/*- * BSD LICENSE * * Copyright (c) Intel Corporation. All rights reserved. * Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved. * Copyright (c) 2021, 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "spdk/stdinc.h" #include "bdev_nvme.h" #include "spdk/accel_engine.h" #include "spdk/config.h" #include "spdk/endian.h" #include "spdk/bdev.h" #include "spdk/json.h" #include "spdk/likely.h" #include "spdk/nvme.h" #include "spdk/nvme_ocssd.h" #include "spdk/nvme_zns.h" #include "spdk/opal.h" #include "spdk/thread.h" #include "spdk/string.h" #include "spdk/util.h" #include "spdk/bdev_module.h" #include "spdk/log.h" #include "spdk_internal/usdt.h" #define SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT true #define SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS (10000) static int bdev_nvme_config_json(struct spdk_json_write_ctx *w); struct nvme_bdev_io { /** array of iovecs to transfer. */ struct iovec *iovs; /** Number of iovecs in iovs array. */ int iovcnt; /** Current iovec position. */ int iovpos; /** Offset in current iovec. */ uint32_t iov_offset; /** I/O path the current I/O or admin passthrough is submitted on, or the I/O path * being reset in a reset I/O. */ struct nvme_io_path *io_path; /** array of iovecs to transfer. */ struct iovec *fused_iovs; /** Number of iovecs in iovs array. */ int fused_iovcnt; /** Current iovec position. */ int fused_iovpos; /** Offset in current iovec. */ uint32_t fused_iov_offset; /** Saved status for admin passthru completion event, PI error verification, or intermediate compare-and-write status */ struct spdk_nvme_cpl cpl; /** Extended IO opts passed by the user to bdev layer and mapped to NVME format */ struct spdk_nvme_ns_cmd_ext_io_opts ext_opts; /** Originating thread */ struct spdk_thread *orig_thread; /** Keeps track if first of fused commands was submitted */ bool first_fused_submitted; /** Temporary pointer to zone report buffer */ struct spdk_nvme_zns_zone_report *zone_report_buf; /** Keep track of how many zones that have been copied to the spdk_bdev_zone_info struct */ uint64_t handled_zones; /** Expiration value in ticks to retry the current I/O. */ uint64_t retry_ticks; /* How many times the current I/O was retried. */ int32_t retry_count; }; struct nvme_probe_skip_entry { struct spdk_nvme_transport_id trid; TAILQ_ENTRY(nvme_probe_skip_entry) tailq; }; /* All the controllers deleted by users via RPC are skipped by hotplug monitor */ static TAILQ_HEAD(, nvme_probe_skip_entry) g_skipped_nvme_ctrlrs = TAILQ_HEAD_INITIALIZER( g_skipped_nvme_ctrlrs); static struct spdk_bdev_nvme_opts g_opts = { .action_on_timeout = SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE, .timeout_us = 0, .timeout_admin_us = 0, .keep_alive_timeout_ms = SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS, .transport_retry_count = 4, .arbitration_burst = 0, .low_priority_weight = 0, .medium_priority_weight = 0, .high_priority_weight = 0, .nvme_adminq_poll_period_us = 10000ULL, .nvme_ioq_poll_period_us = 0, .io_queue_requests = 0, .delay_cmd_submit = SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT, .bdev_retry_count = 3, .transport_ack_timeout = 0, }; #define NVME_HOTPLUG_POLL_PERIOD_MAX 10000000ULL #define NVME_HOTPLUG_POLL_PERIOD_DEFAULT 100000ULL static int g_hot_insert_nvme_controller_index = 0; static uint64_t g_nvme_hotplug_poll_period_us = NVME_HOTPLUG_POLL_PERIOD_DEFAULT; static bool g_nvme_hotplug_enabled = false; static struct spdk_thread *g_bdev_nvme_init_thread; static struct spdk_poller *g_hotplug_poller; static struct spdk_poller *g_hotplug_probe_poller; static struct spdk_nvme_probe_ctx *g_hotplug_probe_ctx; static void nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr, struct nvme_async_probe_ctx *ctx); static void nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr, struct nvme_async_probe_ctx *ctx); static int bdev_nvme_library_init(void); static void bdev_nvme_library_fini(void); static void bdev_nvme_submit_request(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io); static int bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt, void *md, uint64_t lba_count, uint64_t lba, uint32_t flags, struct spdk_bdev_ext_io_opts *ext_opts); static int bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt, void *md, uint64_t lba_count, uint64_t lba); static int bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt, void *md, uint64_t lba_count, uint64_t lba, uint32_t flags, struct spdk_bdev_ext_io_opts *ext_opts); static int bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt, void *md, uint64_t lba_count, uint64_t zslba, uint32_t flags); static int bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt, void *md, uint64_t lba_count, uint64_t lba, uint32_t flags); static int bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio, struct iovec *cmp_iov, int cmp_iovcnt, struct iovec *write_iov, int write_iovcnt, void *md, uint64_t lba_count, uint64_t lba, uint32_t flags); static int bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id, uint32_t num_zones, struct spdk_bdev_zone_info *info); static int bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id, enum spdk_bdev_zone_action action); static void bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes); static int bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes); static int bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes, void *md_buf, size_t md_len); static void bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio, struct nvme_bdev_io *bio_to_abort); static void bdev_nvme_reset_io(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio); static int bdev_nvme_reset(struct nvme_ctrlr *nvme_ctrlr); static int bdev_nvme_failover(struct nvme_ctrlr *nvme_ctrlr, bool remove); static void remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr); static int nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr); static int nvme_ns_cmp(struct nvme_ns *ns1, struct nvme_ns *ns2) { return ns1->id < ns2->id ? -1 : ns1->id > ns2->id; } RB_GENERATE_STATIC(nvme_ns_tree, nvme_ns, node, nvme_ns_cmp); struct spdk_nvme_qpair * bdev_nvme_get_io_qpair(struct spdk_io_channel *ctrlr_io_ch) { struct nvme_ctrlr_channel *ctrlr_ch; assert(ctrlr_io_ch != NULL); ctrlr_ch = spdk_io_channel_get_ctx(ctrlr_io_ch); return ctrlr_ch->qpair; } static int bdev_nvme_get_ctx_size(void) { return sizeof(struct nvme_bdev_io); } static struct spdk_bdev_module nvme_if = { .name = "nvme", .async_fini = true, .module_init = bdev_nvme_library_init, .module_fini = bdev_nvme_library_fini, .config_json = bdev_nvme_config_json, .get_ctx_size = bdev_nvme_get_ctx_size, }; SPDK_BDEV_MODULE_REGISTER(nvme, &nvme_if) struct nvme_bdev_ctrlrs g_nvme_bdev_ctrlrs = TAILQ_HEAD_INITIALIZER(g_nvme_bdev_ctrlrs); pthread_mutex_t g_bdev_nvme_mutex = PTHREAD_MUTEX_INITIALIZER; bool g_bdev_nvme_module_finish; struct nvme_bdev_ctrlr * nvme_bdev_ctrlr_get_by_name(const char *name) { struct nvme_bdev_ctrlr *nbdev_ctrlr; TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) { if (strcmp(name, nbdev_ctrlr->name) == 0) { break; } } return nbdev_ctrlr; } static struct nvme_ctrlr * nvme_bdev_ctrlr_get_ctrlr(struct nvme_bdev_ctrlr *nbdev_ctrlr, const struct spdk_nvme_transport_id *trid) { struct nvme_ctrlr *nvme_ctrlr; TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) { if (spdk_nvme_transport_id_compare(trid, &nvme_ctrlr->active_path_id->trid) == 0) { break; } } return nvme_ctrlr; } static struct nvme_bdev * nvme_bdev_ctrlr_get_bdev(struct nvme_bdev_ctrlr *nbdev_ctrlr, uint32_t nsid) { struct nvme_bdev *bdev; pthread_mutex_lock(&g_bdev_nvme_mutex); TAILQ_FOREACH(bdev, &nbdev_ctrlr->bdevs, tailq) { if (bdev->nsid == nsid) { break; } } pthread_mutex_unlock(&g_bdev_nvme_mutex); return bdev; } struct nvme_ns * nvme_ctrlr_get_ns(struct nvme_ctrlr *nvme_ctrlr, uint32_t nsid) { struct nvme_ns ns; assert(nsid > 0); ns.id = nsid; return RB_FIND(nvme_ns_tree, &nvme_ctrlr->namespaces, &ns); } struct nvme_ns * nvme_ctrlr_get_first_active_ns(struct nvme_ctrlr *nvme_ctrlr) { return RB_MIN(nvme_ns_tree, &nvme_ctrlr->namespaces); } struct nvme_ns * nvme_ctrlr_get_next_active_ns(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *ns) { if (ns == NULL) { return NULL; } return RB_NEXT(nvme_ns_tree, &nvme_ctrlr->namespaces, ns); } static struct nvme_ctrlr * nvme_ctrlr_get(const struct spdk_nvme_transport_id *trid) { struct nvme_bdev_ctrlr *nbdev_ctrlr; struct nvme_ctrlr *nvme_ctrlr = NULL; pthread_mutex_lock(&g_bdev_nvme_mutex); TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) { nvme_ctrlr = nvme_bdev_ctrlr_get_ctrlr(nbdev_ctrlr, trid); if (nvme_ctrlr != NULL) { break; } } pthread_mutex_unlock(&g_bdev_nvme_mutex); return nvme_ctrlr; } struct nvme_ctrlr * nvme_ctrlr_get_by_name(const char *name) { struct nvme_bdev_ctrlr *nbdev_ctrlr; struct nvme_ctrlr *nvme_ctrlr = NULL; if (name == NULL) { return NULL; } pthread_mutex_lock(&g_bdev_nvme_mutex); nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name); if (nbdev_ctrlr != NULL) { nvme_ctrlr = TAILQ_FIRST(&nbdev_ctrlr->ctrlrs); } pthread_mutex_unlock(&g_bdev_nvme_mutex); return nvme_ctrlr; } void nvme_bdev_ctrlr_for_each(nvme_bdev_ctrlr_for_each_fn fn, void *ctx) { struct nvme_bdev_ctrlr *nbdev_ctrlr; pthread_mutex_lock(&g_bdev_nvme_mutex); TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) { fn(nbdev_ctrlr, ctx); } pthread_mutex_unlock(&g_bdev_nvme_mutex); } void nvme_bdev_dump_trid_json(const struct spdk_nvme_transport_id *trid, struct spdk_json_write_ctx *w) { const char *trtype_str; const char *adrfam_str; trtype_str = spdk_nvme_transport_id_trtype_str(trid->trtype); if (trtype_str) { spdk_json_write_named_string(w, "trtype", trtype_str); } adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam); if (adrfam_str) { spdk_json_write_named_string(w, "adrfam", adrfam_str); } if (trid->traddr[0] != '\0') { spdk_json_write_named_string(w, "traddr", trid->traddr); } if (trid->trsvcid[0] != '\0') { spdk_json_write_named_string(w, "trsvcid", trid->trsvcid); } if (trid->subnqn[0] != '\0') { spdk_json_write_named_string(w, "subnqn", trid->subnqn); } } static void nvme_bdev_ctrlr_delete(struct nvme_bdev_ctrlr *nbdev_ctrlr, struct nvme_ctrlr *nvme_ctrlr) { SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_delete, nvme_ctrlr->nbdev_ctrlr->name); pthread_mutex_lock(&g_bdev_nvme_mutex); TAILQ_REMOVE(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq); if (!TAILQ_EMPTY(&nbdev_ctrlr->ctrlrs)) { pthread_mutex_unlock(&g_bdev_nvme_mutex); return; } TAILQ_REMOVE(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq); pthread_mutex_unlock(&g_bdev_nvme_mutex); assert(TAILQ_EMPTY(&nbdev_ctrlr->bdevs)); free(nbdev_ctrlr->name); free(nbdev_ctrlr); } static void _nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr) { struct nvme_path_id *path_id, *tmp_path; struct nvme_ns *ns, *tmp_ns; free(nvme_ctrlr->copied_ana_desc); spdk_free(nvme_ctrlr->ana_log_page); if (nvme_ctrlr->opal_dev) { spdk_opal_dev_destruct(nvme_ctrlr->opal_dev); nvme_ctrlr->opal_dev = NULL; } if (nvme_ctrlr->nbdev_ctrlr) { nvme_bdev_ctrlr_delete(nvme_ctrlr->nbdev_ctrlr, nvme_ctrlr); } RB_FOREACH_SAFE(ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp_ns) { RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, ns); free(ns); } TAILQ_FOREACH_SAFE(path_id, &nvme_ctrlr->trids, link, tmp_path) { TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link); free(path_id); } pthread_mutex_destroy(&nvme_ctrlr->mutex); free(nvme_ctrlr); pthread_mutex_lock(&g_bdev_nvme_mutex); if (g_bdev_nvme_module_finish && TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) { pthread_mutex_unlock(&g_bdev_nvme_mutex); spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL); spdk_bdev_module_fini_done(); return; } pthread_mutex_unlock(&g_bdev_nvme_mutex); } static int nvme_detach_poller(void *arg) { struct nvme_ctrlr *nvme_ctrlr = arg; int rc; rc = spdk_nvme_detach_poll_async(nvme_ctrlr->detach_ctx); if (rc != -EAGAIN) { spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller); _nvme_ctrlr_delete(nvme_ctrlr); } return SPDK_POLLER_BUSY; } static void nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr) { int rc; spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer); /* First, unregister the adminq poller, as the driver will poll adminq if necessary */ spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller); /* If we got here, the reset/detach poller cannot be active */ assert(nvme_ctrlr->reset_detach_poller == NULL); nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(nvme_detach_poller, nvme_ctrlr, 1000); if (nvme_ctrlr->reset_detach_poller == NULL) { SPDK_ERRLOG("Failed to register detach poller\n"); goto error; } rc = spdk_nvme_detach_async(nvme_ctrlr->ctrlr, &nvme_ctrlr->detach_ctx); if (rc != 0) { SPDK_ERRLOG("Failed to detach the NVMe controller\n"); goto error; } return; error: /* We don't have a good way to handle errors here, so just do what we can and delete the * controller without detaching the underlying NVMe device. */ spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller); _nvme_ctrlr_delete(nvme_ctrlr); } static void nvme_ctrlr_unregister_cb(void *io_device) { struct nvme_ctrlr *nvme_ctrlr = io_device; nvme_ctrlr_delete(nvme_ctrlr); } static void nvme_ctrlr_unregister(struct nvme_ctrlr *nvme_ctrlr) { spdk_io_device_unregister(nvme_ctrlr, nvme_ctrlr_unregister_cb); } static bool nvme_ctrlr_can_be_unregistered(struct nvme_ctrlr *nvme_ctrlr) { if (!nvme_ctrlr->destruct) { return false; } if (nvme_ctrlr->ref > 0) { return false; } if (nvme_ctrlr->resetting) { return false; } if (nvme_ctrlr->ana_log_page_updating) { return false; } return true; } static void nvme_ctrlr_release(struct nvme_ctrlr *nvme_ctrlr) { pthread_mutex_lock(&nvme_ctrlr->mutex); SPDK_DTRACE_PROBE2(bdev_nvme_ctrlr_release, nvme_ctrlr->nbdev_ctrlr->name, nvme_ctrlr->ref); assert(nvme_ctrlr->ref > 0); nvme_ctrlr->ref--; if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) { pthread_mutex_unlock(&nvme_ctrlr->mutex); return; } pthread_mutex_unlock(&nvme_ctrlr->mutex); nvme_ctrlr_unregister(nvme_ctrlr); } static struct nvme_io_path * _bdev_nvme_get_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns) { struct nvme_io_path *io_path; STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) { if (io_path->nvme_ns == nvme_ns) { break; } } return io_path; } static int _bdev_nvme_add_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns) { struct nvme_io_path *io_path; struct spdk_io_channel *ch; io_path = calloc(1, sizeof(*io_path)); if (io_path == NULL) { SPDK_ERRLOG("Failed to alloc io_path.\n"); return -ENOMEM; } ch = spdk_get_io_channel(nvme_ns->ctrlr); if (ch == NULL) { free(io_path); SPDK_ERRLOG("Failed to alloc io_channel.\n"); return -ENOMEM; } io_path->ctrlr_ch = spdk_io_channel_get_ctx(ch); TAILQ_INSERT_TAIL(&io_path->ctrlr_ch->io_path_list, io_path, tailq); io_path->nvme_ns = nvme_ns; io_path->nbdev_ch = nbdev_ch; STAILQ_INSERT_TAIL(&nbdev_ch->io_path_list, io_path, stailq); nbdev_ch->current_io_path = NULL; return 0; } static void _bdev_nvme_delete_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *io_path) { struct spdk_io_channel *ch; nbdev_ch->current_io_path = NULL; STAILQ_REMOVE(&nbdev_ch->io_path_list, io_path, nvme_io_path, stailq); TAILQ_REMOVE(&io_path->ctrlr_ch->io_path_list, io_path, tailq); ch = spdk_io_channel_from_ctx(io_path->ctrlr_ch); spdk_put_io_channel(ch); free(io_path); } static void _bdev_nvme_delete_io_paths(struct nvme_bdev_channel *nbdev_ch) { struct nvme_io_path *io_path, *tmp_io_path; STAILQ_FOREACH_SAFE(io_path, &nbdev_ch->io_path_list, stailq, tmp_io_path) { _bdev_nvme_delete_io_path(nbdev_ch, io_path); } } static int bdev_nvme_create_bdev_channel_cb(void *io_device, void *ctx_buf) { struct nvme_bdev_channel *nbdev_ch = ctx_buf; struct nvme_bdev *nbdev = io_device; struct nvme_ns *nvme_ns; int rc; STAILQ_INIT(&nbdev_ch->io_path_list); TAILQ_INIT(&nbdev_ch->retry_io_list); pthread_mutex_lock(&nbdev->mutex); TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) { rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns); if (rc != 0) { pthread_mutex_unlock(&nbdev->mutex); _bdev_nvme_delete_io_paths(nbdev_ch); return rc; } } pthread_mutex_unlock(&nbdev->mutex); return 0; } static void bdev_nvme_abort_retry_ios(struct nvme_bdev_channel *nbdev_ch) { struct spdk_bdev_io *bdev_io, *tmp_io; TAILQ_FOREACH_SAFE(bdev_io, &nbdev_ch->retry_io_list, module_link, tmp_io) { TAILQ_REMOVE(&nbdev_ch->retry_io_list, bdev_io, module_link); spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_ABORTED); } spdk_poller_unregister(&nbdev_ch->retry_io_poller); } static void bdev_nvme_destroy_bdev_channel_cb(void *io_device, void *ctx_buf) { struct nvme_bdev_channel *nbdev_ch = ctx_buf; bdev_nvme_abort_retry_ios(nbdev_ch); _bdev_nvme_delete_io_paths(nbdev_ch); } static inline bool bdev_nvme_io_type_is_admin(enum spdk_bdev_io_type io_type) { switch (io_type) { case SPDK_BDEV_IO_TYPE_RESET: case SPDK_BDEV_IO_TYPE_NVME_ADMIN: case SPDK_BDEV_IO_TYPE_ABORT: return true; default: break; } return false; } static inline bool nvme_ns_is_accessible(struct nvme_ns *nvme_ns) { if (spdk_unlikely(nvme_ns->ana_state_updating)) { return false; } switch (nvme_ns->ana_state) { case SPDK_NVME_ANA_OPTIMIZED_STATE: case SPDK_NVME_ANA_NON_OPTIMIZED_STATE: return true; default: break; } return false; } static inline bool nvme_io_path_is_connected(struct nvme_io_path *io_path) { return io_path->ctrlr_ch->qpair != NULL; } static inline bool nvme_io_path_is_available(struct nvme_io_path *io_path) { if (spdk_unlikely(!nvme_io_path_is_connected(io_path))) { return false; } if (spdk_unlikely(!nvme_ns_is_accessible(io_path->nvme_ns))) { return false; } return true; } static inline bool nvme_io_path_is_failed(struct nvme_io_path *io_path) { struct nvme_ctrlr *nvme_ctrlr; nvme_ctrlr = nvme_ctrlr_channel_get_ctrlr(io_path->ctrlr_ch); if (nvme_ctrlr->destruct) { return true; } if (nvme_ctrlr->fast_io_fail_timedout) { return true; } if (nvme_ctrlr->resetting) { if (nvme_ctrlr->opts.reconnect_delay_sec != 0) { return false; } else { return true; } } if (nvme_ctrlr->reconnect_is_delayed) { return false; } if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) { return true; } else { return false; } } static bool nvme_ctrlr_is_available(struct nvme_ctrlr *nvme_ctrlr) { if (nvme_ctrlr->destruct) { return false; } if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) { return false; } if (nvme_ctrlr->resetting || nvme_ctrlr->reconnect_is_delayed) { return false; } return true; } static inline struct nvme_io_path * bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch) { struct nvme_io_path *io_path, *non_optimized = NULL; if (spdk_likely(nbdev_ch->current_io_path != NULL)) { return nbdev_ch->current_io_path; } STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) { if (spdk_unlikely(!nvme_io_path_is_connected(io_path))) { /* The device is currently resetting. */ continue; } if (spdk_unlikely(io_path->nvme_ns->ana_state_updating)) { continue; } switch (io_path->nvme_ns->ana_state) { case SPDK_NVME_ANA_OPTIMIZED_STATE: nbdev_ch->current_io_path = io_path; return io_path; case SPDK_NVME_ANA_NON_OPTIMIZED_STATE: if (non_optimized == NULL) { non_optimized = io_path; } break; default: break; } } return non_optimized; } /* Return true if there is any io_path whose qpair is active or ctrlr is not failed, * or false otherwise. * * If any io_path has an active qpair but find_io_path() returned NULL, its namespace * is likely to be non-accessible now but may become accessible. * * If any io_path has an unfailed ctrlr but find_io_path() returned NULL, the ctrlr * is likely to be resetting now but the reset may succeed. A ctrlr is set to unfailed * when starting to reset it but it is set to failed when the reset failed. Hence, if * a ctrlr is unfailed, it is likely that it works fine or is resetting. */ static bool any_io_path_may_become_available(struct nvme_bdev_channel *nbdev_ch) { struct nvme_io_path *io_path; STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) { if (nvme_io_path_is_connected(io_path) || !nvme_io_path_is_failed(io_path)) { return true; } } return false; } static bool any_ctrlr_may_become_available(struct nvme_bdev_channel *nbdev_ch) { struct nvme_io_path *io_path; STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) { if (!nvme_io_path_is_failed(io_path)) { return true; } } return false; } static int bdev_nvme_retry_ios(void *arg) { struct nvme_bdev_channel *nbdev_ch = arg; struct spdk_io_channel *ch = spdk_io_channel_from_ctx(nbdev_ch); struct spdk_bdev_io *bdev_io, *tmp_bdev_io; struct nvme_bdev_io *bio; uint64_t now, delay_us; now = spdk_get_ticks(); TAILQ_FOREACH_SAFE(bdev_io, &nbdev_ch->retry_io_list, module_link, tmp_bdev_io) { bio = (struct nvme_bdev_io *)bdev_io->driver_ctx; if (bio->retry_ticks > now) { break; } TAILQ_REMOVE(&nbdev_ch->retry_io_list, bdev_io, module_link); bdev_nvme_submit_request(ch, bdev_io); } spdk_poller_unregister(&nbdev_ch->retry_io_poller); bdev_io = TAILQ_FIRST(&nbdev_ch->retry_io_list); if (bdev_io != NULL) { bio = (struct nvme_bdev_io *)bdev_io->driver_ctx; delay_us = (bio->retry_ticks - now) * SPDK_SEC_TO_USEC / spdk_get_ticks_hz(); nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch, delay_us); } return SPDK_POLLER_BUSY; } static void bdev_nvme_queue_retry_io(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio, uint64_t delay_ms) { struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio); struct spdk_bdev_io *tmp_bdev_io; struct nvme_bdev_io *tmp_bio; bio->retry_ticks = spdk_get_ticks() + delay_ms * spdk_get_ticks_hz() / 1000ULL; TAILQ_FOREACH_REVERSE(tmp_bdev_io, &nbdev_ch->retry_io_list, retry_io_head, module_link) { tmp_bio = (struct nvme_bdev_io *)tmp_bdev_io->driver_ctx; if (tmp_bio->retry_ticks <= bio->retry_ticks) { TAILQ_INSERT_AFTER(&nbdev_ch->retry_io_list, tmp_bdev_io, bdev_io, module_link); return; } } /* No earlier I/Os were found. This I/O must be the new head. */ TAILQ_INSERT_HEAD(&nbdev_ch->retry_io_list, bdev_io, module_link); spdk_poller_unregister(&nbdev_ch->retry_io_poller); nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch, delay_ms * 1000ULL); } static inline void bdev_nvme_io_complete_nvme_status(struct nvme_bdev_io *bio, const struct spdk_nvme_cpl *cpl) { struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio); struct nvme_bdev_channel *nbdev_ch; struct nvme_ctrlr *nvme_ctrlr; const struct spdk_nvme_ctrlr_data *cdata; uint64_t delay_ms; assert(!bdev_nvme_io_type_is_admin(bdev_io->type)); if (spdk_likely(spdk_nvme_cpl_is_success(cpl))) { goto complete; } if (cpl->status.dnr != 0 || (g_opts.bdev_retry_count != -1 && bio->retry_count >= g_opts.bdev_retry_count)) { goto complete; } nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io)); assert(bio->io_path != NULL); nvme_ctrlr = nvme_ctrlr_channel_get_ctrlr(bio->io_path->ctrlr_ch); if (spdk_nvme_cpl_is_path_error(cpl) || spdk_nvme_cpl_is_aborted_sq_deletion(cpl) || !nvme_io_path_is_available(bio->io_path) || !nvme_ctrlr_is_available(nvme_ctrlr)) { nbdev_ch->current_io_path = NULL; if (spdk_nvme_cpl_is_ana_error(cpl)) { if (nvme_ctrlr_read_ana_log_page(nvme_ctrlr) == 0) { bio->io_path->nvme_ns->ana_state_updating = true; } } delay_ms = 0; } else if (spdk_nvme_cpl_is_aborted_by_request(cpl)) { goto complete; } else { bio->retry_count++; cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr); if (cpl->status.crd != 0) { delay_ms = cdata->crdt[cpl->status.crd] * 100; } else { delay_ms = 0; } } if (any_io_path_may_become_available(nbdev_ch)) { bdev_nvme_queue_retry_io(nbdev_ch, bio, delay_ms); return; } complete: bio->retry_count = 0; spdk_bdev_io_complete_nvme_status(bdev_io, cpl->cdw0, cpl->status.sct, cpl->status.sc); } static inline void bdev_nvme_io_complete(struct nvme_bdev_io *bio, int rc) { struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio); struct nvme_bdev_channel *nbdev_ch; enum spdk_bdev_io_status io_status; switch (rc) { case 0: io_status = SPDK_BDEV_IO_STATUS_SUCCESS; break; case -ENOMEM: io_status = SPDK_BDEV_IO_STATUS_NOMEM; break; case -ENXIO: nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io)); nbdev_ch->current_io_path = NULL; if (any_io_path_may_become_available(nbdev_ch)) { bdev_nvme_queue_retry_io(nbdev_ch, bio, 1000ULL); return; } /* fallthrough */ default: io_status = SPDK_BDEV_IO_STATUS_FAILED; break; } bio->retry_count = 0; spdk_bdev_io_complete(bdev_io, io_status); } static inline void bdev_nvme_admin_passthru_complete(struct nvme_bdev_io *bio, int rc) { struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio); struct nvme_bdev_channel *nbdev_ch; enum spdk_bdev_io_status io_status; switch (rc) { case 0: io_status = SPDK_BDEV_IO_STATUS_SUCCESS; break; case -ENOMEM: io_status = SPDK_BDEV_IO_STATUS_NOMEM; break; case -ENXIO: nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io)); if (any_ctrlr_may_become_available(nbdev_ch)) { bdev_nvme_queue_retry_io(nbdev_ch, bio, 1000ULL); return; } /* fallthrough */ default: io_status = SPDK_BDEV_IO_STATUS_FAILED; break; } bio->retry_count = 0; spdk_bdev_io_complete(bdev_io, io_status); } static void _bdev_nvme_clear_io_path_cache(struct nvme_ctrlr_channel *ctrlr_ch) { struct nvme_io_path *io_path; TAILQ_FOREACH(io_path, &ctrlr_ch->io_path_list, tailq) { io_path->nbdev_ch->current_io_path = NULL; } } static struct nvme_ctrlr_channel * nvme_poll_group_get_ctrlr_channel(struct nvme_poll_group *group, struct spdk_nvme_qpair *qpair) { struct nvme_ctrlr_channel *ctrlr_ch; TAILQ_FOREACH(ctrlr_ch, &group->ctrlr_ch_list, tailq) { if (ctrlr_ch->qpair == qpair) { break; } } return ctrlr_ch; } static void bdev_nvme_destroy_qpair(struct nvme_ctrlr_channel *ctrlr_ch) { struct nvme_ctrlr *nvme_ctrlr __attribute__((unused)); if (ctrlr_ch->qpair != NULL) { nvme_ctrlr = nvme_ctrlr_channel_get_ctrlr(ctrlr_ch); SPDK_DTRACE_PROBE2(bdev_nvme_destroy_qpair, nvme_ctrlr->nbdev_ctrlr->name, spdk_nvme_qpair_get_id(ctrlr_ch->qpair)); spdk_nvme_ctrlr_free_io_qpair(ctrlr_ch->qpair); ctrlr_ch->qpair = NULL; } _bdev_nvme_clear_io_path_cache(ctrlr_ch); } static void bdev_nvme_disconnected_qpair_cb(struct spdk_nvme_qpair *qpair, void *poll_group_ctx) { struct nvme_poll_group *group = poll_group_ctx; struct nvme_ctrlr_channel *ctrlr_ch; struct nvme_ctrlr *nvme_ctrlr; SPDK_NOTICELOG("qpair %p is disconnected, free the qpair and reset controller.