/* SPDX-License-Identifier: BSD-3-Clause * Copyright (C) 2015 Intel Corporation. All rights reserved. * Copyright (c) 2020, 2021 Mellanox Technologies LTD. All rights reserved. * Copyright (c) 2021, 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. */ #include "spdk/stdinc.h" #include "spdk_cunit.h" #include "spdk/log.h" #include "common/lib/test_env.c" #include "nvme/nvme_ctrlr.c" #include "nvme/nvme_quirks.c" SPDK_LOG_REGISTER_COMPONENT(nvme) pid_t g_spdk_nvme_pid; struct nvme_driver _g_nvme_driver = { .lock = PTHREAD_MUTEX_INITIALIZER, }; struct nvme_driver *g_spdk_nvme_driver = &_g_nvme_driver; struct spdk_nvme_registers g_ut_nvme_regs = {}; typedef void (*set_reg_cb)(void); set_reg_cb g_set_reg_cb; __thread int nvme_thread_ioq_index = -1; uint32_t set_size = 1; int set_status_cpl = -1; DEFINE_STUB(nvme_ctrlr_cmd_set_host_id, int, (struct spdk_nvme_ctrlr *ctrlr, void *host_id, uint32_t host_id_size, spdk_nvme_cmd_cb cb_fn, void *cb_arg), 0); DEFINE_STUB_V(nvme_ns_set_identify_data, (struct spdk_nvme_ns *ns)); DEFINE_STUB_V(nvme_ns_set_id_desc_list_data, (struct spdk_nvme_ns *ns)); DEFINE_STUB_V(nvme_ns_free_iocs_specific_data, (struct spdk_nvme_ns *ns)); DEFINE_STUB_V(nvme_qpair_abort_all_queued_reqs, (struct spdk_nvme_qpair *qpair, uint32_t dnr)); DEFINE_STUB(spdk_nvme_poll_group_remove, int, (struct spdk_nvme_poll_group *group, struct spdk_nvme_qpair *qpair), 0); DEFINE_STUB_V(nvme_io_msg_ctrlr_update, (struct spdk_nvme_ctrlr *ctrlr)); DEFINE_STUB(nvme_io_msg_process, int, (struct spdk_nvme_ctrlr *ctrlr), 0); DEFINE_STUB(nvme_transport_ctrlr_reserve_cmb, int, (struct spdk_nvme_ctrlr *ctrlr), 0); DEFINE_STUB(spdk_nvme_ctrlr_cmd_security_receive, int, (struct spdk_nvme_ctrlr *ctrlr, uint8_t secp, uint16_t spsp, uint8_t nssf, void *payload, uint32_t payload_size, spdk_nvme_cmd_cb cb_fn, void *cb_arg), 0); DEFINE_STUB(spdk_nvme_ctrlr_cmd_security_send, int, (struct spdk_nvme_ctrlr *ctrlr, uint8_t secp, uint16_t spsp, uint8_t nssf, void *payload, uint32_t payload_size, spdk_nvme_cmd_cb cb_fn, void *cb_arg), 0); DEFINE_STUB_V(nvme_qpair_abort_queued_reqs, (struct spdk_nvme_qpair *qpair, uint32_t dnr)); DEFINE_RETURN_MOCK(nvme_transport_ctrlr_get_memory_domains, int); int nvme_transport_ctrlr_get_memory_domains(const struct spdk_nvme_ctrlr *ctrlr, struct spdk_memory_domain **domains, int array_size) { HANDLE_RETURN_MOCK(nvme_transport_ctrlr_get_memory_domains); return 0; } DEFINE_RETURN_MOCK(nvme_transport_ctrlr_ready, int); int nvme_transport_ctrlr_ready(struct spdk_nvme_ctrlr *ctrlr) { HANDLE_RETURN_MOCK(nvme_transport_ctrlr_ready); return 0; } struct spdk_nvme_ctrlr *nvme_transport_ctrlr_construct(const struct spdk_nvme_transport_id *trid, const struct spdk_nvme_ctrlr_opts *opts, void *devhandle) { return NULL; } int nvme_transport_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr) { nvme_ctrlr_destruct_finish(ctrlr); return 0; } int nvme_transport_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr) { return 0; } int nvme_transport_ctrlr_set_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t value) { SPDK_CU_ASSERT_FATAL(offset <= sizeof(struct spdk_nvme_registers) - 4); *(uint32_t *)((uintptr_t)&g_ut_nvme_regs + offset) = value; if (g_set_reg_cb) { g_set_reg_cb(); } return 0; } int nvme_transport_ctrlr_set_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t value) { SPDK_CU_ASSERT_FATAL(offset <= sizeof(struct spdk_nvme_registers) - 8); *(uint64_t *)((uintptr_t)&g_ut_nvme_regs + offset) = value; if (g_set_reg_cb) { g_set_reg_cb(); } return 0; } int nvme_transport_ctrlr_get_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t *value) { SPDK_CU_ASSERT_FATAL(offset <= sizeof(struct spdk_nvme_registers) - 4); *value = *(uint32_t *)((uintptr_t)&g_ut_nvme_regs + offset); return 0; } int nvme_transport_ctrlr_get_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t *value) { SPDK_CU_ASSERT_FATAL(offset <= sizeof(struct spdk_nvme_registers) - 8); *value = *(uint64_t *)((uintptr_t)&g_ut_nvme_regs + offset); return 0; } int nvme_transport_ctrlr_set_reg_4_async(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t value, spdk_nvme_reg_cb cb_fn, void *cb_arg) { struct spdk_nvme_cpl cpl = {}; cpl.status.sct = SPDK_NVME_SCT_GENERIC; cpl.status.sc = SPDK_NVME_SC_SUCCESS; nvme_transport_ctrlr_set_reg_4(ctrlr, offset, value); cb_fn(cb_arg, value, &cpl); return 0; } int nvme_transport_ctrlr_set_reg_8_async(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t value, spdk_nvme_reg_cb cb_fn, void *cb_arg) { struct spdk_nvme_cpl cpl = {}; cpl.status.sct = SPDK_NVME_SCT_GENERIC; cpl.status.sc = SPDK_NVME_SC_SUCCESS; nvme_transport_ctrlr_set_reg_8(ctrlr, offset, value); cb_fn(cb_arg, value, &cpl); return 0; } int nvme_transport_ctrlr_get_reg_4_async(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, spdk_nvme_reg_cb cb_fn, void *cb_arg) { struct spdk_nvme_cpl cpl = {}; uint32_t value; cpl.status.sct = SPDK_NVME_SCT_GENERIC; cpl.status.sc = SPDK_NVME_SC_SUCCESS; nvme_transport_ctrlr_get_reg_4(ctrlr, offset, &value); cb_fn(cb_arg, value, &cpl); return 0; } int nvme_transport_ctrlr_get_reg_8_async(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, spdk_nvme_reg_cb cb_fn, void *cb_arg) { struct spdk_nvme_cpl cpl = {}; uint64_t value; cpl.status.sct = SPDK_NVME_SCT_GENERIC; cpl.status.sc = SPDK_NVME_SC_SUCCESS; nvme_transport_ctrlr_get_reg_8(ctrlr, offset, &value); cb_fn(cb_arg, value, &cpl); return 0; } uint32_t nvme_transport_ctrlr_get_max_xfer_size(struct spdk_nvme_ctrlr *ctrlr) { return UINT32_MAX; } uint16_t nvme_transport_ctrlr_get_max_sges(struct spdk_nvme_ctrlr *ctrlr) { return 1; } void * nvme_transport_ctrlr_map_cmb(struct spdk_nvme_ctrlr *ctrlr, size_t *size) { return NULL; } int nvme_transport_ctrlr_unmap_cmb(struct spdk_nvme_ctrlr *ctrlr) { return 0; } int nvme_transport_ctrlr_enable_pmr(struct spdk_nvme_ctrlr *ctrlr) { return 0; } int nvme_transport_ctrlr_disable_pmr(struct spdk_nvme_ctrlr *ctrlr) { return 0; } void * nvme_transport_ctrlr_map_pmr(struct spdk_nvme_ctrlr *ctrlr, size_t *size) { return NULL; } int nvme_transport_ctrlr_unmap_pmr(struct spdk_nvme_ctrlr *ctrlr) { return 0; } struct spdk_nvme_qpair * nvme_transport_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid, const struct spdk_nvme_io_qpair_opts *opts) { struct spdk_nvme_qpair *qpair; qpair = calloc(1, sizeof(*qpair)); SPDK_CU_ASSERT_FATAL(qpair != NULL); qpair->ctrlr = ctrlr; qpair->id = qid; qpair->qprio = opts->qprio; return qpair; } void nvme_transport_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair) { free(qpair); } void nvme_transport_ctrlr_disconnect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair) { } int nvme_transport_qpair_reset(struct spdk_nvme_qpair *qpair) { return 0; } void nvme_transport_admin_qpair_abort_aers(struct spdk_nvme_qpair *qpair) { } void nvme_transport_qpair_abort_reqs(struct spdk_nvme_qpair *qpair, uint32_t dnr) { } int nvme_driver_init(void) { return 0; } int nvme_qpair_init(struct spdk_nvme_qpair *qpair, uint16_t id, struct spdk_nvme_ctrlr *ctrlr, enum spdk_nvme_qprio qprio, uint32_t num_requests, bool async) { qpair->id = id; qpair->qprio = qprio; qpair->ctrlr = ctrlr; qpair->async = async; return 0; } static struct spdk_nvme_cpl fake_cpl = {}; static enum spdk_nvme_generic_command_status_code set_status_code = SPDK_NVME_SC_SUCCESS; static void fake_cpl_sc(spdk_nvme_cmd_cb cb_fn, void *cb_arg) { fake_cpl.status.sc = set_status_code; cb_fn(cb_arg, &fake_cpl); } static uint32_t g_ut_cdw11; int spdk_nvme_ctrlr_cmd_set_feature(struct spdk_nvme_ctrlr *ctrlr, uint8_t feature, uint32_t cdw11, uint32_t cdw12, void *payload, uint32_t payload_size, spdk_nvme_cmd_cb cb_fn, void *cb_arg) { g_ut_cdw11 = cdw11; return 0; } int spdk_nvme_ctrlr_cmd_get_feature(struct spdk_nvme_ctrlr *ctrlr, uint8_t feature, uint32_t cdw11, void *payload, uint32_t payload_size, spdk_nvme_cmd_cb cb_fn, void *cb_arg) { fake_cpl_sc(cb_fn, cb_arg); return 0; } struct spdk_nvme_ana_page *g_ana_hdr; struct spdk_nvme_ana_group_descriptor **g_ana_descs; int spdk_nvme_ctrlr_cmd_get_log_page(struct spdk_nvme_ctrlr *ctrlr, uint8_t log_page, uint32_t nsid, void *payload, uint32_t payload_size, uint64_t offset, spdk_nvme_cmd_cb cb_fn, void *cb_arg) { if ((log_page == SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS) && g_ana_hdr) { uint32_t i; uint8_t *ptr = payload; memset(payload, 0, payload_size); memcpy(ptr, g_ana_hdr, sizeof(*g_ana_hdr)); ptr += sizeof(*g_ana_hdr); for (i = 0; i < g_ana_hdr->num_ana_group_desc; ++i) { uint32_t desc_size = sizeof(**g_ana_descs) + g_ana_descs[i]->num_of_nsid * sizeof(uint32_t); memcpy(ptr, g_ana_descs[i], desc_size); ptr += desc_size; } } else if (log_page == SPDK_NVME_INTEL_LOG_PAGE_DIRECTORY) { struct spdk_nvme_intel_log_page_directory *log_page_directory = payload; log_page_directory->read_latency_log_len = true; log_page_directory->write_latency_log_len = true; log_page_directory->temperature_statistics_log_len = true; log_page_directory->smart_log_len = true; log_page_directory->marketing_description_log_len = true; } fake_cpl_sc(cb_fn, cb_arg); return 0; } int spdk_nvme_ctrlr_cmd_get_log_page_ext(struct spdk_nvme_ctrlr *ctrlr, uint8_t log_page, uint32_t nsid, void *payload, uint32_t payload_size, uint64_t offset, uint32_t cdw10, uint32_t cdw11, uint32_t cdw14, spdk_nvme_cmd_cb cb_fn, void *cb_arg) { fake_cpl_sc(cb_fn, cb_arg); return 0; } int nvme_qpair_submit_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req) { CU_ASSERT(req->cmd.opc == SPDK_NVME_OPC_ASYNC_EVENT_REQUEST); STAILQ_INSERT_HEAD(&qpair->free_req, req, stailq); /* * For the purposes of this unit test, we don't need to bother emulating request submission. */ return 0; } static int32_t g_wait_for_completion_return_val; int32_t spdk_nvme_qpair_process_completions(struct spdk_nvme_qpair *qpair, uint32_t max_completions) { return g_wait_for_completion_return_val; } void nvme_qpair_complete_error_reqs(struct spdk_nvme_qpair *qpair) { } void nvme_completion_poll_cb(void *arg, const struct spdk_nvme_cpl *cpl) { struct nvme_completion_poll_status *status = arg; /* This should not happen it test env since this callback is always called * before wait_for_completion_* while this field can only be set to true in * wait_for_completion_* functions */ CU_ASSERT(status->timed_out == false); status->cpl = *cpl; status->done = true; } static struct nvme_completion_poll_status *g_failed_status; int nvme_wait_for_completion_robust_lock_timeout( struct spdk_nvme_qpair *qpair, struct nvme_completion_poll_status *status, pthread_mutex_t *robust_mutex, uint64_t timeout_in_usecs) { if (spdk_nvme_qpair_process_completions(qpair, 0) < 0) { g_failed_status = status; status->timed_out = true; return -1; } status->done = true; if (set_status_cpl == 1) { status->cpl.status.sc = 1; } return spdk_nvme_cpl_is_error(&status->cpl) ? -EIO : 0; } int nvme_wait_for_completion_robust_lock( struct spdk_nvme_qpair *qpair, struct nvme_completion_poll_status *status, pthread_mutex_t *robust_mutex) { return nvme_wait_for_completion_robust_lock_timeout(qpair, status, robust_mutex, 0); } int nvme_wait_for_completion(struct spdk_nvme_qpair *qpair, struct nvme_completion_poll_status *status) { return nvme_wait_for_completion_robust_lock_timeout(qpair, status, NULL, 0); } int nvme_wait_for_completion_timeout(struct spdk_nvme_qpair *qpair, struct nvme_completion_poll_status *status, uint64_t timeout_in_usecs) { return nvme_wait_for_completion_robust_lock_timeout(qpair, status, NULL, timeout_in_usecs); } int nvme_ctrlr_cmd_set_async_event_config(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_feat_async_event_configuration config, spdk_nvme_cmd_cb cb_fn, void *cb_arg) { fake_cpl_sc(cb_fn, cb_arg); return 