/*- * BSD LICENSE * * Copyright (c) Intel Corporation. All rights reserved. * Copyright (c) 2020, 2021 Mellanox Technologies LTD. All rights reserved. * Copyright (c) 2021 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "spdk/stdinc.h" #if defined(__FreeBSD__) #include #define SPDK_KEVENT #else #include #define SPDK_EPOLL #endif #if defined(__linux__) #include #endif #include "spdk/env.h" #include "spdk/log.h" #include "spdk/pipe.h" #include "spdk/sock.h" #include "spdk/util.h" #include "spdk_internal/sock.h" #include "../sock_kernel.h" #define MAX_TMPBUF 1024 #define PORTNUMLEN 32 #if defined(SO_ZEROCOPY) && defined(MSG_ZEROCOPY) #define SPDK_ZEROCOPY #endif struct spdk_posix_sock { struct spdk_sock base; int fd; uint32_t sendmsg_idx; struct spdk_pipe *recv_pipe; void *recv_buf; int recv_buf_sz; bool pipe_has_data; bool socket_has_data; bool zcopy; int placement_id; TAILQ_ENTRY(spdk_posix_sock) link; }; TAILQ_HEAD(spdk_has_data_list, spdk_posix_sock); struct spdk_posix_sock_group_impl { struct spdk_sock_group_impl base; int fd; struct spdk_has_data_list socks_with_data; int placement_id; }; static struct spdk_sock_impl_opts g_spdk_posix_sock_impl_opts = { .recv_buf_size = MIN_SO_RCVBUF_SIZE, .send_buf_size = MIN_SO_SNDBUF_SIZE, .enable_recv_pipe = true, .enable_quickack = false, .enable_placement_id = PLACEMENT_NONE, .enable_zerocopy_send_server = true, .enable_zerocopy_send_client = false }; static struct spdk_sock_map g_map = { .entries = STAILQ_HEAD_INITIALIZER(g_map.entries), .mtx = PTHREAD_MUTEX_INITIALIZER }; __attribute((destructor)) static void posix_sock_map_cleanup(void) { spdk_sock_map_cleanup(&g_map); } #define __posix_sock(sock) (struct spdk_posix_sock *)sock #define __posix_group_impl(group) (struct spdk_posix_sock_group_impl *)group static int posix_sock_getaddr(struct spdk_sock *_sock, char *saddr, int slen, uint16_t *sport, char *caddr, int clen, uint16_t *cport) { struct spdk_posix_sock *sock = __posix_sock(_sock); struct sockaddr_storage sa; socklen_t salen; int rc; assert(sock != NULL); memset(&sa, 0, sizeof sa); salen = sizeof sa; rc = getsockname(sock->fd, (struct sockaddr *) &sa, &salen); if (rc != 0) { SPDK_ERRLOG("getsockname() failed (errno=%d)\n", errno); return -1; } switch (sa.ss_family) { case AF_UNIX: /* Acceptable connection types that don't have IPs */ return 0; case AF_INET: case AF_INET6: /* Code below will get IP addresses */ break; default: /* Unsupported socket family */ return -1; } rc = get_addr_str((struct sockaddr *)&sa, saddr, slen); if (rc != 0) { SPDK_ERRLOG("getnameinfo() failed (errno=%d)\n", errno); return -1; } if (sport) { if (sa.ss_family == AF_INET) { *sport = ntohs(((struct sockaddr_in *) &sa)->sin_port); } else if (sa.ss_family == AF_INET6) { *sport = ntohs(((struct sockaddr_in6 *) &sa)->sin6_port); } } memset(&sa, 0, sizeof sa); salen = sizeof sa; rc = getpeername(sock->fd, (struct sockaddr *) &sa, &salen); if (rc != 0) { SPDK_ERRLOG("getpeername() failed (errno=%d)\n", errno); return -1; } rc = get_addr_str((struct sockaddr *)&sa, caddr, clen); if (rc != 0) { SPDK_ERRLOG("getnameinfo() failed (errno=%d)\n", errno); return -1; } if (cport) { if (sa.ss_family == AF_INET) { *cport = ntohs(((struct sockaddr_in *) &sa)->sin_port); } else if (sa.ss_family == AF_INET6) { *cport = ntohs(((struct sockaddr_in6 *) &sa)->sin6_port); } } return 0; } enum posix_sock_create_type { SPDK_SOCK_CREATE_LISTEN, SPDK_SOCK_CREATE_CONNECT, }; static int posix_sock_alloc_pipe(struct spdk_posix_sock *sock, int sz) { uint8_t *new_buf; struct spdk_pipe *new_pipe; struct iovec siov[2]; struct iovec diov[2]; int sbytes; ssize_t bytes; if (sock->recv_buf_sz == sz) { return 0; } /* If the new size is 0, just free the pipe */ if (sz == 0) { spdk_pipe_destroy(sock->recv_pipe); free(sock->recv_buf); sock->recv_pipe = NULL; sock->recv_buf = NULL; return 0; } else if (sz < MIN_SOCK_PIPE_SIZE) { SPDK_ERRLOG("The size of the pipe must be larger than %d\n", MIN_SOCK_PIPE_SIZE); return -1; } /* Round up to next 64 byte multiple */ new_buf = calloc(SPDK_ALIGN_CEIL(sz + 1, 64), sizeof(uint8_t)); if (!new_buf) { SPDK_ERRLOG("socket recv buf allocation failed\n"); return -ENOMEM; } new_pipe = spdk_pipe_create(new_buf, sz + 1); if (new_pipe == NULL) { SPDK_ERRLOG("socket pipe allocation failed\n"); free(new_buf); return -ENOMEM; } if (sock->recv_pipe != NULL) { /* Pull all of the data out of the old