\n", qpair); /* * Free the I/O qpair and reset the nvme_ctrlr. */ ctrlr_ch = nvme_poll_group_get_ctrlr_channel(group, qpair); if (ctrlr_ch != NULL) { bdev_nvme_destroy_qpair(ctrlr_ch); nvme_ctrlr = nvme_ctrlr_channel_get_ctrlr(ctrlr_ch); bdev_nvme_reset(nvme_ctrlr); } } static int bdev_nvme_poll(void *arg) { struct nvme_poll_group *group = arg; int64_t num_completions; if (group->collect_spin_stat && group->start_ticks == 0) { group->start_ticks = spdk_get_ticks(); } num_completions = spdk_nvme_poll_group_process_completions(group->group, 0, bdev_nvme_disconnected_qpair_cb); if (group->collect_spin_stat) { if (num_completions > 0) { if (group->end_ticks != 0) { group->spin_ticks += (group->end_ticks - group->start_ticks); group->end_ticks = 0; } group->start_ticks = 0; } else { group->end_ticks = spdk_get_ticks(); } } return num_completions > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE; } static int bdev_nvme_poll_adminq(void *arg) { int32_t rc; struct nvme_ctrlr *nvme_ctrlr = arg; assert(nvme_ctrlr != NULL); rc = spdk_nvme_ctrlr_process_admin_completions(nvme_ctrlr->ctrlr); if (rc < 0) { bdev_nvme_failover(nvme_ctrlr, false); } return rc == 0 ? SPDK_POLLER_IDLE : SPDK_POLLER_BUSY; } static void _bdev_nvme_unregister_dev_cb(void *io_device) { struct nvme_bdev *nvme_disk = io_device; free(nvme_disk->disk.name); free(nvme_disk); } static int bdev_nvme_destruct(void *ctx) { struct nvme_bdev *nvme_disk = ctx; struct nvme_ns *nvme_ns, *tmp_nvme_ns; SPDK_DTRACE_PROBE2(bdev_nvme_destruct, nvme_disk->nbdev_ctrlr->name, nvme_disk->nsid); TAILQ_FOREACH_SAFE(nvme_ns, &nvme_disk->nvme_ns_list, tailq, tmp_nvme_ns) { pthread_mutex_lock(&nvme_ns->ctrlr->mutex); nvme_ns->bdev = NULL; assert(nvme_ns->id > 0); if (nvme_ctrlr_get_ns(nvme_ns->ctrlr, nvme_ns->id) == NULL) { pthread_mutex_unlock(&nvme_ns->ctrlr->mutex); nvme_ctrlr_release(nvme_ns->ctrlr); free(nvme_ns); } else { pthread_mutex_unlock(&nvme_ns->ctrlr->mutex); } } pthread_mutex_lock(&g_bdev_nvme_mutex); TAILQ_REMOVE(&nvme_disk->nbdev_ctrlr->bdevs, nvme_disk, tailq); pthread_mutex_unlock(&g_bdev_nvme_mutex); spdk_io_device_unregister(nvme_disk, _bdev_nvme_unregister_dev_cb); return 0; } static int bdev_nvme_flush(struct nvme_bdev_io *bio, uint64_t offset, uint64_t nbytes) { bdev_nvme_io_complete(bio, 0); return 0; } static int bdev_nvme_create_qpair(struct nvme_ctrlr_channel *ctrlr_ch) { struct nvme_ctrlr *nvme_ctrlr; struct spdk_nvme_io_qpair_opts opts; struct spdk_nvme_qpair *qpair; int rc; nvme_ctrlr = nvme_ctrlr_channel_get_ctrlr(ctrlr_ch); spdk_nvme_ctrlr_get_default_io_qpair_opts(nvme_ctrlr->ctrlr, &opts, sizeof(opts)); opts.delay_cmd_submit = g_opts.delay_cmd_submit; opts.create_only = true; opts.async_mode = true; opts.io_queue_requests = spdk_max(g_opts.io_queue_requests, opts.io_queue_requests); g_opts.io_queue_requests = opts.io_queue_requests; qpair = spdk_nvme_ctrlr_alloc_io_qpair(nvme_ctrlr->ctrlr, &opts, sizeof(opts)); if (qpair == NULL) { return -1; } SPDK_DTRACE_PROBE3(bdev_nvme_create_qpair, nvme_ctrlr->nbdev_ctrlr->name, spdk_nvme_qpair_get_id(ctrlr_ch->qpair), spdk_thread_get_id(nvme_ctrlr->thread)); assert(ctrlr_ch->group != NULL); rc = spdk_nvme_poll_group_add(ctrlr_ch->group->group, qpair); if (rc != 0) { SPDK_ERRLOG("Unable to begin polling on NVMe Channel.\n"); goto err; } rc = spdk_nvme_ctrlr_connect_io_qpair(nvme_ctrlr->ctrlr, qpair); if (rc != 0) { SPDK_ERRLOG("Unable to connect I/O qpair.\n"); goto err; } ctrlr_ch->qpair = qpair; _bdev_nvme_clear_io_path_cache(ctrlr_ch); return 0; err: spdk_nvme_ctrlr_free_io_qpair(qpair); return rc; } static void bdev_nvme_complete_pending_resets(struct spdk_io_channel_iter *i) { struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i); struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch); enum spdk_bdev_io_status status = SPDK_BDEV_IO_STATUS_SUCCESS; struct spdk_bdev_io *bdev_io; if (spdk_io_channel_iter_get_ctx(i) != NULL) { status = SPDK_BDEV_IO_STATUS_FAILED; } while (!TAILQ_EMPTY(&ctrlr_ch->pending_resets)) { bdev_io = TAILQ_FIRST(&ctrlr_ch->pending_resets); TAILQ_REMOVE(&ctrlr_ch->pending_resets, bdev_io, module_link); spdk_bdev_io_complete(bdev_io, status); } spdk_for_each_channel_continue(i, 0); } static void bdev_nvme_failover_trid(struct nvme_ctrlr *nvme_ctrlr, bool remove) { struct nvme_path_id *path_id, *next_path; int rc __attribute__((unused)); path_id = TAILQ_FIRST(&nvme_ctrlr->trids); assert(path_id); assert(path_id == nvme_ctrlr->active_path_id); next_path = TAILQ_NEXT(path_id, link); path_id->is_failed = true; if (next_path) { assert(path_id->trid.trtype != SPDK_NVME_TRANSPORT_PCIE); SPDK_NOTICELOG("Start failover from %s:%s to %s:%s\n", path_id->trid.traddr, path_id->trid.trsvcid, next_path->trid.traddr, next_path->trid.trsvcid); spdk_nvme_ctrlr_fail(nvme_ctrlr->ctrlr); nvme_ctrlr->active_path_id = next_path; rc = spdk_nvme_ctrlr_set_trid(nvme_ctrlr->ctrlr, &next_path->trid); assert(rc == 0); TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link); if (!remove) { /** Shuffle the old trid to the end of the list and use the new one. * Allows for round robin through multiple connections. */ TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, path_id, link); } else { free(path_id); } } } static bool bdev_nvme_check_ctrlr_loss_timeout(struct nvme_ctrlr *nvme_ctrlr) { int32_t elapsed; if (nvme_ctrlr->opts.ctrlr_loss_timeout_sec == 0 || nvme_ctrlr->opts.ctrlr_loss_timeout_sec == -1) { return false; } elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz(); if (elapsed >= nvme_ctrlr->opts.ctrlr_loss_timeout_sec) { return true; } else { return false; } } static bool bdev_nvme_check_fast_io_fail_timeout(struct nvme_ctrlr *nvme_ctrlr) { uint32_t elapsed; if (nvme_ctrlr->opts.fast_io_fail_timeout_sec == 0) { return false; } elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz(); if (elapsed >= nvme_ctrlr->opts.fast_io_fail_timeout_sec) { return true; } else { return false; } } enum bdev_nvme_op_after_reset { OP_NONE, OP_COMPLETE_PENDING_DESTRUCT, OP_DESTRUCT, OP_DELAYED_RECONNECT, }; typedef enum bdev_nvme_op_after_reset _bdev_nvme_op_after_reset; static _bdev_nvme_op_after_reset bdev_nvme_check_op_after_reset(struct nvme_ctrlr *nvme_ctrlr, bool success) { if (nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) { /* Complete pending destruct after reset completes. */ return OP_COMPLETE_PENDING_DESTRUCT; } else if (success || nvme_ctrlr->opts.reconnect_delay_sec == 0) { nvme_ctrlr->reset_start_tsc = 0; return OP_NONE; } else if (bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) { return OP_DESTRUCT; } else { if (bdev_nvme_check_fast_io_fail_timeout(nvme_ctrlr)) { nvme_ctrlr->fast_io_fail_timedout = true; } bdev_nvme_failover_trid(nvme_ctrlr, false); return OP_DELAYED_RECONNECT; } } static int _bdev_nvme_delete(struct nvme_ctrlr *nvme_ctrlr, bool hotplug); static void bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr); static int bdev_nvme_reconnect_delay_timer_expired(void *ctx) { struct nvme_ctrlr *nvme_ctrlr = ctx; pthread_mutex_lock(&nvme_ctrlr->mutex); spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer); assert(nvme_ctrlr->reconnect_is_delayed == true); nvme_ctrlr->reconnect_is_delayed = false; if (nvme_ctrlr->destruct) { pthread_mutex_unlock(&nvme_ctrlr->mutex); return SPDK_POLLER_BUSY; } assert(nvme_ctrlr->resetting == false); nvme_ctrlr->resetting = true; pthread_mutex_unlock(&nvme_ctrlr->mutex); spdk_poller_resume(nvme_ctrlr->adminq_timer_poller); bdev_nvme_reconnect_ctrlr(nvme_ctrlr); return SPDK_POLLER_BUSY; } static void bdev_nvme_start_reconnect_delay_timer(struct nvme_ctrlr *nvme_ctrlr) { spdk_poller_pause(nvme_ctrlr->adminq_timer_poller); assert(nvme_ctrlr->reconnect_is_delayed == false); nvme_ctrlr->reconnect_is_delayed = true; assert(nvme_ctrlr->reconnect_delay_timer == NULL); nvme_ctrlr->reconnect_delay_timer = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_delay_timer_expired, nvme_ctrlr, nvme_ctrlr->opts.reconnect_delay_sec * SPDK_SEC_TO_USEC); } static void _bdev_nvme_reset_complete(struct spdk_io_channel_iter *i, int status) { struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i); bool success = spdk_io_channel_iter_get_ctx(i) == NULL; struct nvme_path_id *path_id; bdev_nvme_reset_cb reset_cb_fn = nvme_ctrlr->reset_cb_fn; void *reset_cb_arg = nvme_ctrlr->reset_cb_arg; enum bdev_nvme_op_after_reset op_after_reset; assert(nvme_ctrlr->thread == spdk_get_thread()); nvme_ctrlr->reset_cb_fn = NULL; nvme_ctrlr->reset_cb_arg = NULL; if (!success) { SPDK_ERRLOG("Resetting controller failed.