0; } static uint32_t *g_active_ns_list = NULL; static uint32_t g_active_ns_list_length = 0; static struct spdk_nvme_ctrlr_data *g_cdata = NULL; static bool g_fail_next_identify = false; int nvme_ctrlr_cmd_identify(struct spdk_nvme_ctrlr *ctrlr, uint8_t cns, uint16_t cntid, uint32_t nsid, uint8_t csi, void *payload, size_t payload_size, spdk_nvme_cmd_cb cb_fn, void *cb_arg) { if (g_fail_next_identify) { g_fail_next_identify = false; return 1; } memset(payload, 0, payload_size); if (cns == SPDK_NVME_IDENTIFY_ACTIVE_NS_LIST) { uint32_t count = 0; uint32_t i = 0; struct spdk_nvme_ns_list *ns_list = (struct spdk_nvme_ns_list *)payload; if (g_active_ns_list == NULL) { for (i = 1; i <= ctrlr->cdata.nn; i++) { if (i <= nsid) { continue; } ns_list->ns_list[count++] = i; if (count == SPDK_COUNTOF(ns_list->ns_list)) { break; } } } else { for (i = 0; i < g_active_ns_list_length; i++) { uint32_t cur_nsid = g_active_ns_list[i]; if (cur_nsid <= nsid) { continue; } ns_list->ns_list[count++] = cur_nsid; if (count == SPDK_COUNTOF(ns_list->ns_list)) { break; } } } } else if (cns == SPDK_NVME_IDENTIFY_CTRLR) { if (g_cdata) { memcpy(payload, g_cdata, sizeof(*g_cdata)); } } else if (cns == SPDK_NVME_IDENTIFY_NS_IOCS) { return 0; } fake_cpl_sc(cb_fn, cb_arg); return 0; } int nvme_ctrlr_cmd_set_num_queues(struct spdk_nvme_ctrlr *ctrlr, uint32_t num_queues, spdk_nvme_cmd_cb cb_fn, void *cb_arg) { fake_cpl_sc(cb_fn, cb_arg); return 0; } int nvme_ctrlr_cmd_get_num_queues(struct spdk_nvme_ctrlr *ctrlr, spdk_nvme_cmd_cb cb_fn, void *cb_arg) { CU_ASSERT(0); return -1; } int nvme_ctrlr_cmd_attach_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid, struct spdk_nvme_ctrlr_list *payload, spdk_nvme_cmd_cb cb_fn, void *cb_arg) { return 0; } int nvme_ctrlr_cmd_detach_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid, struct spdk_nvme_ctrlr_list *payload, spdk_nvme_cmd_cb cb_fn, void *cb_arg) { return 0; } int nvme_ctrlr_cmd_create_ns(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns_data *payload, spdk_nvme_cmd_cb cb_fn, void *cb_arg) { fake_cpl_sc(cb_fn, cb_arg); return 0; } int nvme_ctrlr_cmd_delete_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid, spdk_nvme_cmd_cb cb_fn, void *cb_arg) { return 0; } int nvme_ctrlr_cmd_format(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid, struct spdk_nvme_format *format, spdk_nvme_cmd_cb cb_fn, void *cb_arg) { return 0; } int spdk_nvme_ctrlr_cmd_directive_send(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid, uint32_t doper, uint32_t dtype, uint32_t dspec, void *payload, uint32_t payload_size, uint32_t cdw12, uint32_t cdw13, spdk_nvme_cmd_cb cb_fn, void *cb_arg) { return 0; } int spdk_nvme_ctrlr_cmd_directive_receive(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid, uint32_t doper, uint32_t dtype, uint32_t dspec, void *payload, uint32_t payload_size, uint32_t cdw12, uint32_t cdw13, spdk_nvme_cmd_cb cb_fn, void *cb_arg) { return 0; } int nvme_ctrlr_cmd_fw_commit(struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_fw_commit *fw_commit, spdk_nvme_cmd_cb cb_fn, void *cb_arg) { CU_ASSERT(fw_commit->ca == SPDK_NVME_FW_COMMIT_REPLACE_IMG); if (fw_commit->fs == 0) { return -1; } set_status_cpl = 1; if (ctrlr->is_resetting == true) { set_status_cpl = 0; } return 0; } int nvme_ctrlr_cmd_fw_image_download(struct spdk_nvme_ctrlr *ctrlr, uint32_t size, uint32_t offset, void *payload, spdk_nvme_cmd_cb cb_fn, void *cb_arg) { if ((size != 0 && payload == NULL) || (size == 0 && payload != NULL)) { return -1; } CU_ASSERT(offset == 0); return 0; } bool nvme_ns_has_supported_iocs_specific_data(struct spdk_nvme_ns *ns) { switch (ns->csi) { case SPDK_NVME_CSI_NVM: /* * NVM Command Set Specific Identify Namespace data structure * is currently all-zeroes, reserved for future use. */ return false; case SPDK_NVME_CSI_ZNS: return true; default: SPDK_WARNLOG("Unsupported CSI: %u for NSID: %u\n", ns->csi, ns->id); return false; } } void nvme_ns_free_zns_specific_data(struct spdk_nvme_ns *ns) { if (!ns->id) { return; } if (ns->nsdata_zns) { spdk_free(ns->nsdata_zns); ns->nsdata_zns = NULL; } } void nvme_ns_destruct(struct spdk_nvme_ns *ns) { } int nvme_ns_construct(struct spdk_nvme_ns *ns, uint32_t id, struct spdk_nvme_ctrlr *ctrlr) { return 0; } void spdk_pci_device_detach(struct spdk_pci_device *device) { } #define DECLARE_AND_CONSTRUCT_CTRLR() \ struct spdk_nvme_ctrlr ctrlr = {}; \ struct spdk_nvme_qpair adminq = {}; \ struct nvme_request req; \ \ STAILQ_INIT(&adminq.free_req); \ STAILQ_INSERT_HEAD(&adminq.free_req, &req, stailq); \ ctrlr.adminq = &adminq; \ ctrlr.trid.trtype = SPDK_NVME_TRANSPORT_CUSTOM; static void test_nvme_ctrlr_init_en_1_rdy_0(void) { DECLARE_AND_CONSTRUCT_CTRLR(); memset(&g_ut_nvme_regs, 0, sizeof(g_ut_nvme_regs)); /* * Initial state: CC.EN = 1, CSTS.RDY = 0 */ g_ut_nvme_regs.cc.bits.en = 1; g_ut_nvme_regs.csts.bits.rdy = 0; SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0); ctrlr.cdata.nn = 1; ctrlr.page_size = 0x1000; CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT); while (ctrlr.state != NVME_CTRLR_STATE_CHECK_EN) { CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); } CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1); /* * Transition to CSTS.RDY = 1. * init() should set CC.EN = 0. */ g_ut_nvme_regs.csts.bits.rdy = 1; CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_SET_EN_0); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0); CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 0); /* * Transition to CSTS.RDY = 0. */ g_ut_nvme_regs.csts.bits.rdy = 0; CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLED); /* * Start enabling the controller. */ CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE); /* * Transition to CC.EN = 1 */ CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1); CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 1); /* * Transition to CSTS.RDY = 1. */ g_ut_nvme_regs.csts.bits.rdy = 1; CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_RESET_ADMIN_QUEUE); /* * Transition to READY. */ while (ctrlr.state != NVME_CTRLR_STATE_READY) { nvme_ctrlr_process_init(&ctrlr); } g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE; nvme_ctrlr_destruct(&ctrlr); } static void test_nvme_ctrlr_init_en_1_rdy_1(void) { DECLARE_AND_CONSTRUCT_CTRLR(); memset(&g_ut_nvme_regs, 0, sizeof(g_ut_nvme_regs)); /* * Initial state: CC.EN = 1, CSTS.RDY = 1 * init() should set CC.EN = 0. */ g_ut_nvme_regs.cc.bits.en = 1; g_ut_nvme_regs.csts.bits.rdy = 1; SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0); ctrlr.cdata.nn = 1; ctrlr.page_size = 0x1000; CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT); while (ctrlr.state != NVME_CTRLR_STATE_SET_EN_0) { CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); } CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0); CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 0); /* * Transition to CSTS.RDY = 0. */ g_ut_nvme_regs.csts.bits.rdy = 0; CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLED); /* * Start enabling the controller. */ CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE); /* * Transition to CC.EN = 1 */ CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1); CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 1); /* * Transition to CSTS.RDY = 1. */ g_ut_nvme_regs.csts.bits.rdy = 1; CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_RESET_ADMIN_QUEUE); /* * Transition to READY. */ while (ctrlr.state != NVME_CTRLR_STATE_READY) { nvme_ctrlr_process_init(&ctrlr); } g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE; nvme_ctrlr_destruct(&ctrlr); } static void test_nvme_ctrlr_init_en_0_rdy_0_ams_rr(void) { DECLARE_AND_CONSTRUCT_CTRLR(); memset(&g_ut_nvme_regs, 0, sizeof(g_ut_nvme_regs)); /* * Initial state: CC.EN = 0, CSTS.RDY = 0 * init() should set CC.EN = 1. */ g_ut_nvme_regs.cc.bits.en = 0; g_ut_nvme_regs.csts.bits.rdy = 0; /* * Default round robin enabled */ g_ut_nvme_regs.cap.bits.ams = 0x0; ctrlr.cap = g_ut_nvme_regs.cap; SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0); ctrlr.cdata.nn = 1; ctrlr.page_size = 0x1000; /* * Case 1: default round robin arbitration mechanism selected */ ctrlr.opts.arb_mechanism = SPDK_NVME_CC_AMS_RR; CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT); while (ctrlr.state != NVME_CTRLR_STATE_CHECK_EN) { CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); } CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLED); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1); CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 1); CU_ASSERT(g_ut_nvme_regs.cc.bits.ams == SPDK_NVME_CC_AMS_RR); CU_ASSERT(ctrlr.opts.arb_mechanism == SPDK_NVME_CC_AMS_RR); /* * Complete and destroy the controller */ g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE; nvme_ctrlr_destruct(&ctrlr); /* * Reset to initial state */ g_ut_nvme_regs.cc.bits.en = 0; g_ut_nvme_regs.csts.bits.rdy = 0; /* * Case 2: weighted round robin arbitration mechanism selected */ SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0); ctrlr.cdata.nn = 1; ctrlr.page_size = 0x1000; ctrlr.opts.arb_mechanism = SPDK_NVME_CC_AMS_WRR; CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT); while (ctrlr.state != NVME_CTRLR_STATE_CHECK_EN) { CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); } CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLED); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) != 0); CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 0); /* * Complete and destroy the controller */ g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE; nvme_ctrlr_destruct(&ctrlr); /* * Reset to initial state */ g_ut_nvme_regs.cc.bits.en = 0; g_ut_nvme_regs.csts.bits.rdy = 0; /* * Case 3: vendor specific arbitration mechanism selected */ SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0); ctrlr.cdata.nn = 1; ctrlr.page_size = 0x1000; ctrlr.opts.arb_mechanism = SPDK_NVME_CC_AMS_VS; CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT); while (ctrlr.state != NVME_CTRLR_STATE_CHECK_EN) { CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); } CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLED); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) != 0); CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 0); /* * Complete and destroy the controller */ g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE; nvme_ctrlr_destruct(&ctrlr); /* * Reset to initial state */ g_ut_nvme_regs.cc.bits.en = 0; g_ut_nvme_regs.csts.bits.rdy = 0; /* * Case 4: invalid arbitration mechanism selected */ SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0); ctrlr.cdata.nn = 1; ctrlr.page_size = 0x1000; ctrlr.opts.arb_mechanism = SPDK_NVME_CC_AMS_VS + 1; CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT); while (ctrlr.state != NVME_CTRLR_STATE_CHECK_EN) { CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); } CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLED); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) != 0); CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 0); /* * Complete and destroy the controller */ g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE; nvme_ctrlr_destruct(&ctrlr); /* * Reset to initial state */ g_ut_nvme_regs.cc.bits.en = 0; g_ut_nvme_regs.csts.bits.rdy = 0; /* * Case 5: reset to default round robin arbitration mechanism */ SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0); ctrlr.cdata.nn = 1; ctrlr.page_size = 0x1000; ctrlr.opts.arb_mechanism = SPDK_NVME_CC_AMS_RR; CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT); while (ctrlr.state != NVME_CTRLR_STATE_CHECK_EN) { CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); } CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLED); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1); CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 1); CU_ASSERT(g_ut_nvme_regs.cc.bits.ams == SPDK_NVME_CC_AMS_RR); CU_ASSERT(ctrlr.opts.arb_mechanism == SPDK_NVME_CC_AMS_RR); /* * Transition to CSTS.RDY = 1. */ g_ut_nvme_regs.csts.bits.rdy = 1; CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_RESET_ADMIN_QUEUE); /* * Transition to READY. */ while (ctrlr.state != NVME_CTRLR_STATE_READY) { nvme_ctrlr_process_init(&ctrlr); } g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE; nvme_ctrlr_destruct(&ctrlr); } static void test_nvme_ctrlr_init_en_0_rdy_0_ams_wrr(void) { DECLARE_AND_CONSTRUCT_CTRLR(); memset(&g_ut_nvme_regs, 0, sizeof(g_ut_nvme_regs)); /* * Initial state: CC.EN = 0, CSTS.RDY = 0 * init() should set CC.EN = 1. */ g_ut_nvme_regs.cc.bits.en = 0; g_ut_nvme_regs.csts.bits.rdy = 0; /* * Weighted round robin enabled */ g_ut_nvme_regs.cap.bits.ams = SPDK_NVME_CAP_AMS_WRR; ctrlr.cap = g_ut_nvme_regs.cap; SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0); ctrlr.cdata.nn = 1; ctrlr.page_size = 0x1000; /* * Case 1: default round robin arbitration mechanism selected */ ctrlr.opts.arb_mechanism = SPDK_NVME_CC_AMS_RR; CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT); while (ctrlr.state != NVME_CTRLR_STATE_CHECK_EN) { CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); } CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLED); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1); CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 1); CU_ASSERT(g_ut_nvme_regs.cc.bits.ams == SPDK_NVME_CC_AMS_RR); CU_ASSERT(ctrlr.opts.arb_mechanism == SPDK_NVME_CC_AMS_RR); /* * Complete and destroy the controller */ g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE; nvme_ctrlr_destruct(&ctrlr); /* * Reset to initial state */ g_ut_nvme_regs.cc.bits.en = 0; g_ut_nvme_regs.csts.bits.rdy = 0; /* * Case 2: weighted round robin arbitration mechanism selected */ SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0); ctrlr.cdata.nn = 1; ctrlr.page_size = 0x1000; ctrlr.opts.arb_mechanism = SPDK_NVME_CC_AMS_WRR; CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT); while (ctrlr.state != NVME_CTRLR_STATE_CHECK_EN) { CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); } CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLED); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1); CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 1); CU_ASSERT(g_ut_nvme_regs.cc.bits.ams == SPDK_NVME_CC_AMS_WRR); CU_ASSERT(ctrlr.opts.arb_mechanism == SPDK_NVME_CC_AMS_WRR); /* * Complete and destroy the controller */ g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE; nvme_ctrlr_destruct(&ctrlr); /* * Reset to initial state */ g_ut_nvme_regs.cc.bits.en = 0; g_ut_nvme_regs.csts.bits.rdy = 0; /* * Case 3: vendor specific arbitration mechanism selected */ SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0); ctrlr.cdata.nn = 1; ctrlr.page_size = 0x1000; ctrlr.opts.arb_mechanism = SPDK_NVME_CC_AMS_VS; CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT); while (ctrlr.state != NVME_CTRLR_STATE_CHECK_EN) { CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); } CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLED); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) != 0); CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 0); /* * Complete and destroy the controller */ g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE; nvme_ctrlr_destruct(&ctrlr); /* * Reset to initial state */ g_ut_nvme_regs.cc.bits.en = 0; g_ut_nvme_regs.csts.bits.rdy = 0; /* * Case 4: invalid arbitration mechanism selected */ SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0); ctrlr.cdata.nn = 1; ctrlr.page_size = 0x1000; ctrlr.opts.arb_mechanism = SPDK_NVME_CC_AMS_VS + 1; CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT); while (ctrlr.state != NVME_CTRLR_STATE_CHECK_EN) { CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); } CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLED); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) != 0); CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 0); /* * Complete and destroy the controller */ g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE; nvme_ctrlr_destruct(&ctrlr); /* * Reset to initial state */ g_ut_nvme_regs.cc.bits.en = 0; g_ut_nvme_regs.csts.bits.rdy = 0; /* * Case 5: reset to weighted round robin arbitration mechanism */ SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0); ctrlr.cdata.nn = 1; ctrlr.page_size = 0x1000; ctrlr.opts.arb_mechanism = SPDK_NVME_CC_AMS_WRR; CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT); while (ctrlr.state != NVME_CTRLR_STATE_CHECK_EN) { CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); } CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLED); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1); CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 1); CU_ASSERT(g_ut_nvme_regs.cc.bits.ams == SPDK_NVME_CC_AMS_WRR); CU_ASSERT(ctrlr.opts.arb_mechanism == SPDK_NVME_CC_AMS_WRR); /* * Transition to CSTS.RDY = 1. */ g_ut_nvme_regs.csts.bits.rdy = 1; CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_RESET_ADMIN_QUEUE); /* * Transition to READY. */ while (ctrlr.state != NVME_CTRLR_STATE_READY) { nvme_ctrlr_process_init(&ctrlr); } g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE; nvme_ctrlr_destruct(&ctrlr); } static void test_nvme_ctrlr_init_en_0_rdy_0_ams_vs(void) { DECLARE_AND_CONSTRUCT_CTRLR(); memset(&g_ut_nvme_regs, 0, sizeof(g_ut_nvme_regs)); /* * Initial state: CC.EN = 0, CSTS.RDY = 0 * init() should set CC.EN = 1. */ g_ut_nvme_regs.cc.bits.en = 0; g_ut_nvme_regs.csts.bits.rdy = 0; /* * Default round robin enabled */ g_ut_nvme_regs.cap.bits.ams = SPDK_NVME_CAP_AMS_VS; ctrlr.cap = g_ut_nvme_regs.cap; SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0); ctrlr.cdata.nn = 1; ctrlr.page_size = 0x1000; /* * Case 1: default round robin arbitration mechanism selected */ ctrlr.opts.arb_mechanism = SPDK_NVME_CC_AMS_RR; CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT); while (ctrlr.state != NVME_CTRLR_STATE_CHECK_EN) { CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); } CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLED); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1); CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 1); CU_ASSERT(g_ut_nvme_regs.cc.bits.ams == SPDK_NVME_CC_AMS_RR); CU_ASSERT(ctrlr.opts.arb_mechanism == SPDK_NVME_CC_AMS_RR); /* * Complete and destroy the controller */ g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE; nvme_ctrlr_destruct(&ctrlr); /* * Reset to initial state */ g_ut_nvme_regs.cc.bits.en = 0; g_ut_nvme_regs.csts.bits.rdy = 0; /* * Case 2: weighted round robin arbitration mechanism selected */ SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0); ctrlr.cdata.nn = 1; ctrlr.page_size = 0x1000; ctrlr.opts.arb_mechanism = SPDK_NVME_CC_AMS_WRR; CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT); while (ctrlr.state != NVME_CTRLR_STATE_CHECK_EN) { CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); } CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLED); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) != 0); CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 0); /* * Complete and destroy the controller */ g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE; nvme_ctrlr_destruct(&ctrlr); /* * Reset to initial state */ g_ut_nvme_regs.cc.bits.en = 0; g_ut_nvme_regs.csts.bits.rdy = 0; /* * Case 3: vendor specific arbitration mechanism selected */ SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0); ctrlr.cdata.nn = 1; ctrlr.page_size = 0x1000; ctrlr.opts.arb_mechanism = SPDK_NVME_CC_AMS_VS; CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT); while (ctrlr.state != NVME_CTRLR_STATE_CHECK_EN) { CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); } CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLED); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1); CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 1); CU_ASSERT(g_ut_nvme_regs.cc.bits.ams == SPDK_NVME_CC_AMS_VS); CU_ASSERT(ctrlr.opts.arb_mechanism == SPDK_NVME_CC_AMS_VS); /* * Complete and destroy the controller */ g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE; nvme_ctrlr_destruct(&ctrlr); /* * Reset to initial state */ g_ut_nvme_regs.cc.bits.en = 0; g_ut_nvme_regs.csts.bits.rdy = 0; /* * Case 4: invalid arbitration mechanism selected */ SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0); ctrlr.cdata.nn = 1; ctrlr.page_size = 0x1000; ctrlr.opts.arb_mechanism = SPDK_NVME_CC_AMS_VS + 1; CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT); while (ctrlr.state != NVME_CTRLR_STATE_CHECK_EN) { CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); } CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLED); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) != 0); CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 0); /* * Complete and destroy the controller */ g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE; nvme_ctrlr_destruct(&ctrlr); /* * Reset to initial state */ g_ut_nvme_regs.cc.bits.en = 0; g_ut_nvme_regs.csts.bits.rdy = 0; /* * Case 5: reset to vendor specific arbitration mechanism */ SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0); ctrlr.cdata.nn = 1; ctrlr.page_size = 0x1000; ctrlr.opts.arb_mechanism = SPDK_NVME_CC_AMS_VS; CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT); while (ctrlr.state != NVME_CTRLR_STATE_CHECK_EN) { CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); } CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLED); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1); CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 1); CU_ASSERT(g_ut_nvme_regs.cc.bits.ams == SPDK_NVME_CC_AMS_VS); CU_ASSERT(ctrlr.opts.arb_mechanism == SPDK_NVME_CC_AMS_VS); /* * Transition to CSTS.RDY = 1. */ g_ut_nvme_regs.csts.bits.rdy = 1; CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_RESET_ADMIN_QUEUE); /* * Transition to READY. */ while (ctrlr.state != NVME_CTRLR_STATE_READY) { nvme_ctrlr_process_init(&ctrlr); } g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE; nvme_ctrlr_destruct(&ctrlr); } static void test_nvme_ctrlr_init_en_0_rdy_0(void) { DECLARE_AND_CONSTRUCT_CTRLR(); memset(&g_ut_nvme_regs, 0, sizeof(g_ut_nvme_regs)); /* * Initial state: CC.EN = 0, CSTS.RDY = 0 * init() should set CC.EN = 1. */ g_ut_nvme_regs.cc.bits.en = 0; g_ut_nvme_regs.csts.bits.rdy = 0; SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0); ctrlr.cdata.nn = 1; ctrlr.page_size = 0x1000; CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT); while (ctrlr.state != NVME_CTRLR_STATE_CHECK_EN) { CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); } CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLED); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1); CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 1); /* * Transition to CSTS.RDY = 1. */ g_ut_nvme_regs.csts.bits.rdy = 1; CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_RESET_ADMIN_QUEUE); /* * Transition to READY. */ while (ctrlr.state != NVME_CTRLR_STATE_READY) { nvme_ctrlr_process_init(&ctrlr); } g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE; nvme_ctrlr_destruct(&ctrlr); } static void test_nvme_ctrlr_init_en_0_rdy_1(void) { DECLARE_AND_CONSTRUCT_CTRLR(); memset(&g_ut_nvme_regs, 0, sizeof(g_ut_nvme_regs)); /* * Initial state: CC.EN = 0, CSTS.RDY = 1 */ g_ut_nvme_regs.cc.bits.en = 0; g_ut_nvme_regs.csts.bits.rdy = 1; SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0); ctrlr.cdata.nn = 1; ctrlr.page_size = 0x1000; CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT); while (ctrlr.state != NVME_CTRLR_STATE_CHECK_EN) { CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); } CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0); /* * Transition to CSTS.RDY = 0. */ g_ut_nvme_regs.csts.bits.rdy = 0; CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLED); /* * Start enabling the controller. */ CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE); /* * Transition to CC.EN = 1 */ CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1); CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 1); /* * Transition to CSTS.RDY = 1. */ g_ut_nvme_regs.csts.bits.rdy = 1; CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_RESET_ADMIN_QUEUE); /* * Transition to READY. */ while (ctrlr.state != NVME_CTRLR_STATE_READY) { nvme_ctrlr_process_init(&ctrlr); } g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE; nvme_ctrlr_destruct(&ctrlr); } static void setup_qpairs(struct spdk_nvme_ctrlr *ctrlr, uint32_t num_io_queues) { uint32_t i; SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(ctrlr) == 0); ctrlr->page_size = 0x1000; ctrlr->opts.num_io_queues = num_io_queues; ctrlr->free_io_qids = spdk_bit_array_create(num_io_queues + 1); ctrlr->state = NVME_CTRLR_STATE_READY; SPDK_CU_ASSERT_FATAL(ctrlr->free_io_qids != NULL); spdk_bit_array_clear(ctrlr->free_io_qids, 0); for (i = 1; i <= num_io_queues; i++) { spdk_bit_array_set(ctrlr->free_io_qids, i); } } static void cleanup_qpairs(struct spdk_nvme_ctrlr *ctrlr) { nvme_ctrlr_destruct(ctrlr); } static void test_alloc_io_qpair_rr_1(void) { struct spdk_nvme_io_qpair_opts opts; struct spdk_nvme_ctrlr ctrlr = {}; struct spdk_nvme_qpair *q0; setup_qpairs(&ctrlr, 1); /* * Fake to simulate the controller with default round robin * arbitration mechanism. */ g_ut_nvme_regs.cc.bits.ams = SPDK_NVME_CC_AMS_RR; spdk_nvme_ctrlr_get_default_io_qpair_opts(&ctrlr, &opts, sizeof(opts)); q0 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, NULL, 0); SPDK_CU_ASSERT_FATAL(q0 != NULL); SPDK_CU_ASSERT_FATAL(q0->qprio == 0); /* Only 1 I/O qpair was allocated, so this should fail */ SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, NULL, 0) == NULL); SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_free_io_qpair(q0) == 0); /* * Now that the qpair has been returned to the free list, * we should be able to allocate it again. */ q0 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, NULL, 0); SPDK_CU_ASSERT_FATAL(q0 != NULL); SPDK_CU_ASSERT_FATAL(q0->qprio == 0); SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_free_io_qpair(q0) == 0); /* Only 0 qprio is acceptable for default round robin arbitration mechanism */ opts.qprio = 1; q0 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts)); SPDK_CU_ASSERT_FATAL(q0 == NULL); opts.qprio = 2; q0 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts)); SPDK_CU_ASSERT_FATAL(q0 == NULL); opts.qprio = 3; q0 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts)); SPDK_CU_ASSERT_FATAL(q0 == NULL); /* Only 0 ~ 3 qprio is acceptable */ opts.qprio = 4; SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts)) == NULL); opts.qprio = 0; /* IO qpair can only be created when ctrlr is in READY state */ ctrlr.state = NVME_CTRLR_STATE_ENABLE; q0 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts)); SPDK_CU_ASSERT_FATAL(q0 == NULL); ctrlr.state = NVME_CTRLR_STATE_READY; cleanup_qpairs(&ctrlr); } static void test_alloc_io_qpair_wrr_1(void) { struct spdk_nvme_io_qpair_opts opts; struct spdk_nvme_ctrlr ctrlr = {}; struct spdk_nvme_qpair *q0, *q1; setup_qpairs(&ctrlr, 2); /* * Fake to simulate the controller with weighted round robin * arbitration mechanism. */ ctrlr.process_init_cc.bits.ams = SPDK_NVME_CC_AMS_WRR; spdk_nvme_ctrlr_get_default_io_qpair_opts(&ctrlr, &opts, sizeof(opts)); /* * Allocate 2 qpairs and free them */ opts.qprio = 0; q0 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts)); SPDK_CU_ASSERT_FATAL(q0 != NULL); SPDK_CU_ASSERT_FATAL(q0->qprio == 0); opts.qprio = 1; q1 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts)); SPDK_CU_ASSERT_FATAL(q1 != NULL); SPDK_CU_ASSERT_FATAL(q1->qprio == 1); SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_free_io_qpair(q1) == 0); SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_free_io_qpair(q0) == 0); /* * Allocate 2 qpairs and free them in the reverse order */ opts.qprio = 2; q0 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts)); SPDK_CU_ASSERT_FATAL(q0 != NULL); SPDK_CU_ASSERT_FATAL(q0->qprio == 2); opts.qprio = 3; q1 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts)); SPDK_CU_ASSERT_FATAL(q1 != NULL); SPDK_CU_ASSERT_FATAL(q1->qprio == 3); SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_free_io_qpair(q0) == 0); SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_free_io_qpair(q1) == 0); /* Only 0 ~ 3 qprio is acceptable */ opts.qprio = 4; SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts)) == NULL); cleanup_qpairs(&ctrlr); } static void test_alloc_io_qpair_wrr_2(void) { struct spdk_nvme_io_qpair_opts opts; struct spdk_nvme_ctrlr ctrlr = {}; struct spdk_nvme_qpair *q0, *q1, *q2, *q3; setup_qpairs(&ctrlr, 4); /* * Fake to simulate the controller with weighted round robin * arbitration mechanism. */ ctrlr.process_init_cc.bits.ams = SPDK_NVME_CC_AMS_WRR; spdk_nvme_ctrlr_get_default_io_qpair_opts(&ctrlr, &opts, sizeof(opts)); opts.qprio = 0; q0 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts)); SPDK_CU_ASSERT_FATAL(q0 != NULL); SPDK_CU_ASSERT_FATAL(q0->qprio == 0); opts.qprio = 1; q1 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts)); SPDK_CU_ASSERT_FATAL(q1 != NULL); SPDK_CU_ASSERT_FATAL(q1->qprio == 1); opts.qprio = 2; q2 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts)); SPDK_CU_ASSERT_FATAL(q2 != NULL); SPDK_CU_ASSERT_FATAL(q2->qprio == 2); opts.qprio = 3; q3 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts)); SPDK_CU_ASSERT_FATAL(q3 != NULL); SPDK_CU_ASSERT_FATAL(q3->qprio == 3); /* Only 4 I/O qpairs was allocated, so this should fail */ opts.qprio = 0; SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts)) == NULL); SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_free_io_qpair(q3) == 0); SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_free_io_qpair(q2) == 0); SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_free_io_qpair(q1) == 0); SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_free_io_qpair(q0) == 0); /* * Now that the qpair has been returned to the free list, * we should be able to allocate it again. * * Allocate 4 I/O qpairs and half of them with same qprio. */ opts.qprio = 1; q0 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts)); SPDK_CU_ASSERT_FATAL(q0 != NULL); SPDK_CU_ASSERT_FATAL(q0->qprio == 1); opts.qprio = 1; q1 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts)); SPDK_CU_ASSERT_FATAL(q1 != NULL); SPDK_CU_ASSERT_FATAL(q1->qprio == 1); opts.qprio = 3; q2 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts)); SPDK_CU_ASSERT_FATAL(q2 != NULL); SPDK_CU_ASSERT_FATAL(q2->qprio == 3); opts.qprio = 3; q3 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts)); SPDK_CU_ASSERT_FATAL(q3 != NULL); SPDK_CU_ASSERT_FATAL(q3->qprio == 3); /* * Free all I/O qpairs in reverse order */ SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_free_io_qpair(q0) == 0); SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_free_io_qpair(q1) == 0); SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_free_io_qpair(q2) == 0); SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_free_io_qpair(q3) == 0); cleanup_qpairs(&ctrlr); } bool g_connect_qpair_called = false; int g_connect_qpair_return_code = 0; int nvme_transport_ctrlr_connect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair) { g_connect_qpair_called = true; qpair->state = NVME_QPAIR_CONNECTED; return g_connect_qpair_return_code; } static void test_spdk_nvme_ctrlr_reconnect_io_qpair(void) { struct spdk_nvme_ctrlr ctrlr = {}; struct spdk_nvme_qpair qpair = {}; int rc; CU_ASSERT(pthread_mutex_init(&ctrlr.ctrlr_lock, NULL) == 0); /* Various states of controller disconnect. */ qpair.id = 1; qpair.ctrlr = &ctrlr; ctrlr.is_removed = 1; ctrlr.is_failed = 0; ctrlr.is_resetting = 0; rc = spdk_nvme_ctrlr_reconnect_io_qpair(&qpair); CU_ASSERT(rc == -ENODEV) ctrlr.is_removed = 0; ctrlr.is_failed = 1; rc = spdk_nvme_ctrlr_reconnect_io_qpair(&qpair); CU_ASSERT(rc == -ENXIO) ctrlr.is_failed = 0; ctrlr.is_resetting = 1; rc = spdk_nvme_ctrlr_reconnect_io_qpair(&qpair); CU_ASSERT(rc == -EAGAIN) /* Confirm precedence for controller states: removed > resetting > failed */ ctrlr.is_removed = 1; ctrlr.is_failed = 1; rc = spdk_nvme_ctrlr_reconnect_io_qpair(&qpair); CU_ASSERT(rc == -ENODEV) ctrlr.is_removed = 0; rc = spdk_nvme_ctrlr_reconnect_io_qpair(&qpair); CU_ASSERT(rc == -EAGAIN) ctrlr.is_resetting = 0; rc = spdk_nvme_ctrlr_reconnect_io_qpair(&qpair); CU_ASSERT(rc == -ENXIO) /* qpair not failed. Make sure we don't call down to the transport */ ctrlr.is_failed = 0; qpair.state = NVME_QPAIR_CONNECTED; g_connect_qpair_called = false; rc = spdk_nvme_ctrlr_reconnect_io_qpair(&qpair); CU_ASSERT(g_connect_qpair_called == false); CU_ASSERT(rc == 0) /* transport qpair is failed. make sure we call down to the transport */ qpair.state = NVME_QPAIR_DISCONNECTED; rc = spdk_nvme_ctrlr_reconnect_io_qpair(&qpair); CU_ASSERT(g_connect_qpair_called == true); CU_ASSERT(rc == 0) CU_ASSERT(pthread_mutex_destroy(&ctrlr.ctrlr_lock) == 0); } static void test_nvme_ctrlr_fail(void) { struct spdk_nvme_ctrlr ctrlr = {}; ctrlr.opts.num_io_queues = 0; nvme_ctrlr_fail(&ctrlr, false); CU_ASSERT(ctrlr.is_failed == true); } static void test_nvme_ctrlr_construct_intel_support_log_page_list(void) { bool res; struct spdk_nvme_ctrlr ctrlr = {}; struct spdk_nvme_intel_log_page_directory payload = {}; struct spdk_pci_id pci_id = {}; /* Get quirks for a device with all 0 vendor/device id */ ctrlr.quirks = nvme_get_quirks(&pci_id); CU_ASSERT(ctrlr.quirks == 0); /* Set the vendor to Intel, but provide no device id */ pci_id.class_id = SPDK_PCI_CLASS_NVME; ctrlr.cdata.vid = pci_id.vendor_id = SPDK_PCI_VID_INTEL; payload.temperature_statistics_log_len = 1; ctrlr.quirks = nvme_get_quirks(&pci_id); memset(ctrlr.log_page_supported, 0, sizeof(ctrlr.log_page_supported)); nvme_ctrlr_construct_intel_support_log_page_list(&ctrlr, &payload); res = spdk_nvme_ctrlr_is_log_page_supported(&ctrlr, SPDK_NVME_INTEL_LOG_PAGE_DIRECTORY); CU_ASSERT(res == true); res = spdk_nvme_ctrlr_is_log_page_supported(&ctrlr, SPDK_NVME_INTEL_LOG_TEMPERATURE); CU_ASSERT(res == true); res = spdk_nvme_ctrlr_is_log_page_supported(&ctrlr, SPDK_NVME_INTEL_LOG_READ_CMD_LATENCY); CU_ASSERT(res == false); res = spdk_nvme_ctrlr_is_log_page_supported(&ctrlr, SPDK_NVME_INTEL_LOG_SMART); CU_ASSERT(res == false); /* set valid vendor id, device id and sub device id */ ctrlr.cdata.vid = SPDK_PCI_VID_INTEL; payload.temperature_statistics_log_len = 0; pci_id.vendor_id = SPDK_PCI_VID_INTEL; pci_id.device_id = 0x0953; pci_id.subvendor_id = SPDK_PCI_VID_INTEL; pci_id.subdevice_id = 0x3702; ctrlr.quirks = nvme_get_quirks(&pci_id); memset(ctrlr.log_page_supported, 0, sizeof(ctrlr.log_page_supported)); nvme_ctrlr_construct_intel_support_log_page_list(&ctrlr, &payload); res = spdk_nvme_ctrlr_is_log_page_supported(&ctrlr, SPDK_NVME_INTEL_LOG_PAGE_DIRECTORY); CU_ASSERT(res == true); res = spdk_nvme_ctrlr_is_log_page_supported(&ctrlr, SPDK_NVME_INTEL_LOG_TEMPERATURE); CU_ASSERT(res == false); res = spdk_nvme_ctrlr_is_log_page_supported(&ctrlr, SPDK_NVME_INTEL_LOG_READ_CMD_LATENCY); CU_ASSERT(res == true); res = spdk_nvme_ctrlr_is_log_page_supported(&ctrlr, SPDK_NVME_INTEL_LOG_SMART); CU_ASSERT(res == false); } static void test_nvme_ctrlr_set_supported_features(void) { bool res; struct spdk_nvme_ctrlr ctrlr = {}; /* set a invalid vendor id */ ctrlr.cdata.vid = 0xFFFF; nvme_ctrlr_set_supported_features(&ctrlr); res = spdk_nvme_ctrlr_is_feature_supported(&ctrlr, SPDK_NVME_FEAT_ARBITRATION); CU_ASSERT(res == true); res = spdk_nvme_ctrlr_is_feature_supported(&ctrlr, SPDK_NVME_INTEL_FEAT_MAX_LBA); CU_ASSERT(res == false); ctrlr.cdata.vid = SPDK_PCI_VID_INTEL; nvme_ctrlr_set_supported_features(&ctrlr); res = spdk_nvme_ctrlr_is_feature_supported(&ctrlr, SPDK_NVME_FEAT_ARBITRATION); CU_ASSERT(res == true); res = spdk_nvme_ctrlr_is_feature_supported(&ctrlr, SPDK_NVME_INTEL_FEAT_MAX_LBA); CU_ASSERT(res == true); } static void test_ctrlr_get_default_ctrlr_opts(void) { struct spdk_nvme_ctrlr_opts opts = {}; CU_ASSERT(spdk_uuid_parse(&g_spdk_nvme_driver->default_extended_host_id, "e53e9258-c93b-48b5-be1a-f025af6d232a") == 0); memset(&opts, 0, sizeof(opts)); /* set a smaller opts_size */ CU_ASSERT(sizeof(opts) > 8); spdk_nvme_ctrlr_get_default_ctrlr_opts(&opts, 8); CU_ASSERT_EQUAL(opts.num_io_queues, DEFAULT_MAX_IO_QUEUES); CU_ASSERT_FALSE(opts.use_cmb_sqs); /* check below fields are not initialized by default value */ CU_ASSERT_EQUAL(opts.arb_mechanism, 0); CU_ASSERT_EQUAL(opts.keep_alive_timeout_ms, 0); CU_ASSERT_EQUAL(opts.io_queue_size, 0); CU_ASSERT_EQUAL(opts.io_queue_requests, 0); for (int i = 0; i < 8; i++) { CU_ASSERT(opts.host_id[i] == 0); } for (int i = 0; i < 16; i++) { CU_ASSERT(opts.extended_host_id[i] == 0); } CU_ASSERT(strlen(opts.hostnqn) == 0); CU_ASSERT(strlen(opts.src_addr) == 0); CU_ASSERT(strlen(opts.src_svcid) == 0); CU_ASSERT_EQUAL(opts.admin_timeout_ms, 0); /* set a consistent opts_size */ spdk_nvme_ctrlr_get_default_ctrlr_opts(&opts, sizeof(opts)); CU_ASSERT_EQUAL(opts.num_io_queues, DEFAULT_MAX_IO_QUEUES); CU_ASSERT_FALSE(opts.use_cmb_sqs); CU_ASSERT_EQUAL(opts.arb_mechanism, SPDK_NVME_CC_AMS_RR); CU_ASSERT_EQUAL(opts.keep_alive_timeout_ms, 10 * 1000); CU_ASSERT_EQUAL(opts.io_queue_size, DEFAULT_IO_QUEUE_SIZE); CU_ASSERT_EQUAL(opts.io_queue_requests, DEFAULT_IO_QUEUE_REQUESTS); for (int i = 0; i < 8; i++) { CU_ASSERT(opts.host_id[i] == 0); } CU_ASSERT_STRING_EQUAL(opts.hostnqn, "nqn.2014-08.org.nvmexpress:uuid:e53e9258-c93b-48b5-be1a-f025af6d232a"); CU_ASSERT(memcmp(opts.extended_host_id, &g_spdk_nvme_driver->default_extended_host_id, sizeof(opts.extended_host_id)) == 0); CU_ASSERT(strlen(opts.src_addr) == 0); CU_ASSERT(strlen(opts.src_svcid) == 0); CU_ASSERT_EQUAL(opts.admin_timeout_ms, NVME_MAX_ADMIN_TIMEOUT_IN_SECS * 1000); } static void test_ctrlr_get_default_io_qpair_opts(void) { struct spdk_nvme_ctrlr ctrlr = {}; struct spdk_nvme_io_qpair_opts opts = {}; memset(&opts, 0, sizeof(opts)); /* set a smaller opts_size */ ctrlr.opts.io_queue_size = DEFAULT_IO_QUEUE_SIZE; CU_ASSERT(sizeof(opts) > 8); spdk_nvme_ctrlr_get_default_io_qpair_opts(&ctrlr, &opts, 8); CU_ASSERT_EQUAL(opts.qprio, SPDK_NVME_QPRIO_URGENT); CU_ASSERT_EQUAL(opts.io_queue_size, DEFAULT_IO_QUEUE_SIZE); /* check below field is not initialized by default value */ CU_ASSERT_EQUAL(opts.io_queue_requests, 0); /* set a consistent opts_size */ ctrlr.opts.io_queue_size = DEFAULT_IO_QUEUE_SIZE; ctrlr.opts.io_queue_requests = DEFAULT_IO_QUEUE_REQUESTS; spdk_nvme_ctrlr_get_default_io_qpair_opts(&ctrlr, &opts, sizeof(opts)); CU_ASSERT_EQUAL(opts.qprio, SPDK_NVME_QPRIO_URGENT); CU_ASSERT_EQUAL(opts.io_queue_size, DEFAULT_IO_QUEUE_SIZE); CU_ASSERT_EQUAL(opts.io_queue_requests, DEFAULT_IO_QUEUE_REQUESTS); } #if 0 /* TODO: move to PCIe-specific unit test */ static void test_nvme_ctrlr_alloc_cmb(void) { int rc; uint64_t offset; struct spdk_nvme_ctrlr ctrlr = {}; ctrlr.cmb_size = 0x1000000; ctrlr.cmb_current_offset = 0x100; rc = nvme_ctrlr_alloc_cmb(&ctrlr, 0x200, 0x1000, &offset); CU_ASSERT(rc == 0); CU_ASSERT(offset == 0x1000); CU_ASSERT(ctrlr.cmb_current_offset == 0x1200); rc = nvme_ctrlr_alloc_cmb(&ctrlr, 0x800, 0x1000, &offset); CU_ASSERT(rc == 0); CU_ASSERT(offset == 0x2000); CU_ASSERT(ctrlr.cmb_current_offset == 0x2800); rc = nvme_ctrlr_alloc_cmb(&ctrlr, 0x800000, 0x100000, &offset); CU_ASSERT(rc == 0); CU_ASSERT(offset == 0x100000); CU_ASSERT(ctrlr.cmb_current_offset == 0x900000); rc = nvme_ctrlr_alloc_cmb(&ctrlr, 0x8000000, 0x1000, &offset); CU_ASSERT(rc == -1); } #endif static void test_spdk_nvme_ctrlr_update_firmware(void) { struct spdk_nvme_ctrlr ctrlr = {}; void *payload = NULL; int point_payload = 1; int slot = 0; int ret = 0; struct spdk_nvme_status status; enum spdk_nvme_fw_commit_action commit_action = SPDK_NVME_FW_COMMIT_REPLACE_IMG; CU_ASSERT(pthread_mutex_init(&ctrlr.ctrlr_lock, NULL) == 0); /* Set invalid size check function return value */ set_size = 5; ret = spdk_nvme_ctrlr_update_firmware(&ctrlr, payload, set_size, slot, commit_action, &status); CU_ASSERT(ret == -1); /* When payload is NULL but set_size < min_page_size */ set_size = 4; ctrlr.min_page_size = 5; ret = spdk_nvme_ctrlr_update_firmware(&ctrlr, payload, set_size, slot, commit_action, &status); CU_ASSERT(ret == -1); /* When payload not NULL but min_page_size is 0 */ set_size = 4; ctrlr.min_page_size = 0; payload = &point_payload; ret = spdk_nvme_ctrlr_update_firmware(&ctrlr, payload, set_size, slot, commit_action, &status); CU_ASSERT(ret == -1); /* Check firmware image download when payload not NULL and min_page_size not 0 , status.cpl value is 1 */ set_status_cpl = 1; set_size = 4; ctrlr.min_page_size = 5; payload = &point_payload; ret = spdk_nvme_ctrlr_update_firmware(&ctrlr, payload, set_size, slot, commit_action, &status); CU_ASSERT(ret == -ENXIO); /* Check firmware image download and set status.cpl value is 0 */ set_status_cpl = 0; set_size = 4; ctrlr.min_page_size = 5; payload = &point_payload; ret = spdk_nvme_ctrlr_update_firmware(&ctrlr, payload, set_size, slot, commit_action, &status); CU_ASSERT(ret == -1); /* Check firmware commit */ ctrlr.is_resetting = false; set_status_cpl = 0; slot = 1; set_size = 4; ctrlr.min_page_size = 5; payload = &point_payload; ret = spdk_nvme_ctrlr_update_firmware(&ctrlr, payload, set_size, slot, commit_action, &status); CU_ASSERT(ret == -ENXIO); /* Set size check firmware download and firmware commit */ ctrlr.is_resetting = true; set_status_cpl = 0; slot = 1; set_size = 4; ctrlr.min_page_size = 5; payload = &point_payload; ret = spdk_nvme_ctrlr_update_firmware(&ctrlr, payload, set_size, slot, commit_action, &status); CU_ASSERT(ret == 0); /* nvme_wait_for_completion returns an error */ g_wait_for_completion_return_val = -1; ret = spdk_nvme_ctrlr_update_firmware(&ctrlr, payload, set_size, slot, commit_action, &status); CU_ASSERT(ret == -ENXIO); CU_ASSERT(g_failed_status != NULL); CU_ASSERT(g_failed_status->timed_out == true); /* status should be freed by callback, which is not triggered in test env. Store status to global variable and free it manually. If spdk_nvme_ctrlr_update_firmware changes its behaviour and frees the status itself, we'll get a double free here.. */ free(g_failed_status); g_failed_status = NULL; g_wait_for_completion_return_val = 0; CU_ASSERT(pthread_mutex_destroy(&ctrlr.ctrlr_lock) == 0); set_status_cpl = 0; } int nvme_ctrlr_cmd_doorbell_buffer_config(struct spdk_nvme_ctrlr *ctrlr, uint64_t prp1, uint64_t prp2, spdk_nvme_cmd_cb cb_fn, void *cb_arg) { fake_cpl_sc(cb_fn, cb_arg); return 0; } static void test_spdk_nvme_ctrlr_doorbell_buffer_config(void) { struct spdk_nvme_ctrlr ctrlr = {}; int ret = -1; ctrlr.cdata.oacs.doorbell_buffer_config = 1; ctrlr.trid.trtype = SPDK_NVME_TRANSPORT_PCIE; ctrlr.page_size = 0x1000; MOCK_CLEAR(spdk_malloc); MOCK_CLEAR(spdk_zmalloc); ret = nvme_ctrlr_set_doorbell_buffer_config(&ctrlr); CU_ASSERT(ret == 0); nvme_ctrlr_free_doorbell_buffer(&ctrlr); } static void test_nvme_ctrlr_test_active_ns(void) { uint32_t nsid, minor; size_t ns_id_count; struct spdk_nvme_ctrlr ctrlr = {}; uint32_t active_ns_list[1531]; for (nsid = 1; nsid <= 1531; nsid++) { active_ns_list[nsid - 1] = nsid; } g_active_ns_list = active_ns_list; ctrlr.page_size = 0x1000; for (minor = 0; minor <= 2; minor++) { SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0); ctrlr.state = NVME_CTRLR_STATE_READY; ctrlr.vs.bits.mjr = 1; ctrlr.vs.bits.mnr = minor; ctrlr.vs.bits.ter = 0; ctrlr.cdata.nn = 1531; RB_INIT(&ctrlr.ns); g_active_ns_list_length = SPDK_COUNTOF(active_ns_list); nvme_ctrlr_identify_active_ns(&ctrlr); for (nsid = 1; nsid <= ctrlr.cdata.nn; nsid++) { CU_ASSERT(spdk_nvme_ctrlr_is_active_ns(&ctrlr, nsid) == true); } for (; nsid <= 1559; nsid++) { CU_ASSERT(spdk_nvme_ctrlr_is_active_ns(&ctrlr, nsid) == false); } g_active_ns_list_length = 0; if (minor <= 1) { ctrlr.cdata.nn = 0; } nvme_ctrlr_identify_active_ns(&ctrlr); CU_ASSERT(spdk_nvme_ctrlr_get_first_active_ns(&ctrlr) == 0); g_active_ns_list_length = 1; if (minor <= 1) { ctrlr.cdata.nn = 1; } nvme_ctrlr_identify_active_ns(&ctrlr); CU_ASSERT(spdk_nvme_ctrlr_is_active_ns(&ctrlr, 1) == true); CU_ASSERT(spdk_nvme_ctrlr_is_active_ns(&ctrlr, 2) == false); nsid = spdk_nvme_ctrlr_get_first_active_ns(&ctrlr); CU_ASSERT(nsid == 1); if (minor >= 2) { /* For NVMe 1.2 and newer, the namespace list can have "holes" where * some namespaces are not active. Test this. */ g_active_ns_list_length = 2; g_active_ns_list[1] = 3; nvme_ctrlr_identify_active_ns(&ctrlr); CU_ASSERT(spdk_nvme_ctrlr_is_active_ns(&ctrlr, 1) == true); CU_ASSERT(spdk_nvme_ctrlr_is_active_ns(&ctrlr, 2) == false); CU_ASSERT(spdk_nvme_ctrlr_is_active_ns(&ctrlr, 3) == true); nsid = spdk_nvme_ctrlr_get_next_active_ns(&ctrlr, nsid); CU_ASSERT(nsid == 3); nsid = spdk_nvme_ctrlr_get_next_active_ns(&ctrlr, nsid); CU_ASSERT(nsid == 0); /* Reset the active namespace list array */ g_active_ns_list[1] = 2; } g_active_ns_list_length = SPDK_COUNTOF(active_ns_list); if (minor <= 1) { ctrlr.cdata.nn = 1531; } nvme_ctrlr_identify_active_ns(&ctrlr); ns_id_count = 0; for (nsid = spdk_nvme_ctrlr_get_first_active_ns(&ctrlr); nsid != 0; nsid = spdk_nvme_ctrlr_get_next_active_ns(&ctrlr, nsid)) { CU_ASSERT(spdk_nvme_ctrlr_is_active_ns(&ctrlr, nsid) == true); ns_id_count++; } CU_ASSERT(ns_id_count == ctrlr.cdata.nn); nvme_ctrlr_destruct(&ctrlr); } g_active_ns_list = NULL; g_active_ns_list_length = 0; } static void test_nvme_ctrlr_test_active_ns_error_case(void) { int rc; struct spdk_nvme_ctrlr ctrlr = {.state = NVME_CTRLR_STATE_READY}; ctrlr.page_size = 0x1000; ctrlr.vs.bits.mjr = 1; ctrlr.vs.bits.mnr = 2; ctrlr.vs.bits.ter = 0; ctrlr.cdata.nn = 2; set_status_code = SPDK_NVME_SC_INVALID_FIELD; rc = nvme_ctrlr_identify_active_ns(&ctrlr); CU_ASSERT(rc == -ENXIO); set_status_code = SPDK_NVME_SC_SUCCESS; } static void test_nvme_ctrlr_init_delay(void) { DECLARE_AND_CONSTRUCT_CTRLR(); memset(&g_ut_nvme_regs, 0, sizeof(g_ut_nvme_regs)); /* * Initial state: CC.EN = 0, CSTS.RDY = 0 * init() should set CC.EN = 1. */ g_ut_nvme_regs.cc.bits.en = 0; g_ut_nvme_regs.csts.bits.rdy = 0; SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0); /* Test that the initialization delay works correctly. We only * do the initialization delay on SSDs that require it, so * set that quirk here. */ ctrlr.quirks = NVME_QUIRK_DELAY_BEFORE_INIT; ctrlr.cdata.nn = 1; ctrlr.page_size = 0x1000; ctrlr.state = NVME_CTRLR_STATE_INIT_DELAY; CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT); CU_ASSERT(ctrlr.sleep_timeout_tsc != 0); /* delay 1s, just return as sleep time isn't enough */ spdk_delay_us(1 * spdk_get_ticks_hz()); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT); CU_ASSERT(ctrlr.sleep_timeout_tsc != 0); /* sleep timeout, start to initialize */ spdk_delay_us(2 * spdk_get_ticks_hz()); while (ctrlr.state != NVME_CTRLR_STATE_CHECK_EN) { CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); } CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLED); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1); CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 1); /* * Transition to CSTS.RDY = 1. */ g_ut_nvme_regs.csts.bits.rdy = 1; CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_RESET_ADMIN_QUEUE); /* * Transition to READY. */ while (ctrlr.state != NVME_CTRLR_STATE_READY) { nvme_ctrlr_process_init(&ctrlr); } g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE; nvme_ctrlr_destruct(&ctrlr); } static void test_spdk_nvme_ctrlr_set_trid(void) { struct spdk_nvme_ctrlr ctrlr = {{0}}; struct spdk_nvme_transport_id new_trid = {{0}}; CU_ASSERT(pthread_mutex_init(&ctrlr.ctrlr_lock, NULL) == 0); ctrlr.is_failed = false; ctrlr.trid.trtype = SPDK_NVME_TRANSPORT_RDMA; snprintf(ctrlr.trid.subnqn, SPDK_NVMF_NQN_MAX_LEN, "%s", "nqn.2016-06.io.spdk:cnode1"); snprintf(ctrlr.trid.traddr, SPDK_NVMF_TRADDR_MAX_LEN, "%s", "192.168.100.8"); snprintf(ctrlr.trid.trsvcid, SPDK_NVMF_TRSVCID_MAX_LEN, "%s", "4420"); CU_ASSERT(spdk_nvme_ctrlr_set_trid(&ctrlr, &new_trid) == -EPERM); ctrlr.is_failed = true; new_trid.trtype = SPDK_NVME_TRANSPORT_TCP; CU_ASSERT(spdk_nvme_ctrlr_set_trid(&ctrlr, &new_trid) == -EINVAL); CU_ASSERT(ctrlr.trid.trtype = SPDK_NVME_TRANSPORT_RDMA); new_trid.trtype = SPDK_NVME_TRANSPORT_RDMA; snprintf(new_trid.subnqn, SPDK_NVMF_NQN_MAX_LEN, "%s", "nqn.2016-06.io.spdk:cnode2"); CU_ASSERT(spdk_nvme_ctrlr_set_trid(&ctrlr, &new_trid) == -EINVAL); CU_ASSERT(strncmp(ctrlr.trid.subnqn, "nqn.2016-06.io.spdk:cnode1", SPDK_NVMF_NQN_MAX_LEN) == 0); snprintf(new_trid.subnqn, SPDK_NVMF_NQN_MAX_LEN, "%s", "nqn.2016-06.io.spdk:cnode1"); snprintf(new_trid.traddr, SPDK_NVMF_TRADDR_MAX_LEN, "%s", "192.168.100.9"); snprintf(new_trid.trsvcid, SPDK_NVMF_TRSVCID_MAX_LEN, "%s", "4421"); CU_ASSERT(spdk_nvme_ctrlr_set_trid(&ctrlr, &new_trid) == 0); CU_ASSERT(strncmp(ctrlr.trid.traddr, "192.168.100.9", SPDK_NVMF_TRADDR_MAX_LEN) == 0); CU_ASSERT(strncmp(ctrlr.trid.trsvcid, "4421", SPDK_NVMF_TRSVCID_MAX_LEN) == 0); CU_ASSERT(pthread_mutex_destroy(&ctrlr.ctrlr_lock) == 0); } static void test_nvme_ctrlr_init_set_nvmf_ioccsz(void) { struct spdk_nvme_ctrlr_data cdata = {}; DECLARE_AND_CONSTRUCT_CTRLR(); /* equivalent of 4096 bytes */ cdata.nvmf_specific.ioccsz = 260; cdata.nvmf_specific.icdoff = 1; g_cdata = &cdata; /* Check PCI trtype, */ SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0); ctrlr.trid.trtype = SPDK_NVME_TRANSPORT_PCIE; ctrlr.state = NVME_CTRLR_STATE_IDENTIFY; CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_CONFIGURE_AER); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_SET_NUM_QUEUES); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_NS); CU_ASSERT(ctrlr.ioccsz_bytes == 0); CU_ASSERT(ctrlr.icdoff == 0); nvme_ctrlr_destruct(&ctrlr); /* Check RDMA trtype, */ SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0); ctrlr.trid.trtype = SPDK_NVME_TRANSPORT_RDMA; ctrlr.state = NVME_CTRLR_STATE_IDENTIFY; CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_CONFIGURE_AER); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_SET_NUM_QUEUES); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_NS); CU_ASSERT(ctrlr.ioccsz_bytes == 4096); CU_ASSERT(ctrlr.icdoff == 1); ctrlr.ioccsz_bytes = 0; ctrlr.icdoff = 0; nvme_ctrlr_destruct(&ctrlr); /* Check TCP trtype, */ SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0); ctrlr.trid.trtype = SPDK_NVME_TRANSPORT_TCP; ctrlr.state = NVME_CTRLR_STATE_IDENTIFY; CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_CONFIGURE_AER); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_SET_NUM_QUEUES); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_NS); CU_ASSERT(ctrlr.ioccsz_bytes == 4096); CU_ASSERT(ctrlr.icdoff == 1); ctrlr.ioccsz_bytes = 0; ctrlr.icdoff = 0; nvme_ctrlr_destruct(&ctrlr); /* Check FC trtype, */ SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0); ctrlr.trid.trtype = SPDK_NVME_TRANSPORT_FC; ctrlr.state = NVME_CTRLR_STATE_IDENTIFY; CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_CONFIGURE_AER); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_SET_NUM_QUEUES); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_NS); CU_ASSERT(ctrlr.ioccsz_bytes == 4096); CU_ASSERT(ctrlr.icdoff == 1); ctrlr.ioccsz_bytes = 0; ctrlr.icdoff = 0; nvme_ctrlr_destruct(&ctrlr); /* Check CUSTOM trtype, */ SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0); ctrlr.trid.trtype = SPDK_NVME_TRANSPORT_CUSTOM; ctrlr.state = NVME_CTRLR_STATE_IDENTIFY; CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_CONFIGURE_AER); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_SET_NUM_QUEUES); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_NS); CU_ASSERT(ctrlr.ioccsz_bytes == 0); CU_ASSERT(ctrlr.icdoff == 0); nvme_ctrlr_destruct(&ctrlr); /* Check CUSTOM_FABRICS trtype, */ SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0); ctrlr.trid.trtype = SPDK_NVME_TRANSPORT_CUSTOM_FABRICS; ctrlr.state = NVME_CTRLR_STATE_IDENTIFY; CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_CONFIGURE_AER); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_SET_NUM_QUEUES); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_NS); CU_ASSERT(ctrlr.ioccsz_bytes == 4096); CU_ASSERT(ctrlr.icdoff == 1); ctrlr.ioccsz_bytes = 0; ctrlr.icdoff = 0; nvme_ctrlr_destruct(&ctrlr); g_cdata = NULL; } static void test_nvme_ctrlr_init_set_num_queues(void) { DECLARE_AND_CONSTRUCT_CTRLR(); SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0); ctrlr.state = NVME_CTRLR_STATE_IDENTIFY; CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_CONFIGURE_AER); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_SET_NUM_QUEUES); ctrlr.opts.num_io_queues = 64; /* Num queues is zero-based. So, use 31 to get 32 queues */ fake_cpl.cdw0 = 31 + (31 << 16); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); /* -> IDENTIFY_ACTIVE_NS */ CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS); CU_ASSERT(ctrlr.opts.num_io_queues == 32); fake_cpl.cdw0 = 0; nvme_ctrlr_destruct(&ctrlr); } static void test_nvme_ctrlr_init_set_keep_alive_timeout(void) { DECLARE_AND_CONSTRUCT_CTRLR(); SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0); ctrlr.opts.keep_alive_timeout_ms = 60000; ctrlr.cdata.kas = 1; ctrlr.state = NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT; fake_cpl.cdw0 = 120000; CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); /* -> IDENTIFY_IOCS_SPECIFIC */ CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC); CU_ASSERT(ctrlr.opts.keep_alive_timeout_ms == 120000); fake_cpl.cdw0 = 0; /* Target does not support Get Feature "Keep Alive Timer" */ ctrlr.opts.keep_alive_timeout_ms = 60000; ctrlr.cdata.kas = 1; ctrlr.state = NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT; set_status_code = SPDK_NVME_SC_INVALID_FIELD; CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); /* -> IDENTIFY_IOCS_SPECIFIC */ CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC); CU_ASSERT(ctrlr.opts.keep_alive_timeout_ms == 60000); set_status_code = SPDK_NVME_SC_SUCCESS; /* Target fails Get Feature "Keep Alive Timer" for another reason */ ctrlr.opts.keep_alive_timeout_ms = 60000; ctrlr.cdata.kas = 1; ctrlr.state = NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT; set_status_code = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR; CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); /* -> ERROR */ CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ERROR); set_status_code = SPDK_NVME_SC_SUCCESS; nvme_ctrlr_destruct(&ctrlr); } static void test_alloc_io_qpair_fail(void) { struct spdk_nvme_ctrlr ctrlr = {}; struct spdk_nvme_qpair *q0; setup_qpairs(&ctrlr, 1); /* Modify the connect_qpair return code to inject a failure */ g_connect_qpair_return_code = 1; /* Attempt to allocate a qpair, this should fail */ q0 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, NULL, 0); SPDK_CU_ASSERT_FATAL(q0 == NULL); /* Verify that the qpair is removed from the lists */ SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&ctrlr.active_io_qpairs)); g_connect_qpair_return_code = 0; cleanup_qpairs(&ctrlr); } static void test_nvme_ctrlr_add_remove_process(void) { struct spdk_nvme_ctrlr ctrlr = {}; void *devhandle = (void *)0xDEADBEEF; struct spdk_nvme_ctrlr_process *proc = NULL; int rc; ctrlr.trid.trtype = SPDK_NVME_TRANSPORT_PCIE; TAILQ_INIT(&ctrlr.active_procs); rc = nvme_ctrlr_add_process(&ctrlr, devhandle); CU_ASSERT(rc == 0); proc = TAILQ_FIRST(&ctrlr.active_procs); SPDK_CU_ASSERT_FATAL(proc != NULL); CU_ASSERT(proc->is_primary == true); CU_ASSERT(proc->pid == getpid()); CU_ASSERT(proc->devhandle == (void *)0xDEADBEEF); CU_ASSERT(proc->ref == 0); nvme_ctrlr_remove_process(&ctrlr, proc); CU_ASSERT(TAILQ_EMPTY(&ctrlr.active_procs)); } static void test_nvme_ctrlr_set_arbitration_feature(void) { struct spdk_nvme_ctrlr ctrlr = {}; ctrlr.opts.arbitration_burst = 6; ctrlr.flags |= SPDK_NVME_CTRLR_WRR_SUPPORTED; ctrlr.opts.low_priority_weight = 1; ctrlr.opts.medium_priority_weight = 2; ctrlr.opts.high_priority_weight = 3; /* g_ut_cdw11 used to record value command feature set. */ g_ut_cdw11 = 0; /* arbitration_burst count available. */ nvme_ctrlr_set_arbitration_feature(&ctrlr); CU_ASSERT((uint8_t)g_ut_cdw11 == 6); CU_ASSERT((uint8_t)(g_ut_cdw11 >> 8) == 1); CU_ASSERT((uint8_t)(g_ut_cdw11 >> 16) == 2); CU_ASSERT((uint8_t)(g_ut_cdw11 >> 24) == 3); /* arbitration_burst unavailable. */ g_ut_cdw11 = 0; ctrlr.opts.arbitration_burst = 8; nvme_ctrlr_set_arbitration_feature(&ctrlr); CU_ASSERT(g_ut_cdw11 == 0); } static void test_nvme_ctrlr_set_state(void) { struct spdk_nvme_ctrlr ctrlr = {}; MOCK_SET(spdk_get_ticks, 0); nvme_ctrlr_set_state(&ctrlr, NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT, 1000); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT); CU_ASSERT(ctrlr.state_timeout_tsc == 1000000); nvme_ctrlr_set_state(&ctrlr, NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT, 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT); CU_ASSERT(ctrlr.state_timeout_tsc == NVME_TIMEOUT_INFINITE); /* Time out ticks causes integer overflow. */ MOCK_SET(spdk_get_ticks, UINT64_MAX); nvme_ctrlr_set_state(&ctrlr, NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT, 1000); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT); CU_ASSERT(ctrlr.state_timeout_tsc == NVME_TIMEOUT_INFINITE); MOCK_CLEAR(spdk_get_ticks); } static void test_nvme_ctrlr_active_ns_list_v0(void) { DECLARE_AND_CONSTRUCT_CTRLR(); SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0); ctrlr.vs.bits.mjr = 1; ctrlr.vs.bits.mnr = 0; ctrlr.vs.bits.ter = 0; ctrlr.cdata.nn = 1024; ctrlr.state = NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS; SPDK_CU_ASSERT_FATAL(nvme_ctrlr_process_init(&ctrlr) == 0); SPDK_CU_ASSERT_FATAL(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_NS); CU_ASSERT(spdk_nvme_ctrlr_is_active_ns(&ctrlr, 1)); CU_ASSERT(spdk_nvme_ctrlr_is_active_ns(&ctrlr, 1024)); CU_ASSERT(!spdk_nvme_ctrlr_is_active_ns(&ctrlr, 1025)); CU_ASSERT(spdk_nvme_ctrlr_get_first_active_ns(&ctrlr) == 1); CU_ASSERT(spdk_nvme_ctrlr_get_next_active_ns(&ctrlr, 1023) == 1024); CU_ASSERT(spdk_nvme_ctrlr_get_next_active_ns(&ctrlr, 1024) == 0); CU_ASSERT(spdk_nvme_ctrlr_get_next_active_ns(&ctrlr, 1025) == 0); nvme_ctrlr_destruct(&ctrlr); } static void test_nvme_ctrlr_active_ns_list_v2(void) { uint32_t i; uint32_t active_ns_list[1024]; DECLARE_AND_CONSTRUCT_CTRLR(); SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0); ctrlr.vs.bits.mjr = 1; ctrlr.vs.bits.mnr = 2; ctrlr.vs.bits.ter = 0; ctrlr.cdata.nn = 4096; g_active_ns_list = active_ns_list; g_active_ns_list_length = SPDK_COUNTOF(active_ns_list); /* No active