pipe */ sbytes = spdk_pipe_reader_get_buffer(sock->recv_pipe, sock->recv_buf_sz, siov); if (sbytes > sz) { /* Too much data to fit into the new pipe size */ spdk_pipe_destroy(new_pipe); free(new_buf); return -EINVAL; } sbytes = spdk_pipe_writer_get_buffer(new_pipe, sz, diov); assert(sbytes == sz); bytes = spdk_iovcpy(siov, 2, diov, 2); spdk_pipe_writer_advance(new_pipe, bytes); spdk_pipe_destroy(sock->recv_pipe); free(sock->recv_buf); } sock->recv_buf_sz = sz; sock->recv_buf = new_buf; sock->recv_pipe = new_pipe; return 0; } static int posix_sock_set_recvbuf(struct spdk_sock *_sock, int sz) { struct spdk_posix_sock *sock = __posix_sock(_sock); int rc; assert(sock != NULL); if (g_spdk_posix_sock_impl_opts.enable_recv_pipe) { rc = posix_sock_alloc_pipe(sock, sz); if (rc) { return rc; } } /* Set kernel buffer size to be at least MIN_SO_RCVBUF_SIZE */ if (sz < MIN_SO_RCVBUF_SIZE) { sz = MIN_SO_RCVBUF_SIZE; } rc = setsockopt(sock->fd, SOL_SOCKET, SO_RCVBUF, &sz, sizeof(sz)); if (rc < 0) { return rc; } return 0; } static int posix_sock_set_sendbuf(struct spdk_sock *_sock, int sz) { struct spdk_posix_sock *sock = __posix_sock(_sock); int rc; assert(sock != NULL); if (sz < MIN_SO_SNDBUF_SIZE) { sz = MIN_SO_SNDBUF_SIZE; } rc = setsockopt(sock->fd, SOL_SOCKET, SO_SNDBUF, &sz, sizeof(sz)); if (rc < 0) { return rc; } return 0; } static void posix_sock_init(struct spdk_posix_sock *sock, bool enable_zero_copy) { #if defined(SPDK_ZEROCOPY) || defined(__linux__) int flag; int rc; #endif #if defined(SPDK_ZEROCOPY) flag = 1; if (enable_zero_copy) { /* Try to turn on zero copy sends */ rc = setsockopt(sock->fd, SOL_SOCKET, SO_ZEROCOPY, &flag, sizeof(flag)); if (rc == 0) { sock->zcopy = true; } } #endif #if defined(__linux__) flag = 1; if (g_spdk_posix_sock_impl_opts.enable_quickack) { rc = setsockopt(sock->fd, IPPROTO_TCP, TCP_QUICKACK, &flag, sizeof(flag)); if (rc != 0) { SPDK_ERRLOG("quickack was failed to set\n"); } } spdk_sock_get_placement_id(sock->fd, g_spdk_posix_sock_impl_opts.enable_placement_id, &sock->placement_id); if (g_spdk_posix_sock_impl_opts.enable_placement_id == PLACEMENT_MARK) { /* Save placement_id */ spdk_sock_map_insert(&g_map, sock->placement_id, NULL); } #endif } static struct spdk_posix_sock * posix_sock_alloc(int fd, bool enable_zero_copy) { struct spdk_posix_sock *sock; sock = calloc(1, sizeof(*sock)); if (sock == NULL) { SPDK_ERRLOG("sock allocation failed\n"); return NULL; } sock->fd = fd; posix_sock_init(sock, enable_zero_copy); return sock; } static int posix_fd_create(struct addrinfo *res, struct spdk_sock_opts *opts) { int fd; int val = 1; int rc, sz; fd = socket(res->ai_family, res->ai_socktype, res->ai_protocol); if (fd < 0) { /* error */ return -1; } sz = g_spdk_posix_sock_impl_opts.recv_buf_size; rc = setsockopt(fd, SOL_SOCKET, SO_RCVBUF, &sz, sizeof(sz)); if (rc) { /* Not fatal */ } sz = g_spdk_posix_sock_impl_opts.send_buf_size; rc = setsockopt(fd, SOL_SOCKET, SO_SNDBUF, &sz, sizeof(sz)); if (rc) { /* Not fatal */ } rc = setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &val, sizeof val); if (rc != 0) { close(fd); /* error */ return -1; } rc = setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, &val, sizeof val); if (rc != 0) { close(fd); /* error */ return -1; } #if defined(SO_PRIORITY) if (opts->priority) { rc = setsockopt(fd, SOL_SOCKET, SO_PRIORITY, &opts->priority, sizeof val); if (rc != 0) { close(fd); /* error */ return -1; } } #endif if (res->ai_family == AF_INET6) { rc = setsockopt(fd, IPPROTO_IPV6, IPV6_V6ONLY, &val, sizeof val); if (rc != 0) { close(fd); /* error */ return -1; } } return fd; } static struct spdk_sock * posix_sock_create(const char *ip, int port, enum posix_sock_create_type type, struct spdk_sock_opts *opts) { struct spdk_posix_sock *sock; char buf[MAX_TMPBUF]; char portnum[PORTNUMLEN]; char *p; struct addrinfo hints, *res, *res0; int fd, flag; int rc; bool enable_zcopy_user_opts = true; bool enable_zcopy_impl_opts = true; assert(opts != NULL); if (ip == NULL) { return NULL; } if (ip[0] == '[') { snprintf(buf, sizeof(buf), "%s", ip + 1); p = strchr(buf, ']'); if (p != NULL) { *p = '\0'; } ip = (const char *) &buf[0]; } snprintf(portnum, sizeof portnum, "%d", port); memset(&hints, 0, sizeof hints); hints.ai_family = PF_UNSPEC; hints.ai_socktype = SOCK_STREAM; hints.ai_flags = AI_NUMERICSERV; hints.ai_flags |= AI_PASSIVE; hints.ai_flags |= AI_NUMERICHOST; rc = getaddrinfo(ip, portnum, &hints, &res0); if (rc != 0) { SPDK_ERRLOG("getaddrinfo() failed %s (%d)\n", gai_strerror(rc), rc); return NULL; } /* try listen */ fd = -1; for (res = res0; res != NULL; res = res->ai_next) { retry: fd = posix_fd_create(res, opts); if (fd < 0) { continue; } if (type == SPDK_SOCK_CREATE_LISTEN) { rc = bind(fd, res->ai_addr, res->ai_addrlen); if (rc != 0) { SPDK_ERRLOG("bind() failed at port %d, errno = %d\n", port, errno); switch (errno) { case EINTR: /* interrupted? */ close(fd); goto retry; case EADDRNOTAVAIL: SPDK_ERRLOG("IP address %s not available. " "Verify IP address in config file " "and make sure setup script is " "run before starting spdk app.\n", ip); /* FALLTHROUGH */ default: /* try next family */ close(fd); fd = -1; continue; } } /* bind OK */ rc = listen(fd, 512); if (rc != 0) { SPDK_ERRLOG("listen() failed, errno = %d\n", errno); close(fd); fd = -1; break; } enable_zcopy_impl_opts = g_spdk_posix_sock_impl_opts.enable_zerocopy_send_server; } else if (type == SPDK_SOCK_CREATE_CONNECT) { rc = connect(fd, res->ai_addr, res->ai_addrlen); if (rc != 0) { SPDK_ERRLOG("connect() failed, errno = %d\n", errno); /* try next family */ close(fd); fd = -1; continue; } enable_zcopy_impl_opts = g_spdk_posix_sock_impl_opts.enable_zerocopy_send_client; } flag = fcntl(fd, F_GETFL); if (fcntl(fd, F_SETFL, flag | O_NONBLOCK) < 0) { SPDK_ERRLOG("fcntl can't set nonblocking mode for socket, fd: %d (%d)\n", fd, errno); close(fd); fd = -1; break; } break; } freeaddrinfo(res0); if (fd < 0) { return NULL; } /* Only enable zero copy for non-loopback sockets. */ enable_zcopy_user_opts = opts->zcopy && !sock_is_loopback(fd); sock = posix_sock_alloc(fd, enable_zcopy_user_opts && enable_zcopy_impl_opts); if (sock == NULL) { SPDK_ERRLOG("sock allocation failed\n"); close(fd); return NULL; } return &sock->base; } static struct spdk_sock * posix_sock_listen(const char *ip, int port, struct spdk_sock_opts *opts) { return posix_sock_create(ip, port, SPDK_SOCK_CREATE_LISTEN, opts); } static struct spdk_sock * posix_sock_connect(const char *ip, int port, struct spdk_sock_opts *opts) { return posix_sock_create(ip, port, SPDK_SOCK_CREATE_CONNECT, opts); } static struct spdk_sock * posix_sock_accept(struct spdk_sock *_sock) { struct spdk_posix_sock *sock = __posix_sock(_sock); struct sockaddr_storage sa; socklen_t salen; int rc, fd; struct spdk_posix_sock *new_sock; int flag; memset(&sa, 0, sizeof(sa)); salen = sizeof(sa); assert(sock != NULL); rc = accept(sock->fd, (struct sockaddr *)&sa, &salen); if (rc == -1) { return NULL; } fd = rc; flag = fcntl(fd, F_GETFL); if ((!(flag & O_NONBLOCK)) && (fcntl(fd, F_SETFL, flag | O_NONBLOCK) < 0)) { SPDK_ERRLOG("fcntl can't set nonblocking mode for socket, fd: %d (%d)\n", fd, errno); close(fd); return NULL; } #if defined(SO_PRIORITY) /* The priority is not inherited, so call this function again */ if (sock->base.opts.priority) { rc = setsockopt(fd, SOL_SOCKET, SO_PRIORITY, &sock->base.opts.priority, sizeof(int)); if (rc != 0) { close(fd); return NULL; } } #endif /* Inherit the zero copy feature from the listen socket */ new_sock = posix_sock_alloc(fd, sock->zcopy); if (new_sock == NULL) { close(fd); return NULL; } return &new_sock->base; } static int posix_sock_close(struct spdk_sock *_sock) { struct spdk_posix_sock *sock = __posix_sock(_sock); assert(TAILQ_EMPTY(&_sock->pending_reqs)); /* If the socket fails to close, the best choice is to * leak the fd but continue to free the rest of the sock * memory. */ close(sock->fd); spdk_pipe_destroy(sock->recv_pipe); free(sock->recv_buf); free(sock); return 0; } #ifdef SPDK_ZEROCOPY static int _sock_check_zcopy(struct spdk_sock *sock) { struct spdk_posix_sock *psock = __posix_sock(sock); struct msghdr msgh = {}; uint8_t buf[sizeof(struct cmsghdr) + sizeof(struct sock_extended_err)]; ssize_t rc; struct sock_extended_err *serr; struct cmsghdr *cm; uint32_t idx; struct spdk_sock_request *req, *treq; bool found; msgh.msg_control = buf; msgh.msg_controllen = sizeof(buf); while (true) { rc = recvmsg(psock->fd, &msgh, MSG_ERRQUEUE); if (rc < 0) { if (errno == EWOULDBLOCK || errno == EAGAIN) { return 0; } if (!TAILQ_EMPTY(&sock->pending_reqs)) { SPDK_ERRLOG("Attempting to receive from ERRQUEUE yielded error, but pending list still has orphaned entries\n"); } else { SPDK_WARNLOG("Recvmsg yielded an error!\n"); } return 0; } cm = CMSG_FIRSTHDR(&msgh); if (!