\n"); } else { SPDK_NOTICELOG("Resetting controller successful.\n"); } pthread_mutex_lock(&nvme_ctrlr->mutex); nvme_ctrlr->resetting = false; path_id = TAILQ_FIRST(&nvme_ctrlr->trids); assert(path_id != NULL); assert(path_id == nvme_ctrlr->active_path_id); path_id->is_failed = !success; op_after_reset = bdev_nvme_check_op_after_reset(nvme_ctrlr, success); pthread_mutex_unlock(&nvme_ctrlr->mutex); if (reset_cb_fn) { reset_cb_fn(reset_cb_arg, success); } switch (op_after_reset) { case OP_COMPLETE_PENDING_DESTRUCT: nvme_ctrlr_unregister(nvme_ctrlr); break; case OP_DESTRUCT: _bdev_nvme_delete(nvme_ctrlr, false); break; case OP_DELAYED_RECONNECT: spdk_nvme_ctrlr_disconnect(nvme_ctrlr->ctrlr); bdev_nvme_start_reconnect_delay_timer(nvme_ctrlr); break; default: break; } } static void bdev_nvme_reset_complete(struct nvme_ctrlr *nvme_ctrlr, bool success) { /* Make sure we clear any pending resets before returning. */ spdk_for_each_channel(nvme_ctrlr, bdev_nvme_complete_pending_resets, success ? NULL : (void *)0x1, _bdev_nvme_reset_complete); } static void bdev_nvme_reset_create_qpairs_failed(struct spdk_io_channel_iter *i, int status) { struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i); bdev_nvme_reset_complete(nvme_ctrlr, false); } static void bdev_nvme_reset_destroy_qpair(struct spdk_io_channel_iter *i) { struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i); struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(ch); bdev_nvme_destroy_qpair(ctrlr_ch); spdk_for_each_channel_continue(i, 0); } static void bdev_nvme_reset_create_qpairs_done(struct spdk_io_channel_iter *i, int status) { struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i); if (status == 0) { bdev_nvme_reset_complete(nvme_ctrlr, true); } else { /* Delete the added qpairs and quiesce ctrlr to make the states clean. */ spdk_for_each_channel(nvme_ctrlr, bdev_nvme_reset_destroy_qpair, NULL, bdev_nvme_reset_create_qpairs_failed); } } static void bdev_nvme_reset_create_qpair(struct spdk_io_channel_iter *i) { struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i); struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch); int rc; rc = bdev_nvme_create_qpair(ctrlr_ch); spdk_for_each_channel_continue(i, rc); } static int bdev_nvme_reconnect_ctrlr_poll(void *arg) { struct nvme_ctrlr *nvme_ctrlr = arg; int rc = -ETIMEDOUT; if (!bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) { rc = spdk_nvme_ctrlr_reconnect_poll_async(nvme_ctrlr->ctrlr); if (rc == -EAGAIN) { return SPDK_POLLER_BUSY; } } spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller); if (rc == 0) { /* Recreate all of the I/O queue pairs */ spdk_for_each_channel(nvme_ctrlr, bdev_nvme_reset_create_qpair, NULL, bdev_nvme_reset_create_qpairs_done); } else { bdev_nvme_reset_complete(nvme_ctrlr, false); } return SPDK_POLLER_BUSY; } static void bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr) { spdk_nvme_ctrlr_reconnect_async(nvme_ctrlr->ctrlr); assert(nvme_ctrlr->reset_detach_poller == NULL); nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_ctrlr_poll, nvme_ctrlr, 0); } static void bdev_nvme_reset_ctrlr(struct spdk_io_channel_iter *i, int status) { struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i); int rc __attribute__((unused)); assert(status == 0); /* Disconnect fails if ctrlr is already resetting or removed. Both cases are * not possible. Reset is controlled and the callback to hot remove is called * when ctrlr is hot removed. */ rc = spdk_nvme_ctrlr_disconnect(nvme_ctrlr->ctrlr); assert(rc == 0); bdev_nvme_reconnect_ctrlr(nvme_ctrlr); } static void _bdev_nvme_reset(void *ctx) { struct nvme_ctrlr *nvme_ctrlr = ctx; assert(nvme_ctrlr->resetting == true); assert(nvme_ctrlr->thread == spdk_get_thread()); spdk_nvme_ctrlr_prepare_for_reset(nvme_ctrlr->ctrlr); /* First, delete all NVMe I/O queue pairs. */ spdk_for_each_channel(nvme_ctrlr, bdev_nvme_reset_destroy_qpair, NULL, bdev_nvme_reset_ctrlr); } static int bdev_nvme_reset(struct nvme_ctrlr *nvme_ctrlr) { pthread_mutex_lock(&nvme_ctrlr->mutex); if (nvme_ctrlr->destruct) { pthread_mutex_unlock(&nvme_ctrlr->mutex); return -ENXIO; } if (nvme_ctrlr->resetting) { pthread_mutex_unlock(&nvme_ctrlr->mutex); SPDK_NOTICELOG("Unable to perform reset, already in progress.\n"); return -EBUSY; } if (nvme_ctrlr->reconnect_is_delayed) { pthread_mutex_unlock(&nvme_ctrlr->mutex); SPDK_NOTICELOG("Reconnect is already scheduled.\n"); return -EBUSY; } nvme_ctrlr->resetting = true; assert(nvme_ctrlr->reset_start_tsc == 0); nvme_ctrlr->reset_start_tsc = spdk_get_ticks(); pthread_mutex_unlock(&nvme_ctrlr->mutex); spdk_thread_send_msg(nvme_ctrlr->thread, _bdev_nvme_reset, nvme_ctrlr); return 0; } int bdev_nvme_reset_rpc(struct nvme_ctrlr *nvme_ctrlr, bdev_nvme_reset_cb cb_fn, void *cb_arg) { int rc; rc = bdev_nvme_reset(nvme_ctrlr); if (rc == 0) { nvme_ctrlr->reset_cb_fn = cb_fn; nvme_ctrlr->reset_cb_arg = cb_arg; } return rc; } static int _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio); static void bdev_nvme_reset_io_complete(struct nvme_bdev_io *bio) { enum spdk_bdev_io_status io_status; if (bio->cpl.cdw0 == 0) { io_status = SPDK_BDEV_IO_STATUS_SUCCESS; } else { io_status = SPDK_BDEV_IO_STATUS_FAILED; } spdk_bdev_io_complete(spdk_bdev_io_from_ctx(bio), io_status); } static void _bdev_nvme_reset_io_continue(void *ctx) { struct nvme_bdev_io *bio = ctx; struct nvme_io_path *prev_io_path, *next_io_path; int rc; prev_io_path = bio->io_path; bio->io_path = NULL; if (bio->cpl.cdw0 != 0) { goto complete; } next_io_path = STAILQ_NEXT(prev_io_path, stailq); if (next_io_path == NULL) { goto complete; } rc = _bdev_nvme_reset_io(next_io_path, bio); if (rc == 0) { return; } bio->cpl.cdw0 = 1; complete: bdev_nvme_reset_io_complete(bio); } static void bdev_nvme_reset_io_continue(void *cb_arg, bool success) { struct nvme_bdev_io *bio = cb_arg; bio->cpl.cdw0 = !success; spdk_thread_send_msg(bio->orig_thread, _bdev_nvme_reset_io_continue, bio); } static int _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio) { struct nvme_ctrlr_channel *ctrlr_ch = io_path->ctrlr_ch; struct nvme_ctrlr *nvme_ctrlr; struct spdk_bdev_io *bdev_io; int rc; nvme_ctrlr = nvme_ctrlr_channel_get_ctrlr(ctrlr_ch); rc = bdev_nvme_reset(nvme_ctrlr); if (rc == 0) { assert(bio->io_path == NULL); bio->io_path = io_path; assert(nvme_ctrlr->reset_cb_fn == NULL); assert(nvme_ctrlr->reset_cb_arg == NULL); nvme_ctrlr->reset_cb_fn = bdev_nvme_reset_io_continue; nvme_ctrlr->reset_cb_arg = bio; } else if (rc == -EBUSY) { /* * Reset call is queued only if it is from the app framework. This is on purpose so that * we don't interfere with the app framework reset strategy. i.e. we are deferring to the * upper level. If they are in the middle of a reset, we won't try to schedule another one. */ bdev_io = spdk_bdev_io_from_ctx(bio); TAILQ_INSERT_TAIL(&ctrlr_ch->pending_resets, bdev_io, module_link); } else { return rc; } return 0; } static void bdev_nvme_reset_io(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio) { struct nvme_io_path *io_path; int rc; bio->cpl.cdw0 = 0; bio->orig_thread = spdk_get_thread(); /* Reset only the first nvme_ctrlr in the nvme_bdev_ctrlr for now. * * TODO: Reset all nvme_ctrlrs in the nvme_bdev_ctrlr sequentially. * This will be done in the following patches. */ io_path = STAILQ_FIRST(&nbdev_ch->io_path_list); assert(io_path != NULL); rc = _bdev_nvme_reset_io(io_path, bio); if (rc != 0) { bio->cpl.cdw0 = 1; bdev_nvme_reset_io_complete(bio); } } static int bdev_nvme_failover(struct nvme_ctrlr *nvme_ctrlr, bool remove) { pthread_mutex_lock(&nvme_ctrlr->mutex); if (nvme_ctrlr->destruct) { pthread_mutex_unlock(&nvme_ctrlr->mutex); /* Don't bother resetting if the controller is in the process of being destructed. */ return -ENXIO; } if (nvme_ctrlr->resetting) { pthread_mutex_unlock(&nvme_ctrlr->mutex); SPDK_NOTICELOG("Unable to perform reset, already in progress.\n"); return -EBUSY; } bdev_nvme_failover_trid(nvme_ctrlr, remove); if (nvme_ctrlr->reconnect_is_delayed) { pthread_mutex_unlock(&nvme_ctrlr->mutex); SPDK_NOTICELOG("Reconnect is already scheduled.