namespaces */ memset(active_ns_list, 0, sizeof(active_ns_list)); ctrlr.state = NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS; SPDK_CU_ASSERT_FATAL(nvme_ctrlr_process_init(&ctrlr) == 0); SPDK_CU_ASSERT_FATAL(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_NS); CU_ASSERT(!spdk_nvme_ctrlr_is_active_ns(&ctrlr, 1)); CU_ASSERT(!spdk_nvme_ctrlr_is_active_ns(&ctrlr, 1024)); CU_ASSERT(!spdk_nvme_ctrlr_is_active_ns(&ctrlr, 1025)); CU_ASSERT(spdk_nvme_ctrlr_get_first_active_ns(&ctrlr) == 0); CU_ASSERT(spdk_nvme_ctrlr_get_next_active_ns(&ctrlr, 1024) == 0); nvme_ctrlr_destruct(&ctrlr); /* 1024 active namespaces - one full page */ memset(active_ns_list, 0, sizeof(active_ns_list)); for (i = 0; i < 1024; ++i) { active_ns_list[i] = i + 1; } SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0); ctrlr.state = NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS; g_active_ns_list = active_ns_list; g_active_ns_list_length = SPDK_COUNTOF(active_ns_list); SPDK_CU_ASSERT_FATAL(nvme_ctrlr_process_init(&ctrlr) == 0); SPDK_CU_ASSERT_FATAL(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_NS); CU_ASSERT(spdk_nvme_ctrlr_is_active_ns(&ctrlr, 1)); CU_ASSERT(spdk_nvme_ctrlr_is_active_ns(&ctrlr, 1024)); CU_ASSERT(!spdk_nvme_ctrlr_is_active_ns(&ctrlr, 1025)); CU_ASSERT(spdk_nvme_ctrlr_get_first_active_ns(&ctrlr) == 1); CU_ASSERT(spdk_nvme_ctrlr_get_next_active_ns(&ctrlr, 1023) == 1024); CU_ASSERT(spdk_nvme_ctrlr_get_next_active_ns(&ctrlr, 1024) == 0); CU_ASSERT(spdk_nvme_ctrlr_get_next_active_ns(&ctrlr, 1025) == 0); nvme_ctrlr_destruct(&ctrlr); /* 1023 active namespaces - full page minus one */ memset(active_ns_list, 0, sizeof(active_ns_list)); for (i = 0; i < 1023; ++i) { active_ns_list[i] = i + 1; } SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0); ctrlr.state = NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS; SPDK_CU_ASSERT_FATAL(nvme_ctrlr_process_init(&ctrlr) == 0); SPDK_CU_ASSERT_FATAL(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_NS); CU_ASSERT(spdk_nvme_ctrlr_is_active_ns(&ctrlr, 1)); CU_ASSERT(spdk_nvme_ctrlr_is_active_ns(&ctrlr, 1023)); CU_ASSERT(!spdk_nvme_ctrlr_is_active_ns(&ctrlr, 1024)); CU_ASSERT(!spdk_nvme_ctrlr_is_active_ns(&ctrlr, 1025)); CU_ASSERT(spdk_nvme_ctrlr_get_first_active_ns(&ctrlr) == 1); CU_ASSERT(spdk_nvme_ctrlr_get_next_active_ns(&ctrlr, 1023) == 0); CU_ASSERT(spdk_nvme_ctrlr_get_next_active_ns(&ctrlr, 1024) == 0); CU_ASSERT(spdk_nvme_ctrlr_get_next_active_ns(&ctrlr, 1025) == 0); nvme_ctrlr_destruct(&ctrlr); g_active_ns_list = NULL; g_active_ns_list_length = 0; } static void test_nvme_ctrlr_ns_mgmt(void) { DECLARE_AND_CONSTRUCT_CTRLR(); uint32_t active_ns_list[] = { 1, 2, 100, 1024 }; uint32_t active_ns_list2[] = { 1, 2, 3, 100, 1024 }; struct spdk_nvme_ns_data nsdata = {}; struct spdk_nvme_ctrlr_list ctrlr_list = {}; uint32_t nsid; SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0); ctrlr.vs.bits.mjr = 1; ctrlr.vs.bits.mnr = 2; ctrlr.vs.bits.ter = 0; ctrlr.cdata.nn = 4096; ctrlr.state = NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS; g_active_ns_list = active_ns_list; g_active_ns_list_length = SPDK_COUNTOF(active_ns_list); while (ctrlr.state != NVME_CTRLR_STATE_READY) { SPDK_CU_ASSERT_FATAL(nvme_ctrlr_process_init(&ctrlr) == 0); } fake_cpl.cdw0 = 3; nsid = spdk_nvme_ctrlr_create_ns(&ctrlr, &nsdata); fake_cpl.cdw0 = 0; CU_ASSERT(nsid == 3); CU_ASSERT(!spdk_nvme_ctrlr_is_active_ns(&ctrlr, 3)); CU_ASSERT(spdk_nvme_ctrlr_get_ns(&ctrlr, 3) != NULL); g_active_ns_list = active_ns_list2; g_active_ns_list_length = SPDK_COUNTOF(active_ns_list2); CU_ASSERT(spdk_nvme_ctrlr_attach_ns(&ctrlr, 3, &ctrlr_list) == 0); CU_ASSERT(spdk_nvme_ctrlr_is_active_ns(&ctrlr, 3)); CU_ASSERT(spdk_nvme_ctrlr_get_ns(&ctrlr, 3) != NULL); g_active_ns_list = active_ns_list; g_active_ns_list_length = SPDK_COUNTOF(active_ns_list); CU_ASSERT(spdk_nvme_ctrlr_detach_ns(&ctrlr, 3, &ctrlr_list) == 0); CU_ASSERT(!spdk_nvme_ctrlr_is_active_ns(&ctrlr, 3)); CU_ASSERT(spdk_nvme_ctrlr_get_ns(&ctrlr, 3) != NULL); CU_ASSERT(spdk_nvme_ctrlr_delete_ns(&ctrlr, 3) == 0); CU_ASSERT(!spdk_nvme_ctrlr_is_active_ns(&ctrlr, 3)); CU_ASSERT(spdk_nvme_ctrlr_get_ns(&ctrlr, 3) != NULL); g_active_ns_list = NULL; g_active_ns_list_length = 0; nvme_ctrlr_destruct(&ctrlr); } static void check_en_set_rdy(void) { if (g_ut_nvme_regs.cc.bits.en == 1) { g_ut_nvme_regs.csts.bits.rdy = 1; } } static void test_nvme_ctrlr_reset(void) { DECLARE_AND_CONSTRUCT_CTRLR(); struct spdk_nvme_ctrlr_data cdata = { .nn = 4096 }; uint32_t active_ns_list[] = { 1, 2, 100, 1024 }; uint32_t active_ns_list2[] = { 1, 100, 1024 }; SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0); g_ut_nvme_regs.vs.bits.mjr = 1; g_ut_nvme_regs.vs.bits.mnr = 2; g_ut_nvme_regs.vs.bits.ter = 0; nvme_ctrlr_get_vs(&ctrlr, &ctrlr.vs); ctrlr.cdata.nn = 2048; ctrlr.state = NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS; g_active_ns_list = active_ns_list; g_active_ns_list_length = SPDK_COUNTOF(active_ns_list); while (ctrlr.state != NVME_CTRLR_STATE_READY) { SPDK_CU_ASSERT_FATAL(nvme_ctrlr_process_init(&ctrlr) == 0); } CU_ASSERT(spdk_nvme_ctrlr_get_num_ns(&ctrlr) == 2048); CU_ASSERT(spdk_nvme_ctrlr_get_ns(&ctrlr, 2) != NULL); CU_ASSERT(spdk_nvme_ctrlr_is_active_ns(&ctrlr, 2)); /* Reset controller with changed number of namespaces */ g_cdata = &cdata; g_active_ns_list = active_ns_list2; g_active_ns_list_length = SPDK_COUNTOF(active_ns_list2); STAILQ_INSERT_HEAD(&adminq.free_req, &req, stailq); g_ut_nvme_regs.cc.raw = 0; g_ut_nvme_regs.csts.raw = 0; g_set_reg_cb = check_en_set_rdy; g_wait_for_completion_return_val = -ENXIO; CU_ASSERT(spdk_nvme_ctrlr_reset(&ctrlr) == 0); g_set_reg_cb = NULL; CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_READY); g_cdata = NULL; g_active_ns_list = NULL; g_active_ns_list_length = 0; CU_ASSERT(spdk_nvme_ctrlr_get_num_ns(&ctrlr) == 4096); CU_ASSERT(spdk_nvme_ctrlr_get_ns(&ctrlr, 2) != NULL); CU_ASSERT(!spdk_nvme_ctrlr_is_active_ns(&ctrlr, 2)); g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE; nvme_ctrlr_destruct(&ctrlr); g_wait_for_completion_return_val = 0; } static uint32_t g_aer_cb_counter; static void aer_cb(void *aer_cb_arg, const struct spdk_nvme_cpl *cpl) { g_aer_cb_counter++; } static void test_nvme_ctrlr_aer_callback(void) { DECLARE_AND_CONSTRUCT_CTRLR(); uint32_t active_ns_list[] = { 1, 2, 100, 1024 }; union spdk_nvme_async_event_completion aer_event = { .bits.async_event_type = SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE, .bits.async_event_info = SPDK_NVME_ASYNC_EVENT_NS_ATTR_CHANGED }; struct spdk_nvme_cpl aer_cpl = { .status.sct = SPDK_NVME_SCT_GENERIC, .status.sc = SPDK_NVME_SC_SUCCESS, .cdw0 = aer_event.raw }; SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0); ctrlr.vs.bits.mjr = 1; ctrlr.vs.bits.mnr = 2; ctrlr.vs.bits.ter = 0; ctrlr.cdata.nn = 4096; ctrlr.state = NVME_CTRLR_STATE_CONFIGURE_AER; g_active_ns_list = active_ns_list; g_active_ns_list_length = SPDK_COUNTOF(active_ns_list); while (ctrlr.state != NVME_CTRLR_STATE_READY) { SPDK_CU_ASSERT_FATAL(nvme_ctrlr_process_init(&ctrlr) == 0); } CU_ASSERT(nvme_ctrlr_add_process(&ctrlr, NULL) == 0); spdk_nvme_ctrlr_register_aer_callback(&ctrlr, aer_cb, NULL); /* Async event */ g_aer_cb_counter = 0; nvme_ctrlr_async_event_cb(&ctrlr.aer[0], &aer_cpl); nvme_ctrlr_complete_queued_async_events(&ctrlr); CU_ASSERT(g_aer_cb_counter == 1); g_active_ns_list = NULL; g_active_ns_list_length = 0; nvme_ctrlr_free_processes(&ctrlr); nvme_ctrlr_destruct(&ctrlr); } static void test_nvme_ctrlr_ns_attr_changed(void) { DECLARE_AND_CONSTRUCT_CTRLR(); uint32_t active_ns_list[] = { 1, 2, 100, 1024 }; uint32_t active_ns_list2[] = { 1, 2, 1024 }; uint32_t active_ns_list3[] = { 1, 2, 101, 1024 }; union spdk_nvme_async_event_completion aer_event = { .bits.async_event_type = SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE, .bits.async_event_info = SPDK_NVME_ASYNC_EVENT_NS_ATTR_CHANGED }; struct spdk_nvme_cpl aer_cpl = { .status.sct = SPDK_NVME_SCT_GENERIC, .status.sc = SPDK_NVME_SC_SUCCESS, .cdw0 = aer_event.raw }; SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0); ctrlr.vs.bits.mjr = 1; ctrlr.vs.bits.mnr = 3; ctrlr.vs.bits.ter = 0; ctrlr.cap.bits.css |= SPDK_NVME_CAP_CSS_IOCS; ctrlr.cdata.nn = 4096; ctrlr.state = NVME_CTRLR_STATE_CONFIGURE_AER; g_active_ns_list = active_ns_list; g_active_ns_list_length = SPDK_COUNTOF(active_ns_list); while (ctrlr.state != NVME_CTRLR_STATE_READY) { SPDK_CU_ASSERT_FATAL(nvme_ctrlr_process_init(&ctrlr) == 0); } CU_ASSERT(spdk_nvme_ctrlr_is_active_ns(&ctrlr, 100)); CU_ASSERT(nvme_ctrlr_add_process(&ctrlr, NULL) == 0); spdk_nvme_ctrlr_register_aer_callback(&ctrlr, aer_cb, NULL); /* Remove NS 100 */ g_aer_cb_counter = 0; g_active_ns_list = active_ns_list2; g_active_ns_list_length = SPDK_COUNTOF(active_ns_list2); nvme_ctrlr_async_event_cb(&ctrlr.aer[0], &aer_cpl); nvme_ctrlr_complete_queued_async_events(&ctrlr); CU_ASSERT(g_aer_cb_counter == 1); CU_ASSERT(!spdk_nvme_ctrlr_is_active_ns(&ctrlr, 100)); /* Add NS 101 */ g_active_ns_list = active_ns_list3; g_active_ns_list_length = SPDK_COUNTOF(active_ns_list3); nvme_ctrlr_async_event_cb(&ctrlr.aer[0], &aer_cpl); nvme_ctrlr_complete_queued_async_events(&ctrlr); CU_ASSERT(g_aer_cb_counter == 2); CU_ASSERT(spdk_nvme_ctrlr_is_active_ns(&ctrlr, 101)); g_active_ns_list = NULL; g_active_ns_list_length = 0; nvme_ctrlr_free_processes(&ctrlr); nvme_ctrlr_destruct(&ctrlr); } static void test_nvme_ctrlr_identify_namespaces_iocs_specific_next(void) { struct spdk_nvme_ctrlr ctrlr = {}; uint32_t prev_nsid; struct spdk_nvme_ns ns[5] = {}; struct spdk_nvme_ctrlr ns_ctrlr[5] = {}; int rc = 0; int i; RB_INIT(&ctrlr.ns); for (i = 0; i < 5; i++) { ns[i].id = i + 1; ns[i].active = true; } CU_ASSERT(pthread_mutex_init(&ctrlr.ctrlr_lock, NULL) == 0); ctrlr.cdata.nn = 5; /* case 1: No first/next active NS, move on to the next state, expect: pass */ prev_nsid = 0; ctrlr.active_ns_count = 0; ctrlr.opts.admin_timeout_ms = NVME_TIMEOUT_INFINITE; rc = nvme_ctrlr_identify_namespaces_iocs_specific_next(&ctrlr, prev_nsid); CU_ASSERT(rc == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES); CU_ASSERT(ctrlr.state_timeout_tsc == NVME_TIMEOUT_INFINITE); /* case 2: move on to the next active NS, and no namespace with (supported) iocs specific data found , expect: pass */ memset(&ctrlr.state, 0x00, sizeof(ctrlr.state)); memset(&ctrlr.state_timeout_tsc, 0x00, sizeof(ctrlr.state_timeout_tsc)); prev_nsid = 1; for (i = 0; i < 5; i++) { RB_INSERT(nvme_ns_tree, &ctrlr.ns, &ns[i]); } ctrlr.active_ns_count = 5; ns[1].csi = SPDK_NVME_CSI_NVM; ns[1].id = 2; rc = nvme_ctrlr_identify_namespaces_iocs_specific_next(&ctrlr, prev_nsid); CU_ASSERT(rc == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES); CU_ASSERT(ctrlr.state_timeout_tsc == NVME_TIMEOUT_INFINITE); /* case 3: ns.csi is SPDK_NVME_CSI_ZNS, do not loop, expect: pass */ memset(&ctrlr.state, 0x00, sizeof(ctrlr.state)); memset(&ctrlr.state_timeout_tsc, 0x00, sizeof(ctrlr.state_timeout_tsc)); ctrlr.opts.admin_timeout_ms = NVME_TIMEOUT_INFINITE; prev_nsid = 0; ctrlr.active_ns_count = 5; for (int i = 0; i < 5; i++) { ns[i].csi = SPDK_NVME_CSI_NVM; ns[i].id = i + 1; ns[i].ctrlr = &ns_ctrlr[i]; } ns[4].csi = SPDK_NVME_CSI_ZNS; ns_ctrlr[4].opts.admin_timeout_ms = NVME_TIMEOUT_INFINITE; rc = nvme_ctrlr_identify_namespaces_iocs_specific_next(&ctrlr, prev_nsid); CU_ASSERT(rc == 0); CU_ASSERT(ctrlr.state == 0); CU_ASSERT(ctrlr.state_timeout_tsc == NVME_TIMEOUT_INFINITE); CU_ASSERT(ns_ctrlr[4].state == NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS_IOCS_SPECIFIC); CU_ASSERT(ns_ctrlr[4].state_timeout_tsc == NVME_TIMEOUT_INFINITE); for (int i = 0; i < 5; i++) { nvme_ns_free_zns_specific_data(&ns[i]); } /* case 4: nvme_ctrlr_identify_ns_iocs_specific_async return 1, expect: false */ memset(&ctrlr.state, 0x00, sizeof(ctrlr.state)); memset(&ctrlr.state_timeout_tsc, 0x00, sizeof(ctrlr.state_timeout_tsc)); prev_nsid = 1; ctrlr.active_ns_count = 5; ns[1].csi = SPDK_NVME_CSI_ZNS; g_fail_next_identify = true; rc = nvme_ctrlr_identify_namespaces_iocs_specific_next(&ctrlr, prev_nsid); CU_ASSERT(rc == 1); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ERROR); CU_ASSERT(ctrlr.state_timeout_tsc == NVME_TIMEOUT_INFINITE); CU_ASSERT(pthread_mutex_destroy(&ctrlr.ctrlr_lock) == 0); } static void test_nvme_ctrlr_set_supported_log_pages(void) { int rc; struct spdk_nvme_ctrlr ctrlr = {}; /* ana supported */ memset(&ctrlr, 0, sizeof(ctrlr)); ctrlr.cdata.cmic.ana_reporting = true; ctrlr.cdata.lpa.celp = 1; ctrlr.cdata.nanagrpid = 1; ctrlr.active_ns_count = 1; rc = nvme_ctrlr_set_supported_log_pages(&ctrlr); CU_ASSERT(rc == 0); CU_ASSERT(ctrlr.log_page_supported[SPDK_NVME_LOG_ERROR] == true); CU_ASSERT(ctrlr.log_page_supported[SPDK_NVME_LOG_HEALTH_INFORMATION] == true); CU_ASSERT(ctrlr.log_page_supported[SPDK_NVME_LOG_FIRMWARE_SLOT] == true); CU_ASSERT(ctrlr.ana_log_page_size == sizeof(struct spdk_nvme_ana_page) + sizeof(struct spdk_nvme_ana_group_descriptor) * 1 + sizeof(uint32_t) * 1); CU_ASSERT(ctrlr.log_page_supported[SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS] == true); free(ctrlr.ana_log_page); free(ctrlr.copied_ana_desc); } static void test_nvme_ctrlr_set_intel_supported_log_pages(void) { DECLARE_AND_CONSTRUCT_CTRLR(); SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0); ctrlr.opts.admin_timeout_ms = NVME_TIMEOUT_INFINITE; ctrlr.cdata.vid = SPDK_PCI_VID_INTEL; ctrlr.trid.trtype = SPDK_NVME_TRANSPORT_PCIE; ctrlr.state = NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES; CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_SET_SUPPORTED_INTEL_LOG_PAGES); set_status_code = SPDK_NVME_SC_SUCCESS; CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_WAIT_FOR_SUPPORTED_INTEL_LOG_PAGES); CU_ASSERT(ctrlr.log_page_supported[SPDK_NVME_LOG_ERROR] == true); CU_ASSERT(ctrlr.log_page_supported[SPDK_NVME_LOG_HEALTH_INFORMATION] == true); CU_ASSERT(ctrlr.log_page_supported[SPDK_NVME_LOG_FIRMWARE_SLOT] == true); CU_ASSERT(ctrlr.log_page_supported[SPDK_NVME_INTEL_LOG_READ_CMD_LATENCY] == true); CU_ASSERT(ctrlr.log_page_supported[SPDK_NVME_INTEL_LOG_WRITE_CMD_LATENCY] == true); CU_ASSERT(ctrlr.log_page_supported[SPDK_NVME_INTEL_LOG_TEMPERATURE] == true); CU_ASSERT(ctrlr.log_page_supported[SPDK_NVME_INTEL_LOG_SMART] == true); CU_ASSERT(ctrlr.log_page_supported[SPDK_NVME_INTEL_MARKETING_DESCRIPTION] == true); nvme_ctrlr_destruct(&ctrlr); } #define UT_ANA_DESC_SIZE (sizeof(struct spdk_nvme_ana_group_descriptor) + \ sizeof(uint32_t)) static void test_nvme_ctrlr_parse_ana_log_page(void) { int rc, i; struct spdk_nvme_ctrlr ctrlr = {}; struct spdk_nvme_ns ns[3] = {}; struct spdk_nvme_ana_page ana_hdr; char _ana_desc[UT_ANA_DESC_SIZE]; struct spdk_nvme_ana_group_descriptor *ana_desc; uint32_t offset; RB_INIT(&ctrlr.ns); for (i = 0; i < 3; i++) { ns[i].id = i + 1; ns[i].active = true; RB_INSERT(nvme_ns_tree, &ctrlr.ns, &ns[i]); } CU_ASSERT(pthread_mutex_init(&ctrlr.ctrlr_lock, NULL) == 0); ctrlr.cdata.nn = 3; ctrlr.cdata.nanagrpid = 3; ctrlr.active_ns_count = 3; rc = nvme_ctrlr_update_ana_log_page(&ctrlr); CU_ASSERT(rc == 0); CU_ASSERT(ctrlr.ana_log_page != NULL); CU_ASSERT(ctrlr.copied_ana_desc != NULL); /* * Create ANA log page data - There are three ANA groups. * Each ANA group has a namespace and has a different ANA state. */ memset(&ana_hdr, 0, sizeof(ana_hdr)); ana_hdr.num_ana_group_desc = 3; SPDK_CU_ASSERT_FATAL(sizeof(ana_hdr) <= ctrlr.ana_log_page_size); memcpy((char *)ctrlr.ana_log_page, (char *)&ana_hdr, sizeof(ana_hdr)); offset = sizeof(ana_hdr); ana_desc = (struct spdk_nvme_ana_group_descriptor *)_ana_desc; memset(ana_desc, 0, UT_ANA_DESC_SIZE); ana_desc->num_of_nsid = 1; ana_desc->ana_group_id = 1; ana_desc->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE; ana_desc->nsid[0] = 3; SPDK_CU_ASSERT_FATAL(offset + UT_ANA_DESC_SIZE <= ctrlr.ana_log_page_size); memcpy((char *)ctrlr.ana_log_page + offset, (char *)ana_desc, UT_ANA_DESC_SIZE); offset += UT_ANA_DESC_SIZE; ana_desc->ana_group_id = 2; ana_desc->ana_state = SPDK_NVME_ANA_NON_OPTIMIZED_STATE; ana_desc->nsid[0] = 2; SPDK_CU_ASSERT_FATAL(offset + UT_ANA_DESC_SIZE <= ctrlr.ana_log_page_size); memcpy((char *)ctrlr.ana_log_page + offset, (char *)ana_desc, UT_ANA_DESC_SIZE); offset += UT_ANA_DESC_SIZE; ana_desc->ana_group_id = 3; ana_desc->ana_state = SPDK_NVME_ANA_INACCESSIBLE_STATE; ana_desc->nsid[0] = 1; SPDK_CU_ASSERT_FATAL(offset + UT_ANA_DESC_SIZE <= ctrlr.ana_log_page_size); memcpy((char *)ctrlr.ana_log_page + offset, (char *)ana_desc, UT_ANA_DESC_SIZE); /* Parse the created ANA log page data, and update ANA states. */ rc = nvme_ctrlr_parse_ana_log_page(&ctrlr, nvme_ctrlr_update_ns_ana_states, &ctrlr); CU_ASSERT(rc == 0); CU_ASSERT(ns[0].ana_group_id == 3); CU_ASSERT(ns[0].ana_state == SPDK_NVME_ANA_INACCESSIBLE_STATE); CU_ASSERT(ns[1].ana_group_id == 2); CU_ASSERT(ns[1].ana_state == SPDK_NVME_ANA_NON_OPTIMIZED_STATE); CU_ASSERT(ns[2].ana_group_id == 1); CU_ASSERT(ns[2].ana_state == SPDK_NVME_ANA_OPTIMIZED_STATE); CU_ASSERT(pthread_mutex_destroy(&ctrlr.ctrlr_lock) == 0); free(ctrlr.ana_log_page); free(ctrlr.copied_ana_desc); } static void test_nvme_ctrlr_ana_resize(void) { DECLARE_AND_CONSTRUCT_CTRLR(); uint32_t active_ns_list[] = { 1, 2, 3, 4 }; struct spdk_nvme_ana_page ana_hdr = { .change_count = 0, .num_ana_group_desc = 1 }; uint8_t ana_desc_buf[sizeof(struct spdk_nvme_ana_group_descriptor) + 4 * sizeof(uint32_t)] = {}; struct spdk_nvme_ana_group_descriptor *ana_desc = (struct spdk_nvme_ana_group_descriptor *)ana_desc_buf; struct spdk_nvme_ns *ns; union spdk_nvme_async_event_completion aer_event = { .bits.async_event_type = SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE, .bits.async_event_info = SPDK_NVME_ASYNC_EVENT_NS_ATTR_CHANGED }; struct spdk_nvme_cpl aer_cpl = { .status.sct = SPDK_NVME_SCT_GENERIC, .status.sc = SPDK_NVME_SC_SUCCESS, .cdw0 = aer_event.raw }; uint32_t i; SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0); SPDK_CU_ASSERT_FATAL(nvme_ctrlr_add_process(&ctrlr, NULL) == 0); ctrlr.vs.bits.mjr = 1; ctrlr.vs.bits.mnr = 4; ctrlr.vs.bits.ter = 0; ctrlr.cdata.nn = 4096; ctrlr.cdata.cmic.ana_reporting = true; ctrlr.cdata.nanagrpid = 1; ctrlr.state = NVME_CTRLR_STATE_CONFIGURE_AER; /* Start with 2 active namespaces */ g_active_ns_list = active_ns_list; g_active_ns_list_length = 2; g_ana_hdr = &ana_hdr; g_ana_descs = &ana_desc; ana_desc->ana_group_id = 1; ana_desc->ana_state = SPDK_NVME_ANA_NON_OPTIMIZED_STATE; ana_desc->num_of_nsid = 2; for (i = 0; i < ana_desc->num_of_nsid; ++i) { ana_desc->nsid[i] = i + 1; } /* Bring controller to ready state */ while (ctrlr.state != NVME_CTRLR_STATE_READY) { SPDK_CU_ASSERT_FATAL(nvme_ctrlr_process_init(&ctrlr) == 0); } for (i = 0; i < ana_desc->num_of_nsid; ++i) { ns = spdk_nvme_ctrlr_get_ns(&ctrlr, i + 1); CU_ASSERT(ns->ana_state == SPDK_NVME_ANA_NON_OPTIMIZED_STATE); } /* Add more namespaces */ g_active_ns_list_length = 4; nvme_ctrlr_async_event_cb(&ctrlr.aer[0], &aer_cpl); nvme_ctrlr_complete_queued_async_events(&ctrlr); /* Update ANA log with new namespaces */ ana_desc->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE; ana_desc->num_of_nsid = 4; for (i = 0; i < ana_desc->num_of_nsid; ++i) { ana_desc->nsid[i] = i + 1; } aer_event.bits.async_event_info = SPDK_NVME_ASYNC_EVENT_ANA_CHANGE; aer_cpl.cdw0 = aer_event.raw; nvme_ctrlr_async_event_cb(&ctrlr.aer[0], &aer_cpl); nvme_ctrlr_complete_queued_async_events(&ctrlr); for (i = 0; i < ana_desc->num_of_nsid; ++i) { ns = spdk_nvme_ctrlr_get_ns(&ctrlr, i + 1); CU_ASSERT(ns->ana_state == SPDK_NVME_ANA_OPTIMIZED_STATE); } g_active_ns_list = NULL; g_active_ns_list_length = 0; g_ana_hdr = NULL; g_ana_descs = NULL; nvme_ctrlr_free_processes(&ctrlr); nvme_ctrlr_destruct(&ctrlr); } static void test_nvme_ctrlr_get_memory_domains(void) { struct spdk_nvme_ctrlr ctrlr = {}; MOCK_SET(nvme_transport_ctrlr_get_memory_domains, 1); CU_ASSERT(spdk_nvme_ctrlr_get_memory_domains(&ctrlr, NULL, 0) == 1); MOCK_SET(nvme_transport_ctrlr_get_memory_domains, 0); CU_ASSERT(spdk_nvme_ctrlr_get_memory_domains(&ctrlr, NULL, 0) == 0); MOCK_CLEAR(nvme_transport_ctrlr_get_memory_domains); } static void test_nvme_transport_ctrlr_ready(void) { DECLARE_AND_CONSTRUCT_CTRLR(); /* Transport init succeeded */ ctrlr.state = NVME_CTRLR_STATE_TRANSPORT_READY; SPDK_CU_ASSERT_FATAL(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_READY); /* Transport init failed */ ctrlr.state = NVME_CTRLR_STATE_TRANSPORT_READY; MOCK_SET(nvme_transport_ctrlr_ready, -1); SPDK_CU_ASSERT_FATAL(nvme_ctrlr_process_init(&ctrlr) == -1); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ERROR); MOCK_CLEAR(nvme_transport_ctrlr_ready); } int main(int argc, char **argv) { CU_pSuite suite = NULL; unsigned int num_failures; CU_set_error_action(CUEA_ABORT); CU_initialize_registry(); suite = CU_add_suite("nvme_ctrlr", NULL, NULL); CU_ADD_TEST(suite, test_nvme_ctrlr_init_en_1_rdy_0); CU_ADD_TEST(suite, test_nvme_ctrlr_init_en_1_rdy_1); CU_ADD_TEST(suite, test_nvme_ctrlr_init_en_0_rdy_0); CU_ADD_TEST(suite, test_nvme_ctrlr_init_en_0_rdy_1); CU_ADD_TEST(suite, test_nvme_ctrlr_init_en_0_rdy_0_ams_rr); CU_ADD_TEST(suite, test_nvme_ctrlr_init_en_0_rdy_0_ams_wrr); CU_ADD_TEST(suite, test_nvme_ctrlr_init_en_0_rdy_0_ams_vs); CU_ADD_TEST(suite, test_nvme_ctrlr_init_delay); CU_ADD_TEST(suite, test_alloc_io_qpair_rr_1); CU_ADD_TEST(suite, test_ctrlr_get_default_ctrlr_opts); CU_ADD_TEST(suite, test_ctrlr_get_default_io_qpair_opts); CU_ADD_TEST(suite, test_alloc_io_qpair_wrr_1); CU_ADD_TEST(suite, test_alloc_io_qpair_wrr_2); CU_ADD_TEST(suite, test_spdk_nvme_ctrlr_update_firmware); CU_ADD_TEST(suite, test_nvme_ctrlr_fail); CU_ADD_TEST(suite, test_nvme_ctrlr_construct_intel_support_log_page_list); CU_ADD_TEST(suite, test_nvme_ctrlr_set_supported_features); CU_ADD_TEST(suite, test_spdk_nvme_ctrlr_doorbell_buffer_config); #if 0 /* TODO: move to PCIe-specific unit test */ CU_ADD_TEST(suite, test_nvme_ctrlr_alloc_cmb); #endif CU_ADD_TEST(suite, test_nvme_ctrlr_test_active_ns); CU_ADD_TEST(suite, test_nvme_ctrlr_test_active_ns_error_case); CU_ADD_TEST(suite, test_spdk_nvme_ctrlr_reconnect_io_qpair); CU_ADD_TEST(suite, test_spdk_nvme_ctrlr_set_trid); CU_ADD_TEST(suite, test_nvme_ctrlr_init_set_nvmf_ioccsz); CU_ADD_TEST(suite, test_nvme_ctrlr_init_set_num_queues); CU_ADD_TEST(suite, test_nvme_ctrlr_init_set_keep_alive_timeout); CU_ADD_TEST(suite, test_alloc_io_qpair_fail); CU_ADD_TEST(suite, test_nvme_ctrlr_add_remove_process); CU_ADD_TEST(suite, test_nvme_ctrlr_set_arbitration_feature); CU_ADD_TEST(suite, test_nvme_ctrlr_set_state); CU_ADD_TEST(suite, test_nvme_ctrlr_active_ns_list_v0); CU_ADD_TEST(suite, test_nvme_ctrlr_active_ns_list_v2); CU_ADD_TEST(suite, test_nvme_ctrlr_ns_mgmt); CU_ADD_TEST(suite, test_nvme_ctrlr_reset); CU_ADD_TEST(suite, test_nvme_ctrlr_aer_callback); CU_ADD_TEST(suite, test_nvme_ctrlr_ns_attr_changed); CU_ADD_TEST(suite, test_nvme_ctrlr_identify_namespaces_iocs_specific_next); CU_ADD_TEST(suite, test_nvme_ctrlr_set_supported_log_pages); CU_ADD_TEST(suite, test_nvme_ctrlr_set_intel_supported_log_pages); CU_ADD_TEST(suite, test_nvme_ctrlr_parse_ana_log_page); CU_ADD_TEST(suite, test_nvme_ctrlr_ana_resize); CU_ADD_TEST(suite, test_nvme_ctrlr_get_memory_domains); CU_ADD_TEST(suite, test_nvme_transport_ctrlr_ready); CU_basic_set_mode(CU_BRM_VERBOSE); CU_basic_run_tests(); num_failures = CU_get_number_of_failures(); CU_cleanup_registry(); return num_failures; }