(cm && ((cm->cmsg_level == SOL_IP && cm->cmsg_type == IP_RECVERR) || (cm->cmsg_level == SOL_IPV6 && cm->cmsg_type == IPV6_RECVERR)))) { SPDK_WARNLOG("Unexpected cmsg level or type!\n"); return 0; } serr = (struct sock_extended_err *)CMSG_DATA(cm); if (serr->ee_errno != 0 || serr->ee_origin != SO_EE_ORIGIN_ZEROCOPY) { SPDK_WARNLOG("Unexpected extended error origin\n"); return 0; } /* Most of the time, the pending_reqs array is in the exact * order we need such that all of the requests to complete are * in order, in the front. It is guaranteed that all requests * belonging to the same sendmsg call are sequential, so once * we encounter one match we can stop looping as soon as a * non-match is found. */ for (idx = serr->ee_info; idx <= serr->ee_data; idx++) { found = false; TAILQ_FOREACH_SAFE(req, &sock->pending_reqs, internal.link, treq) { if (req->internal.offset == idx) { found = true; rc = spdk_sock_request_put(sock, req, 0); if (rc < 0) { return rc; } } else if (found) { break; } } } } return 0; } #endif static int _sock_flush(struct spdk_sock *sock) { struct spdk_posix_sock *psock = __posix_sock(sock); struct msghdr msg = {}; int flags; struct iovec iovs[IOV_BATCH_SIZE]; int iovcnt; int retval; struct spdk_sock_request *req; int i; ssize_t rc; unsigned int offset; size_t len; /* Can't flush from within a callback or we end up with recursive calls */ if (sock->cb_cnt > 0) { return 0; } iovcnt = spdk_sock_prep_reqs(sock, iovs, 0, NULL); if (iovcnt == 0) { return 0; } /* Perform the vectored write */ msg.msg_iov = iovs; msg.msg_iovlen = iovcnt; #ifdef SPDK_ZEROCOPY if (psock->zcopy) { flags = MSG_ZEROCOPY; } else #endif { flags = 0; } rc = sendmsg(psock->fd, &msg, flags); if (rc <= 0) { if (errno == EAGAIN || errno == EWOULDBLOCK || (errno == ENOBUFS && psock->zcopy)) { return 0; } return rc; } /* Handling overflow case, because we use psock->sendmsg_idx - 1 for the * req->internal.offset, so sendmsg_idx should not be zero */ if (spdk_unlikely(psock->sendmsg_idx == UINT32_MAX)) { psock->sendmsg_idx = 1; } else { psock->sendmsg_idx++; } /* Consume the requests that were actually written */ req = TAILQ_FIRST(&sock->queued_reqs); while (req) { offset = req->internal.offset; for (i = 0; i < req->iovcnt; i++) { /* Advance by the offset first */ if (offset >= SPDK_SOCK_REQUEST_IOV(req, i)->iov_len) { offset -= SPDK_SOCK_REQUEST_IOV(req, i)->iov_len; continue; } /* Calculate the remaining length of this element */ len = SPDK_SOCK_REQUEST_IOV(req, i)->iov_len - offset; if (len > (size_t)rc) { /* This element was partially sent. */ req->internal.offset += rc; return 0; } offset = 0; req->internal.offset += len; rc -= len; } /* Handled a full request. */ spdk_sock_request_pend(sock, req); if (!psock->zcopy) { /* The sendmsg syscall above isn't currently asynchronous, * so it's already done. */ retval = spdk_sock_request_put(sock, req, 0); if (retval) { break; } } else { /* Re-use the offset field to hold the sendmsg call index. The * index is 0 based, so subtract one here because we've already * incremented above. */ req->internal.offset = psock->sendmsg_idx - 1; } if (rc == 0) { break; } req = TAILQ_FIRST(&sock->queued_reqs); } return 0; } static int posix_sock_flush(struct spdk_sock *sock) { #ifdef SPDK_ZEROCOPY struct spdk_posix_sock *psock = __posix_sock(sock); if (psock->zcopy && !TAILQ_EMPTY(&sock->pending_reqs)) { _sock_check_zcopy(sock); } #endif return _sock_flush(sock); } static ssize_t posix_sock_recv_from_pipe(struct spdk_posix_sock *sock, struct iovec *diov, int diovcnt) { struct iovec siov[2]; int sbytes; ssize_t bytes; struct spdk_posix_sock_group_impl *group; sbytes = spdk_pipe_reader_get_buffer(sock->recv_pipe, sock->recv_buf_sz, siov); if (sbytes < 0) { errno = EINVAL; return -1; } else if (sbytes == 0) { errno = EAGAIN; return -1; } bytes = spdk_iovcpy(siov, 2, diov, diovcnt); if (bytes == 0) { /* The only way this happens is if diov is 0 length */ errno = EINVAL; return -1; } spdk_pipe_reader_advance(sock->recv_pipe, bytes); /* If we drained the pipe, mark it appropriately */ if (spdk_pipe_reader_bytes_available(sock->recv_pipe) == 0) { assert(sock->pipe_has_data == true); group = __posix_group_impl(sock->base.group_impl); if (group && !sock->socket_has_data) { TAILQ_REMOVE(&group->socks_with_data, sock, link); } sock->pipe_has_data = false; } return bytes; } static inline ssize_t