\n"); /* We rely on the next reconnect for the failover. */ return 0; } nvme_ctrlr->resetting = true; pthread_mutex_unlock(&nvme_ctrlr->mutex); spdk_thread_send_msg(nvme_ctrlr->thread, _bdev_nvme_reset, nvme_ctrlr); return 0; } static int bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks); static int bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks); static void bdev_nvme_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io, bool success) { struct nvme_bdev_io *bio = (struct nvme_bdev_io *)bdev_io->driver_ctx; struct spdk_bdev *bdev = bdev_io->bdev; int ret; if (!success) { ret = -EINVAL; goto exit; } if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) { ret = -ENXIO; goto exit; } ret = bdev_nvme_readv(bio, bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt, bdev_io->u.bdev.md_buf, bdev_io->u.bdev.num_blocks, bdev_io->u.bdev.offset_blocks, bdev->dif_check_flags, bdev_io->internal.ext_opts); exit: if (spdk_unlikely(ret != 0)) { bdev_nvme_io_complete(bio, ret); } } static void bdev_nvme_submit_request(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io) { struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch); struct spdk_bdev *bdev = bdev_io->bdev; struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx; struct nvme_bdev_io *nbdev_io_to_abort; int rc = 0; nbdev_io->io_path = bdev_nvme_find_io_path(nbdev_ch); if (spdk_unlikely(!nbdev_io->io_path)) { if (!bdev_nvme_io_type_is_admin(bdev_io->type)) { rc = -ENXIO; goto exit; } /* Admin commands do not use the optimal I/O path. * Simply fall through even if it is not found. */ } switch (bdev_io->type) { case SPDK_BDEV_IO_TYPE_READ: if (bdev_io->u.bdev.iovs && bdev_io->u.bdev.iovs[0].iov_base) { rc = bdev_nvme_readv(nbdev_io, bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt, bdev_io->u.bdev.md_buf, bdev_io->u.bdev.num_blocks, bdev_io->u.bdev.offset_blocks, bdev->dif_check_flags, bdev_io->internal.ext_opts); } else { spdk_bdev_io_get_buf(bdev_io, bdev_nvme_get_buf_cb, bdev_io->u.bdev.num_blocks * bdev->blocklen); rc = 0; } break; case SPDK_BDEV_IO_TYPE_WRITE: rc = bdev_nvme_writev(nbdev_io, bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt, bdev_io->u.bdev.md_buf, bdev_io->u.bdev.num_blocks, bdev_io->u.bdev.offset_blocks, bdev->dif_check_flags, bdev_io->internal.ext_opts); break; case SPDK_BDEV_IO_TYPE_COMPARE: rc = bdev_nvme_comparev(nbdev_io, bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt, bdev_io->u.bdev.md_buf, bdev_io->u.bdev.num_blocks, bdev_io->u.bdev.offset_blocks, bdev->dif_check_flags); break; case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE: rc = bdev_nvme_comparev_and_writev(nbdev_io, bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt, bdev_io->u.bdev.fused_iovs, bdev_io->u.bdev.fused_iovcnt, bdev_io->u.bdev.md_buf, bdev_io->u.bdev.num_blocks, bdev_io->u.bdev.offset_blocks, bdev->dif_check_flags); break; case SPDK_BDEV_IO_TYPE_UNMAP: rc = bdev_nvme_unmap(nbdev_io, bdev_io->u.bdev.offset_blocks, bdev_io->u.bdev.num_blocks); break; case SPDK_BDEV_IO_TYPE_WRITE_ZEROES: rc = bdev_nvme_write_zeroes(nbdev_io, bdev_io->u.bdev.offset_blocks, bdev_io->u.bdev.num_blocks); break; case SPDK_BDEV_IO_TYPE_RESET: nbdev_io->io_path = NULL; bdev_nvme_reset_io(nbdev_ch, nbdev_io); break; case SPDK_BDEV_IO_TYPE_FLUSH: rc = bdev_nvme_flush(nbdev_io, bdev_io->u.bdev.offset_blocks, bdev_io->u.bdev.num_blocks); break; case SPDK_BDEV_IO_TYPE_ZONE_APPEND: rc = bdev_nvme_zone_appendv(nbdev_io, bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt, bdev_io->u.bdev.md_buf, bdev_io->u.bdev.num_blocks, bdev_io->u.bdev.offset_blocks, bdev->dif_check_flags); break; case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO: rc = bdev_nvme_get_zone_info(nbdev_io, bdev_io->u.zone_mgmt.zone_id, bdev_io->u.zone_mgmt.num_zones, bdev_io->u.zone_mgmt.buf); break; case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT: rc = bdev_nvme_zone_management(nbdev_io, bdev_io->u.zone_mgmt.zone_id, bdev_io->u.zone_mgmt.zone_action); break; case SPDK_BDEV_IO_TYPE_NVME_ADMIN: nbdev_io->io_path = NULL; bdev_nvme_admin_passthru(nbdev_ch, nbdev_io, &bdev_io->u.nvme_passthru.cmd, bdev_io->u.nvme_passthru.buf, bdev_io->u.nvme_passthru.nbytes); break; case SPDK_BDEV_IO_TYPE_NVME_IO: rc = bdev_nvme_io_passthru(nbdev_io, &bdev_io->u.nvme_passthru.cmd, bdev_io->u.nvme_passthru.buf, bdev_io->u.nvme_passthru.nbytes); break; case SPDK_BDEV_IO_TYPE_NVME_IO_MD: rc = bdev_nvme_io_passthru_md(nbdev_io, &bdev_io->u.nvme_passthru.cmd, bdev_io->u.nvme_passthru.buf, bdev_io->u.nvme_passthru.nbytes, bdev_io->u.nvme_passthru.md_buf, bdev_io->u.nvme_passthru.md_len); break; case SPDK_BDEV_IO_TYPE_ABORT: nbdev_io->io_path = NULL; nbdev_io_to_abort = (struct nvme_bdev_io *)bdev_io->u.abort.bio_to_abort->driver_ctx; bdev_nvme_abort(nbdev_ch, nbdev_io, nbdev_io_to_abort); break; default: rc = -EINVAL; break; } exit: if (spdk_unlikely(rc != 0)) { bdev_nvme_io_complete(nbdev_io, rc); } } static bool bdev_nvme_io_type_supported(void *ctx, enum spdk_bdev_io_type io_type) { struct nvme_bdev *nbdev = ctx; struct nvme_ns *nvme_ns; struct spdk_nvme_ns *ns; struct spdk_nvme_ctrlr *ctrlr; const struct spdk_nvme_ctrlr_data *cdata; nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list); assert(nvme_ns != NULL); ns = nvme_ns->ns; ctrlr = spdk_nvme_ns_get_ctrlr(ns); switch (io_type) { case SPDK_BDEV_IO_TYPE_READ: case SPDK_BDEV_IO_TYPE_WRITE: case SPDK_BDEV_IO_TYPE_RESET: case SPDK_BDEV_IO_TYPE_FLUSH: case SPDK_BDEV_IO_TYPE_NVME_ADMIN: case SPDK_BDEV_IO_TYPE_NVME_IO: case SPDK_BDEV_IO_TYPE_ABORT: return true; case SPDK_BDEV_IO_TYPE_COMPARE: return spdk_nvme_ns_supports_compare(ns); case SPDK_BDEV_IO_TYPE_NVME_IO_MD: return spdk_nvme_ns_get_md_size(ns) ? true : false; case SPDK_BDEV_IO_TYPE_UNMAP: cdata = spdk_nvme_ctrlr_get_data(ctrlr); return cdata->oncs.dsm; case SPDK_BDEV_IO_TYPE_WRITE_ZEROES: cdata = spdk_nvme_ctrlr_get_data(ctrlr); return cdata->oncs.write_zeroes; case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE: if (spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED) { return true; } return false; case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO: case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT: return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS; case SPDK_BDEV_IO_TYPE_ZONE_APPEND: return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS && spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_ZONE_APPEND_SUPPORTED; default: return false; } } static int bdev_nvme_create_ctrlr_channel_cb(void *io_device, void *ctx_buf) { struct nvme_ctrlr *nvme_ctrlr = io_device; struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf; struct spdk_io_channel *pg_ch; int rc; pg_ch = spdk_get_io_channel(&g_nvme_bdev_ctrlrs); if (!pg_ch) { return -1; } ctrlr_ch->group = spdk_io_channel_get_ctx(pg_ch); TAILQ_INSERT_TAIL(&ctrlr_ch->group->ctrlr_ch_list, ctrlr_ch, tailq); #ifdef SPDK_CONFIG_VTUNE ctrlr_ch->group->collect_spin_stat = true; #else ctrlr_ch->group->collect_spin_stat = false; #endif TAILQ_INIT(&ctrlr_ch->pending_resets); TAILQ_INIT(&ctrlr_ch->io_path_list); rc = bdev_nvme_create_qpair(ctrlr_ch); if (rc != 0) { /* nvme ctrlr can't create IO qpair during reset. In that case ctrlr_ch->qpair * pointer will be NULL and IO qpair will be created when reset completes. * If the user submits IO requests during reset, they will be queued and resubmitted later */ if (!nvme_ctrlr->resetting) { goto err_qpair; } } return 0; err_qpair: TAILQ_REMOVE(&ctrlr_ch->group->ctrlr_ch_list, ctrlr_ch, tailq); spdk_put_io_channel(pg_ch); return rc; } static void bdev_nvme_destroy_ctrlr_channel_cb(void *io_device, void *ctx_buf) { struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf; assert(ctrlr_ch->group != NULL); bdev_nvme_destroy_qpair(ctrlr_ch); TAILQ_REMOVE(&ctrlr_ch->group->ctrlr_ch_list, ctrlr_ch, tailq); spdk_put_io_channel(spdk_io_channel_from_ctx(ctrlr_ch->group)); } static void bdev_nvme_submit_accel_crc32c(void *ctx, uint32_t *dst, struct iovec *iov, uint32_t iov_cnt, uint32_t seed, spdk_nvme_accel_completion_cb cb_fn, void *cb_arg) { struct nvme_poll_group *group = ctx; int rc; assert(group->accel_channel != NULL); assert(cb_fn != NULL); rc = spdk_accel_submit_crc32cv(group->accel_channel, dst, iov, iov_cnt, seed, cb_fn, cb_arg); if (rc) { /* For the two cases, spdk_accel_submit_crc32cv does not call the user's cb_fn */ if (rc == -ENOMEM || rc == -EINVAL) { cb_fn(cb_arg, rc); } SPDK_ERRLOG("Cannot complete the accelerated crc32c operation with iov=%p\n", iov); } } static struct spdk_nvme_accel_fn_table g_bdev_nvme_accel_fn_table = { .table_size = sizeof(struct spdk_nvme_accel_fn_table), .submit_accel_crc32c = bdev_nvme_submit_accel_crc32c, }; static int bdev_nvme_create_poll_group_cb(void *io_device, void *ctx_buf) { struct nvme_poll_group *group = ctx_buf; TAILQ_INIT(&group->ctrlr_ch_list); group->group = spdk_nvme_poll_group_create(group, &g_bdev_nvme_accel_fn_table); if (group->group == NULL) { return -1; } group->accel_channel = spdk_accel_engine_get_io_channel(); if (!group->accel_channel) { spdk_nvme_poll_group_destroy(group->group); SPDK_ERRLOG("Cannot get the accel_channel for bdev nvme polling group=%p\n", group); return -1; } group->poller = SPDK_POLLER_REGISTER(bdev_nvme_poll, group, g_opts.nvme_ioq_poll_period_us); if (group->poller == NULL) { spdk_put_io_channel(group->accel_channel); spdk_nvme_poll_group_destroy(group->group); return -1; } return 0; } static void bdev_nvme_destroy_poll_group_cb(void *io_device, void *ctx_buf) { struct nvme_poll_group *group = ctx_buf; assert(TAILQ_EMPTY(&group->ctrlr_ch_list)); if (group->accel_channel) { spdk_put_io_channel(group->accel_channel); } spdk_poller_unregister(&group->poller); if (spdk_nvme_poll_group_destroy(group->group)) { SPDK_ERRLOG("Unable to destroy a poll group for the NVMe bdev module.