrw)\n"); return 1; } if (!strcmp(workload_type, "read") || !strcmp(workload_type, "randread")) { g_rw_percentage = 100; } if (!strcmp(workload_type, "write") || !strcmp(workload_type, "randwrite")) { g_rw_percentage = 0; } if (!strcmp(workload_type, "read") || !strcmp(workload_type, "randread") || !strcmp(workload_type, "write") || !strcmp(workload_type, "randwrite")) { if (mix_specified) { fprintf(stderr, "Ignoring -M option... Please use -M option" " only when using rw or randrw.\n"); } } if (!strcmp(workload_type, "rw") || !strcmp(workload_type, "randrw")) { if (g_rw_percentage < 0 || g_rw_percentage > 100) { fprintf(stderr, "-M must be specified to value from 0 to 100 " "for rw or randrw.\n"); return 1; } } if (!strcmp(workload_type, "read") || !strcmp(workload_type, "write") || !strcmp(workload_type, "rw")) { g_is_random = 0; } else { g_is_random = 1; } optind = 1; return 0; } static int register_controllers(void) { struct pci_device_iterator *pci_dev_iter; struct pci_device *pci_dev; struct pci_id_match match; int rc; pci_system_init(); match.vendor_id = PCI_MATCH_ANY; match.subvendor_id = PCI_MATCH_ANY; match.subdevice_id = PCI_MATCH_ANY; match.device_id = PCI_MATCH_ANY; match.device_class = NVME_CLASS_CODE; match.device_class_mask = 0xFFFFFF; pci_dev_iter = pci_id_match_iterator_create(&match); rc = 0; while ((pci_dev = pci_device_next(pci_dev_iter))) { struct nvme_controller *ctrlr; if (pci_device_has_kernel_driver(pci_dev) && !pci_device_has_uio_driver(pci_dev)) { fprintf(stderr, "non-uio kernel driver attached to nvme\n"); fprintf(stderr, " controller at pci bdf %d:%d:%d\n", pci_dev->bus, pci_dev->dev, pci_dev->func); fprintf(stderr, " skipping...\n"); continue; } pci_device_probe(pci_dev); ctrlr = nvme_attach(pci_dev); if (ctrlr == NULL) { fprintf(stderr, "nvme_attach failed for controller at pci bdf %d:%d:%d\n", pci_dev->bus, pci_dev->dev, pci_dev->func); rc = 1; continue; } register_ctrlr(ctrlr, pci_dev); } pci_iterator_destroy(pci_dev_iter); return rc; } static void unregister_controllers(void) { struct ctrlr_entry *entry = g_controllers; while (entry) { struct ctrlr_entry *next = entry->next; nvme_detach(entry->ctrlr); free(entry); entry = next; } } static const char *ealargs[] = { "perf", "-c 0x1", "-n 4", }; int main(int argc, char **argv) { int rc; rc = parse_args(argc, argv); if (rc != 0) { return rc; } rc = rte_eal_init(sizeof(ealargs) / sizeof(ealargs[0]), (char **)(void *)(uintptr_t)ealargs); if (rc < 0) { fprintf(stderr, "could not initialize dpdk\n"); return 1; } request_mempool = rte_mempool_create("nvme_request", 8192, nvme_request_size(), 128, 0, NULL, NULL, NULL, NULL, SOCKET_ID_ANY, 0); if (request_mempool == NULL) { fprintf(stderr, "could not initialize request mempool\n"); return 1; } task_pool = rte_mempool_create("task_pool", 2048, sizeof(struct perf_task), 64, 0, NULL, NULL, task_ctor, NULL, SOCKET_ID_ANY, 0); g_tsc_rate = rte_get_timer_hz(); rc = register_controllers(); work_fn(g_namespaces); print_stats(); unregister_controllers(); return rc; }