posix_sock_read(struct spdk_posix_sock *sock) { struct iovec iov[2]; int bytes_avail, bytes_recvd; struct spdk_posix_sock_group_impl *group; bytes_avail = spdk_pipe_writer_get_buffer(sock->recv_pipe, sock->recv_buf_sz, iov); if (bytes_avail <= 0) { return bytes_avail; } bytes_recvd = readv(sock->fd, iov, 2); assert(sock->pipe_has_data == false); if (bytes_recvd <= 0) { /* Errors count as draining the socket data */ if (sock->base.group_impl && sock->socket_has_data) { group = __posix_group_impl(sock->base.group_impl); TAILQ_REMOVE(&group->socks_with_data, sock, link); } sock->socket_has_data = false; return bytes_recvd; } spdk_pipe_writer_advance(sock->recv_pipe, bytes_recvd); #if DEBUG if (sock->base.group_impl) { assert(sock->socket_has_data == true); } #endif sock->pipe_has_data = true; if (bytes_recvd < bytes_avail) { /* We drained the kernel socket entirely. */ sock->socket_has_data = false; } return bytes_recvd; } static ssize_t posix_sock_readv(struct spdk_sock *_sock, struct iovec *iov, int iovcnt) { struct spdk_posix_sock *sock = __posix_sock(_sock); struct spdk_posix_sock_group_impl *group = __posix_group_impl(sock->base.group_impl); int rc, i; size_t len; if (sock->recv_pipe == NULL) { assert(sock->pipe_has_data == false); if (group && sock->socket_has_data) { sock->socket_has_data = false; TAILQ_REMOVE(&group->socks_with_data, sock, link); } return readv(sock->fd, iov, iovcnt); } /* If the socket is not in a group, we must assume it always has * data waiting for us because it is not epolled */ if (!sock->pipe_has_data && (group == NULL || sock->socket_has_data)) { /* If the user is receiving a sufficiently large amount of data, * receive directly to their buffers. */ len = 0; for (i = 0; i < iovcnt; i++) { len += iov[i].iov_len; } if (len >= MIN_SOCK_PIPE_SIZE) { /* TODO: Should this detect if kernel socket is drained? */ return readv(sock->fd, iov, iovcnt); } /* Otherwise, do a big read into our pipe */ rc = posix_sock_read(sock); if (rc <= 0) { return rc; } } return posix_sock_recv_from_pipe(sock, iov, iovcnt); } static ssize_t posix_sock_recv(struct spdk_sock *sock, void *buf, size_t len) { struct iovec iov[1]; iov[0].iov_base = buf; iov[0].iov_len = len; return posix_sock_readv(sock, iov, 1); } static ssize_t posix_sock_writev(struct spdk_sock *_sock, struct iovec *iov, int iovcnt) { struct spdk_posix_sock *sock = __posix_sock(_sock); int rc; /* In order to process a writev, we need to flush any asynchronous writes * first. */ rc = _sock_flush(_sock); if (rc < 0) { return rc; } if (!TAILQ_EMPTY(&_sock->queued_reqs)) { /* We weren't able to flush all requests */ errno = EAGAIN; return -1; } return writev(sock->fd, iov, iovcnt); } static void posix_sock_writev_async(struct spdk_sock *sock, struct spdk_sock_request *req) { int rc; spdk_sock_request_queue(sock, req); /* If there are a sufficient number queued, just flush them out immediately. */ if (sock->queued_iovcnt >= IOV_BATCH_SIZE) { rc = _sock_flush(sock); if (rc) { spdk_sock_abort_requests(sock); } } } static int posix_sock_set_recvlowat(struct spdk_sock *_sock, int nbytes) { struct spdk_posix_sock *sock = __posix_sock(_sock); int val; int rc; assert(sock != NULL); val = nbytes; rc = setsockopt(sock->fd, SOL_SOCKET, SO_RCVLOWAT, &val, sizeof val); if (rc != 0) { return -1; } return 0; } static bool posix_sock_is_ipv6(struct spdk_sock *_sock) { struct spdk_posix_sock *sock = __posix_sock(_sock); struct sockaddr_storage sa; socklen_t salen; int rc; assert(sock != NULL); memset(&sa, 0, sizeof sa); salen = sizeof sa; rc = getsockname(sock->fd, (struct sockaddr *) &sa, &salen); if (rc != 0) { SPDK_ERRLOG("getsockname() failed (errno=%d)\n", errno); return false; } return (sa.ss_family == AF_INET6); } static bool posix_sock_is_ipv4(struct spdk_sock *_sock) { struct spdk_posix_sock *sock = __posix_sock(_sock); struct sockaddr_storage sa; socklen_t salen; int rc; assert(sock != NULL); memset(&sa, 0, sizeof sa); salen = sizeof sa; rc = getsockname(sock->fd, (struct sockaddr *) &sa, &salen); if (rc != 0) { SPDK_ERRLOG("getsockname() failed (errno=%d)\n", errno); return false; } return (sa.ss_family == AF_INET); } static bool posix_sock_is_connected(struct spdk_sock *_sock) { struct spdk_posix_sock *sock = __posix_sock(_sock); uint8_t byte; int rc; rc = recv(sock->fd, &byte, 1, MSG_PEEK); if (rc == 0) { return false; } if (rc < 0) { if (errno == EAGAIN || errno == EWOULDBLOCK) { return true; } return false; } return true; } static struct spdk_sock_group_impl * posix_sock_group_impl_get_optimal(struct spdk_sock *_sock) { struct spdk_posix_sock *sock = __posix_sock(_sock); struct spdk_sock_group_impl *group_impl; if (sock->placement_id != -1) { spdk_sock_map_lookup(&g_map, sock->placement_id, &group_impl); return group_impl; } return NULL; } static struct spdk_sock_group_impl * posix_sock_group_impl_create(void) { struct spdk_posix_sock_group_impl *group_impl; int fd; #if defined(SPDK_EPOLL) fd = epoll_create1(0); #elif defined(SPDK_KEVENT) fd = kqueue(); #endif if (fd == -1) { return NULL; } group_impl = calloc(1, sizeof(*group_impl)); if (group_impl == NULL) { SPDK_ERRLOG("group_impl allocation failed\n"); close(fd); return NULL; } group_impl->fd = fd; TAILQ_INIT(&group_impl->socks_with_data); group_impl->placement_id = -1; if (g_spdk_posix_sock_impl_opts.enable_placement_id == PLACEMENT_CPU) { spdk_sock_map_insert(&g_map, spdk_env_get_current_core(), &group_impl->base); group_impl->placement_id = spdk_env_get_current_core(); } return &group_impl->base; } static void posix_sock_mark(struct spdk_posix_sock_group_impl *group, struct spdk_posix_sock *sock, int placement_id) { #if defined(SO_MARK) int rc; rc = setsockopt(sock->fd, SOL_SOCKET, SO_MARK, &placement_id, sizeof(placement_id)); if (rc != 0) { /* Not fatal */ SPDK_ERRLOG("Error setting SO_MARK\n"); return; } rc = spdk_sock_map_insert(&g_map, placement_id, &group->base); if (rc != 0) { /* Not fatal */ SPDK_ERRLOG("Failed to insert sock group into map: %d\n", rc); return; } sock->placement_id = placement_id; #endif } static void posix_sock_update_mark(struct spdk_sock_group_impl *_group, struct spdk_sock *_sock) { struct spdk_posix_sock_group_impl *group = __posix_group_impl(_group); if (group->placement_id == -1) { group->placement_id = spdk_sock_map_find_free(&g_map); /* If a free placement id is found, update existing sockets in this group */ if (group->placement_id != -1) { struct spdk_sock *sock, *tmp; TAILQ_FOREACH_SAFE(sock, &_group->socks, link, tmp) { posix_sock_mark(group, __posix_sock(sock), group->placement_id); } } } if (group->placement_id != -1) { /* * group placement id is already determined for this poll group. * Mark socket with group's placement id. */ posix_sock_mark(group, __posix_sock(_sock), group->placement_id); } } static int posix_sock_group_impl_add_sock(struct spdk_sock_group_impl *_group, struct spdk_sock *_sock) { struct spdk_posix_sock_group_impl *group = __posix_group_impl(_group); struct spdk_posix_sock *sock = __posix_sock(_sock); int rc; #if defined(SPDK_EPOLL) struct epoll_event event; memset(&event, 0, sizeof(event)); /* EPOLLERR is always on even if we don't set it, but be explicit for clarity */ event.events = EPOLLIN | EPOLLERR; event.data.ptr = sock; rc = epoll_ctl(group->fd, EPOLL_CTL_ADD, sock->fd, &event); #elif defined(SPDK_KEVENT) struct kevent event; struct timespec ts = {0}; EV_SET(&event, sock->fd, EVFILT_READ, EV_ADD, 0, 0, sock); rc = kevent(group->fd, &event, 1, NULL, 0, &ts); #endif if (rc != 0) { return rc; } /* switched from another polling group due to scheduling */ if (spdk_unlikely(sock->recv_pipe != NULL && (spdk_pipe_reader_bytes_available(sock->recv_pipe) > 0))) { sock->pipe_has_data = true; sock->socket_has_data = false; TAILQ_INSERT_TAIL(&group->socks_with_data, sock, link); } if (g_spdk_posix_sock_impl_opts.enable_placement_id == PLACEMENT_MARK) { posix_sock_update_mark(_group, _sock); } else if (sock->placement_id != -1) { rc = spdk_sock_map_insert(&g_map, sock->placement_id, &group->base); if (rc != 0) { SPDK_ERRLOG("Failed to insert sock group into map: %d\n", rc); /* Do not treat this as an error. The system will continue running. */ } } return rc; } static int posix_sock_group_impl_remove_sock(struct spdk_sock_group_impl *_group, struct spdk_sock *_sock) { struct spdk_posix_sock_group_impl *group = __posix_group_impl(_group); struct spdk_posix_sock *sock = __posix_sock(_sock); int rc; if (sock->pipe_has_data || sock->socket_has_data) { TAILQ_REMOVE(&group->socks_with_data, sock, link); sock->pipe_has_data = false; sock->socket_has_data = false; } if (sock->placement_id != -1) { spdk_sock_map_release(&g_map, sock->placement_id); } #if defined(SPDK_EPOLL) struct epoll_event event; /* Event parameter is ignored but some old kernel version still require it. */ rc = epoll_ctl(group->fd, EPOLL_CTL_DEL, sock->fd, &event); #elif defined(SPDK_KEVENT) struct kevent event; struct timespec ts = {0}; EV_SET(&event, sock->fd, EVFILT_READ, EV_DELETE, 0, 0, NULL); rc = kevent(group->fd, &event, 1, NULL, 0, &ts); if (rc == 0 && event.flags & EV_ERROR) { rc = -1; errno = event.data; } #endif spdk_sock_abort_requests(_sock); return rc; } static int posix_sock_group_impl_poll(struct spdk_sock_group_impl *_group, int max_events, struct spdk_sock **socks) { struct spdk_posix_sock_group_impl *group = __posix_group_impl(_group); struct spdk_sock *sock, *tmp; int num_events, i, rc; struct spdk_posix_sock *psock, *ptmp; #if defined(SPDK_EPOLL) struct epoll_event events[MAX_EVENTS_PER_POLL]; #elif defined(SPDK_KEVENT) struct kevent events[MAX_EVENTS_PER_POLL]; struct timespec ts = {0}; #endif #ifdef SPDK_ZEROCOPY /* When all of the following conditions are met * - non-blocking socket * - zero copy is enabled * - interrupts suppressed (i.e. busy polling) * - the NIC tx queue is full at the time sendmsg() is called * - epoll_wait determines there is an EPOLLIN event for the socket * then we can get into a situation where data we've sent is queued * up in the kernel network stack, but interrupts have been suppressed * because other traffic is flowing so the kernel misses the signal * to flush the software tx queue. If there wasn't incoming data * pending on the socket, then epoll_wait would have been sufficient * to kick off the send operation, but since there is a pending event * epoll_wait does not trigger the necessary operation. * * We deal with this by checking for all of the above conditions and * additionally looking for EPOLLIN events that were not consumed from * the last poll loop. We take this to mean that the upper layer is * unable to consume them because it is blocked waiting for resources * to free up, and those resources are most likely freed in response * to a pending asynchronous write completing. * * Additionally, sockets that have the same placement_id actually share * an underlying hardware queue. That means polling one of them is * equivalent to polling all of them. As a quick mechanism to avoid * making extra poll() calls, stash the last placement_id during the loop * and only poll if it's not the same. The overwhelmingly common case * is that all sockets in this list have the same placement_id because * SPDK is intentionally grouping sockets by that value, so even * though this won't stop all extra calls to poll(), it's very fast * and will catch all of them in practice. */ int last_placement_id = -1; TAILQ_FOREACH(psock, &group->socks_with_data, link) { if (psock->zcopy && psock->placement_id >= 0 && psock->placement_id != last_placement_id) { struct pollfd pfd = {psock->fd, POLLIN | POLLERR, 0}; poll(&pfd, 1, 0); last_placement_id = psock->placement_id; } } #endif /* This must be a TAILQ_FOREACH_SAFE because while flushing, * a completion callback could remove the sock from the * group. */ TAILQ_FOREACH_SAFE(sock, &_group->socks, link, tmp) { rc = _sock_flush(sock); if (rc) { spdk_sock_abort_requests(sock); } } assert(max_events > 0); #if defined(SPDK_EPOLL) num_events = epoll_wait(group->fd, events, max_events, 0); #elif defined(SPDK_KEVENT) num_events = kevent(group->fd, NULL, 0, events, max_events, &ts); #endif if (num_events == -1) { return -1; } else if (num_events == 0 && !TAILQ_EMPTY(&_group->socks)) { sock = TAILQ_FIRST(&_group->socks); psock = __posix_sock(sock); /* poll() is called here to busy poll the queue associated with * first socket in list and potentially reap incoming data. */ if (sock->opts.priority) { struct pollfd pfd = {0, 0, 0}; pfd.fd = psock->fd; pfd.events = POLLIN | POLLERR; poll(&pfd, 1, 0); } } for (i = 0; i < num_events; i++) { #if defined(SPDK_EPOLL) sock = events[i].data.ptr; psock = __posix_sock(sock); #ifdef SPDK_ZEROCOPY if (events[i].events & EPOLLERR) { rc = _sock_check_zcopy(sock); /* If the socket was closed or removed from * the group in response to a send ack, don't * add it to the array here. */ if (rc || sock->cb_fn == NULL) { continue; } } #endif if ((events[i].events & EPOLLIN) == 0) { continue; } #elif defined(SPDK_KEVENT) sock = events[i].udata; psock = __posix_sock(sock); #endif /* If the socket is not already in the list, add it now */ if (!psock->socket_has_data && !psock->pipe_has_data) { TAILQ_INSERT_TAIL(&group->socks_with_data, psock, link); } psock->socket_has_data = true; } num_events = 0; TAILQ_FOREACH_SAFE(psock, &group->socks_with_data, link, ptmp) { if (num_events == max_events) { break; } /* If the socket's cb_fn is NULL, just remove it from the * list and do not add it to socks array */ if (spdk_unlikely(psock->base.cb_fn == NULL)) { psock->socket_has_data = false; psock->pipe_has_data = false; TAILQ_REMOVE(&group->socks_with_data, psock, link); continue; } socks[num_events++] = &psock->base; } /* Cycle the has_data list so that each time we poll things aren't * in the same order. Say we have 6 sockets in the list, named as follows: * A B C D E F * And all 6 sockets had epoll events, but max_events is only 3. That means * psock currently points at D. We want to rearrange the list to the following: * D E F A B C * * The variables below are named according to this example to make it easier to * follow the swaps. */ if (psock != NULL) { struct spdk_posix_sock *pa, *pc, *pd, *pf; /* Capture pointers to the elements we need */ pd = psock; pc = TAILQ_PREV(pd, spdk_has_data_list, link); pa = TAILQ_FIRST(&group->socks_with_data); pf = TAILQ_LAST(&group->socks_with_data, spdk_has_data_list); /* Break the link between C and D */ pc->link.tqe_next = NULL; /* Connect F to A */ pf->link.tqe_next = pa; pa->link.tqe_prev = &pf->link.tqe_next; /* Fix up the list first/last pointers */ group->socks_with_data.tqh_first = pd; group->socks_with_data.tqh_last = &pc->link.tqe_next; /* D is in front of the list, make tqe prev pointer point to the head of list */ pd->link.tqe_prev = &group->socks_with_data.tqh_first; } return num_events; } static int posix_sock_group_impl_close(struct spdk_sock_group_impl *_group) { struct spdk_posix_sock_group_impl *group = __posix_group_impl(_group); int rc; if (g_spdk_posix_sock_impl_opts.enable_placement_id == PLACEMENT_CPU) { spdk_sock_map_release(&g_map, spdk_env_get_current_core()); } rc = close(group->fd); free(group); return rc; } static int posix_sock_impl_get_opts(struct spdk_sock_impl_opts *opts, size_t *len) { if (!opts || !len) { errno = EINVAL; return -1; } memset(opts, 0, *len); #define FIELD_OK(field) \ offsetof(struct spdk_sock_impl_opts, field) + sizeof(opts->field) <= *len #define GET_FIELD(field) \ if (FIELD_OK(field)) { \ opts->field = g_spdk_posix_sock_impl_opts.field; \ } GET_FIELD(recv_buf_size); GET_FIELD(send_buf_size); GET_FIELD(enable_recv_pipe); GET_FIELD(enable_zerocopy_send); GET_FIELD(enable_quickack); GET_FIELD(enable_placement_id); GET_FIELD(enable_zerocopy_send_server); GET_FIELD(enable_zerocopy_send_client); #undef GET_FIELD #undef FIELD_OK *len = spdk_min(*len, sizeof(g_spdk_posix_sock_impl_opts)); return 0; } static int posix_sock_impl_set_opts(const struct spdk_sock_impl_opts *opts, size_t len) { if (!opts) { errno = EINVAL; return -1; } #define FIELD_OK(field) \ offsetof(struct spdk_sock_impl_opts, field) + sizeof(opts->field) <= len #define SET_FIELD(field) \ if (FIELD_OK(field)) { \ g_spdk_posix_sock_impl_opts.field = opts->field; \ } SET_FIELD(recv_buf_size); SET_FIELD(send_buf_size); SET_FIELD(enable_recv_pipe); SET_FIELD(enable_zerocopy_send); SET_FIELD(enable_quickack); SET_FIELD(enable_placement_id); SET_FIELD(enable_zerocopy_send_server); SET_FIELD(enable_zerocopy_send_client); #undef SET_FIELD #undef FIELD_OK return 0; } static struct spdk_net_impl g_posix_net_impl = { .name = "posix", .getaddr = posix_sock_getaddr, .connect = posix_sock_connect, .listen = posix_sock_listen, .accept = posix_sock_accept, .close = posix_sock_close, .recv = posix_sock_recv, .readv = posix_sock_readv, .writev = posix_sock_writev, .writev_async = posix_sock_writev_async, .flush = posix_sock_flush, .set_recvlowat = posix_sock_set_recvlowat, .set_recvbuf = posix_sock_set_recvbuf, .set_sendbuf = posix_sock_set_sendbuf, .is_ipv6 = posix_sock_is_ipv6, .is_ipv4 = posix_sock_is_ipv4, .is_connected = posix_sock_is_connected, .group_impl_get_optimal = posix_sock_group_impl_get_optimal, .group_impl_create = posix_sock_group_impl_create, .group_impl_add_sock = posix_sock_group_impl_add_sock, .group_impl_remove_sock = posix_sock_group_impl_remove_sock, .group_impl_poll = posix_sock_group_impl_poll, .group_impl_close = posix_sock_group_impl_close, .get_opts = posix_sock_impl_get_opts, .set_opts = posix_sock_impl_set_opts, }; SPDK_NET_IMPL_REGISTER(posix, &g_posix_net_impl, DEFAULT_SOCK_PRIORITY);