\n"); assert(false); } } static struct spdk_io_channel * bdev_nvme_get_io_channel(void *ctx) { struct nvme_bdev *nvme_bdev = ctx; return spdk_get_io_channel(nvme_bdev); } static void * bdev_nvme_get_module_ctx(void *ctx) { struct nvme_bdev *nvme_bdev = ctx; struct nvme_ns *nvme_ns; if (!nvme_bdev || nvme_bdev->disk.module != &nvme_if) { return NULL; } nvme_ns = TAILQ_FIRST(&nvme_bdev->nvme_ns_list); if (!nvme_ns) { return NULL; } return nvme_ns->ns; } static const char * _nvme_ana_state_str(enum spdk_nvme_ana_state ana_state) { switch (ana_state) { case SPDK_NVME_ANA_OPTIMIZED_STATE: return "optimized"; case SPDK_NVME_ANA_NON_OPTIMIZED_STATE: return "non_optimized"; case SPDK_NVME_ANA_INACCESSIBLE_STATE: return "inaccessible"; case SPDK_NVME_ANA_PERSISTENT_LOSS_STATE: return "persistent_loss"; case SPDK_NVME_ANA_CHANGE_STATE: return "change"; default: return NULL; } } static int bdev_nvme_get_memory_domains(void *ctx, struct spdk_memory_domain **domains, int array_size) { struct nvme_bdev *nbdev = ctx; struct nvme_ns *nvme_ns; nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list); assert(nvme_ns != NULL); return spdk_nvme_ctrlr_get_memory_domains(nvme_ns->ctrlr->ctrlr, domains, array_size); } static void nvme_namespace_info_json(struct spdk_json_write_ctx *w, struct nvme_ns *nvme_ns) { struct spdk_nvme_ns *ns; struct spdk_nvme_ctrlr *ctrlr; const struct spdk_nvme_ctrlr_data *cdata; const struct spdk_nvme_transport_id *trid; union spdk_nvme_vs_register vs; char buf[128]; ns = nvme_ns->ns; ctrlr = spdk_nvme_ns_get_ctrlr(ns); cdata = spdk_nvme_ctrlr_get_data(ctrlr); trid = spdk_nvme_ctrlr_get_transport_id(ctrlr); vs = spdk_nvme_ctrlr_get_regs_vs(ctrlr); spdk_json_write_object_begin(w); if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) { spdk_json_write_named_string(w, "pci_address", trid->traddr); } spdk_json_write_named_object_begin(w, "trid"); nvme_bdev_dump_trid_json(trid, w); spdk_json_write_object_end(w); #ifdef SPDK_CONFIG_NVME_CUSE size_t cuse_name_size = 128; char cuse_name[cuse_name_size]; int rc = spdk_nvme_cuse_get_ns_name(ctrlr, spdk_nvme_ns_get_id(ns), cuse_name, &cuse_name_size); if (rc == 0) { spdk_json_write_named_string(w, "cuse_device", cuse_name); } #endif spdk_json_write_named_object_begin(w, "ctrlr_data"); spdk_json_write_named_string_fmt(w, "vendor_id", "0x%04x", cdata->vid); snprintf(buf, sizeof(cdata->mn) + 1, "%s", cdata->mn); spdk_str_trim(buf); spdk_json_write_named_string(w, "model_number", buf); snprintf(buf, sizeof(cdata->sn) + 1, "%s", cdata->sn); spdk_str_trim(buf); spdk_json_write_named_string(w, "serial_number", buf); snprintf(buf, sizeof(cdata->fr) + 1, "%s", cdata->fr); spdk_str_trim(buf); spdk_json_write_named_string(w, "firmware_revision", buf); if (cdata->subnqn[0] != '\0') { spdk_json_write_named_string(w, "subnqn", cdata->subnqn); } spdk_json_write_named_object_begin(w, "oacs"); spdk_json_write_named_uint32(w, "security", cdata->oacs.security); spdk_json_write_named_uint32(w, "format", cdata->oacs.format); spdk_json_write_named_uint32(w, "firmware", cdata->oacs.firmware); spdk_json_write_named_uint32(w, "ns_manage", cdata->oacs.ns_manage); spdk_json_write_object_end(w); spdk_json_write_object_end(w); spdk_json_write_named_object_begin(w, "vs"); spdk_json_write_name(w, "nvme_version"); if (vs.bits.ter) { spdk_json_write_string_fmt(w, "%u.%u.%u", vs.bits.mjr, vs.bits.mnr, vs.bits.ter); } else { spdk_json_write_string_fmt(w, "%u.%u", vs.bits.mjr, vs.bits.mnr); } spdk_json_write_object_end(w); spdk_json_write_named_object_begin(w, "ns_data"); spdk_json_write_named_uint32(w, "id", spdk_nvme_ns_get_id(ns)); if (cdata->cmic.ana_reporting) { spdk_json_write_named_string(w, "ana_state", _nvme_ana_state_str(nvme_ns->ana_state)); } spdk_json_write_object_end(w); if (cdata->oacs.security) { spdk_json_write_named_object_begin(w, "security"); spdk_json_write_named_bool(w, "opal", nvme_ns->bdev->opal); spdk_json_write_object_end(w); } spdk_json_write_object_end(w); } static int bdev_nvme_dump_info_json(void *ctx, struct spdk_json_write_ctx *w) { struct nvme_bdev *nvme_bdev = ctx; struct nvme_ns *nvme_ns; pthread_mutex_lock(&nvme_bdev->mutex); spdk_json_write_named_array_begin(w, "nvme"); TAILQ_FOREACH(nvme_ns, &nvme_bdev->nvme_ns_list, tailq) { nvme_namespace_info_json(w, nvme_ns); } spdk_json_write_array_end(w); pthread_mutex_unlock(&nvme_bdev->mutex); return 0; } static void bdev_nvme_write_config_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w) { /* No config per bdev needed */ } static uint64_t bdev_nvme_get_spin_time(struct spdk_io_channel *ch) { struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch); struct nvme_io_path *io_path; struct nvme_poll_group *group; uint64_t spin_time = 0; STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) { group = io_path->ctrlr_ch->group; if (!group || !group->collect_spin_stat) { continue; } if (group->end_ticks != 0) { group->spin_ticks += (group->end_ticks - group->start_ticks); group->end_ticks = 0; } spin_time += group->spin_ticks; group->start_ticks = 0; group->spin_ticks = 0; } return (spin_time * 1000000ULL) / spdk_get_ticks_hz(); } static const struct spdk_bdev_fn_table nvmelib_fn_table = { .destruct = bdev_nvme_destruct, .submit_request = bdev_nvme_submit_request, .io_type_supported = bdev_nvme_io_type_supported, .get_io_channel = bdev_nvme_get_io_channel, .dump_info_json = bdev_nvme_dump_info_json, .write_config_json = bdev_nvme_write_config_json, .get_spin_time = bdev_nvme_get_spin_time, .get_module_ctx = bdev_nvme_get_module_ctx, .get_memory_domains = bdev_nvme_get_memory_domains, }; typedef int (*bdev_nvme_parse_ana_log_page_cb)( const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg); static int bdev_nvme_parse_ana_log_page(struct nvme_ctrlr *nvme_ctrlr, bdev_nvme_parse_ana_log_page_cb cb_fn, void *cb_arg) { struct spdk_nvme_ana_group_descriptor *copied_desc; uint8_t *orig_desc; uint32_t i, desc_size, copy_len; int rc = 0; if (nvme_ctrlr->ana_log_page == NULL) { return -EINVAL; } copied_desc = nvme_ctrlr->copied_ana_desc; orig_desc = (uint8_t *)nvme_ctrlr->ana_log_page + sizeof(struct spdk_nvme_ana_page); copy_len = nvme_ctrlr->ana_log_page_size - sizeof(struct spdk_nvme_ana_page); for (i = 0; i < nvme_ctrlr->ana_log_page->num_ana_group_desc; i++) { memcpy(copied_desc, orig_desc, copy_len); rc = cb_fn(copied_desc, cb_arg); if (rc != 0) { break; } desc_size = sizeof(struct spdk_nvme_ana_group_descriptor) + copied_desc->num_of_nsid * sizeof(uint32_t); orig_desc += desc_size; copy_len -= desc_size; } return rc; } static int nvme_ns_set_ana_state(const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg) { struct nvme_ns *nvme_ns = cb_arg; uint32_t i; for (i = 0; i < desc->num_of_nsid; i++) { if (desc->nsid[i] != spdk_nvme_ns_get_id(nvme_ns->ns)) { continue; } nvme_ns->ana_group_id = desc->ana_group_id; nvme_ns->ana_state = desc->ana_state; return 1; } return 0; } static int nvme_disk_create(struct spdk_bdev *disk, const char *base_name, struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns, uint32_t prchk_flags, void *ctx) { const struct spdk_uuid *uuid; const uint8_t *nguid; const struct spdk_nvme_ctrlr_data *cdata; const struct spdk_nvme_ns_data *nsdata; enum spdk_nvme_csi csi; uint32_t atomic_bs, phys_bs, bs; cdata = spdk_nvme_ctrlr_get_data(ctrlr); csi = spdk_nvme_ns_get_csi(ns); switch (csi) { case SPDK_NVME_CSI_NVM: disk->product_name = "NVMe disk"; break; case SPDK_NVME_CSI_ZNS: disk->product_name = "NVMe ZNS disk"; disk->zoned = true; disk->zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns); disk->max_zone_append_size = spdk_nvme_zns_ctrlr_get_max_zone_append_size(ctrlr) / spdk_nvme_ns_get_extended_sector_size(ns); disk->max_open_zones = spdk_nvme_zns_ns_get_max_open_zones(ns); disk->max_active_zones = spdk_nvme_zns_ns_get_max_active_zones(ns); break; default: SPDK_ERRLOG("unsupported CSI: %u\n", csi); return -ENOTSUP; } disk->name = spdk_sprintf_alloc("%sn%d", base_name, spdk_nvme_ns_get_id(ns)); if (!disk->name) { return -ENOMEM; } disk->write_cache = 0; if (cdata->vwc.present) { /* Enable if the Volatile Write Cache exists */ disk->write_cache = 1; } if (cdata->oncs.write_zeroes) { disk->max_write_zeroes = UINT16_MAX + 1; } disk->blocklen = spdk_nvme_ns_get_extended_sector_size(ns); disk->blockcnt = spdk_nvme_ns_get_num_sectors(ns); disk->optimal_io_boundary = spdk_nvme_ns_get_optimal_io_boundary(ns); nguid = spdk_nvme_ns_get_nguid(ns); if (!nguid) { uuid = spdk_nvme_ns_get_uuid(ns); if (uuid) { disk->uuid = *uuid; } } else { memcpy(&disk->uuid, nguid, sizeof(disk->uuid)); } nsdata = spdk_nvme_ns_get_data(ns); bs = spdk_nvme_ns_get_sector_size(ns); atomic_bs = bs; phys_bs = bs; if (nsdata->nabo == 0) { if (nsdata->nsfeat.ns_atomic_write_unit && nsdata->nawupf) { atomic_bs = bs * (1 + nsdata->nawupf); } else { atomic_bs = bs * (1 + cdata->awupf); } } if (nsdata->nsfeat.optperf) { phys_bs = bs * (1 + nsdata->npwg); } disk->phys_blocklen = spdk_min(phys_bs, atomic_bs); disk->md_len = spdk_nvme_ns_get_md_size(ns); if (disk->md_len != 0) { disk->md_interleave = nsdata->flbas.extended; disk->dif_type = (enum spdk_dif_type)spdk_nvme_ns_get_pi_type(ns); if (disk->dif_type != SPDK_DIF_DISABLE) { disk->dif_is_head_of_md = nsdata->dps.md_start; disk->dif_check_flags = prchk_flags; } } if (!(spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED)) { disk->acwu = 0; } else if (nsdata->nsfeat.ns_atomic_write_unit) { disk->acwu = nsdata->nacwu; } else { disk->acwu = cdata->acwu; } disk->ctxt = ctx; disk->fn_table = &nvmelib_fn_table; disk->module = &nvme_if; return 0; } static int nvme_bdev_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns) { struct nvme_bdev *bdev; int rc; bdev = calloc(1, sizeof(*bdev)); if (!bdev) { SPDK_ERRLOG("bdev calloc() failed\n"); return -ENOMEM; } rc = pthread_mutex_init(&bdev->mutex, NULL); if (rc != 0) { free(bdev); return rc; } bdev->ref = 1; TAILQ_INIT(&bdev->nvme_ns_list); TAILQ_INSERT_TAIL(&bdev->nvme_ns_list, nvme_ns, tailq); bdev->opal = nvme_ctrlr->opal_dev != NULL; rc = nvme_disk_create(&bdev->disk, nvme_ctrlr->nbdev_ctrlr->name, nvme_ctrlr->ctrlr, nvme_ns->ns, nvme_ctrlr->opts.prchk_flags, bdev); if (rc != 0) { SPDK_ERRLOG("Failed to create NVMe disk\n"); pthread_mutex_destroy(&bdev->mutex); free(bdev); return rc; } spdk_io_device_register(bdev, bdev_nvme_create_bdev_channel_cb, bdev_nvme_destroy_bdev_channel_cb, sizeof(struct nvme_bdev_channel), bdev->disk.name); rc = spdk_bdev_register(&bdev->disk); if (rc != 0) { SPDK_ERRLOG("spdk_bdev_register() failed\n"); spdk_io_device_unregister(bdev, NULL); pthread_mutex_destroy(&bdev->mutex); free(bdev->disk.name); free(bdev); return rc; } nvme_ns->bdev = bdev; bdev->nsid = nvme_ns->id; bdev->nbdev_ctrlr = nvme_ctrlr->nbdev_ctrlr; TAILQ_INSERT_TAIL(&nvme_ctrlr->nbdev_ctrlr->bdevs, bdev, tailq); return 0; } static bool bdev_nvme_compare_ns(struct spdk_nvme_ns *ns1, struct spdk_nvme_ns *ns2) { const struct spdk_nvme_ns_data *nsdata1, *nsdata2; const struct spdk_uuid *uuid1, *uuid2; nsdata1 = spdk_nvme_ns_get_data(ns1); nsdata2 = spdk_nvme_ns_get_data(ns2); uuid1 = spdk_nvme_ns_get_uuid(ns1); uuid2 = spdk_nvme_ns_get_uuid(ns2); return memcmp(nsdata1->nguid, nsdata2->nguid, sizeof(nsdata1->nguid)) == 0 && nsdata1->eui64 == nsdata2->eui64 && ((uuid1 == NULL && uuid2 == NULL) || (uuid1 != NULL && uuid2 != NULL && spdk_uuid_compare(uuid1, uuid2) == 0)) && spdk_nvme_ns_get_csi(ns1) == spdk_nvme_ns_get_csi(ns2); } static bool hotplug_probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid, struct spdk_nvme_ctrlr_opts *opts) { struct nvme_probe_skip_entry *entry; TAILQ_FOREACH(entry, &g_skipped_nvme_ctrlrs, tailq) { if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) { return false; } } opts->arbitration_burst = (uint8_t)g_opts.arbitration_burst; opts->low_priority_weight = (uint8_t)g_opts.low_priority_weight; opts->medium_priority_weight = (uint8_t)g_opts.medium_priority_weight; opts->high_priority_weight = (uint8_t)g_opts.high_priority_weight; opts->disable_read_ana_log_page = true; SPDK_DEBUGLOG(bdev_nvme, "Attaching to %s\n", trid->traddr); return true; } static void nvme_abort_cpl(void *ctx, const struct spdk_nvme_cpl *cpl) { struct nvme_ctrlr *nvme_ctrlr = ctx; if (spdk_nvme_cpl_is_error(cpl)) { SPDK_WARNLOG("Abort failed. Resetting controller. sc is %u, sct is %u.\n", cpl->status.sc, cpl->status.sct); bdev_nvme_reset(nvme_ctrlr); } else if (cpl->cdw0 & 0x1) { SPDK_WARNLOG("Specified command could not be aborted.\n"); bdev_nvme_reset(nvme_ctrlr); } } static void timeout_cb(void *cb_arg, struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair, uint16_t cid) { struct nvme_ctrlr *nvme_ctrlr = cb_arg; union spdk_nvme_csts_register csts; int rc; assert(nvme_ctrlr->ctrlr == ctrlr); SPDK_WARNLOG("Warning: Detected a timeout. ctrlr=%p qpair=%p cid=%u\n", ctrlr, qpair, cid); /* Only try to read CSTS if it's a PCIe controller or we have a timeout on an I/O * queue. (Note: qpair == NULL when there's an admin cmd timeout.) Otherwise we * would submit another fabrics cmd on the admin queue to read CSTS and check for its * completion recursively. */ if (nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE || qpair != NULL) { csts = spdk_nvme_ctrlr_get_regs_csts(ctrlr); if (csts.bits.cfs) { SPDK_ERRLOG("Controller Fatal Status, reset required\n"); bdev_nvme_reset(nvme_ctrlr); return; } } switch (g_opts.action_on_timeout) { case SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT: if (qpair) { /* Don't send abort to ctrlr when ctrlr is not available. */ pthread_mutex_lock(&nvme_ctrlr->mutex); if (!nvme_ctrlr_is_available(nvme_ctrlr)) { pthread_mutex_unlock(&nvme_ctrlr->mutex); SPDK_NOTICELOG("Quit abort. Ctrlr is not available.\n"); return; } pthread_mutex_unlock(&nvme_ctrlr->mutex); rc = spdk_nvme_ctrlr_cmd_abort(ctrlr, qpair, cid, nvme_abort_cpl, nvme_ctrlr); if (rc == 0) { return; } SPDK_ERRLOG("Unable to send abort. Resetting, rc is %d.\n", rc); } /* FALLTHROUGH */ case SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET: bdev_nvme_reset(nvme_ctrlr); break; case SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE: SPDK_DEBUGLOG(bdev_nvme, "No action for nvme controller timeout.\n"); break; default: SPDK_ERRLOG("An invalid timeout action value is found.\n"); break; } } static void nvme_ctrlr_populate_namespace_done(struct nvme_ns *nvme_ns, int rc) { struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr; struct nvme_async_probe_ctx *ctx = nvme_ns->probe_ctx; if (rc == 0) { nvme_ns->probe_ctx = NULL; pthread_mutex_lock(&nvme_ctrlr->mutex); nvme_ctrlr->ref++; pthread_mutex_unlock(&nvme_ctrlr->mutex); } else { RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns); free(nvme_ns); } if (ctx) { ctx->populates_in_progress--; if (ctx->populates_in_progress == 0) { nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx); } } } static void bdev_nvme_add_io_path(struct spdk_io_channel_iter *i) { struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i); struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch); struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i); int rc; rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns); if (rc != 0) { SPDK_ERRLOG("Failed to add I/O path to bdev_channel dynamically.\n"); } spdk_for_each_channel_continue(i, rc); } static void bdev_nvme_delete_io_path(struct spdk_io_channel_iter *i) { struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i); struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch); struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i); struct nvme_io_path *io_path; io_path = _bdev_nvme_get_io_path(nbdev_ch, nvme_ns); if (io_path != NULL) { _bdev_nvme_delete_io_path(nbdev_ch, io_path); } spdk_for_each_channel_continue(i, 0); } static void bdev_nvme_add_io_path_failed(struct spdk_io_channel_iter *i, int status) { struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i); nvme_ctrlr_populate_namespace_done(nvme_ns, -1); } static void bdev_nvme_add_io_path_done(struct spdk_io_channel_iter *i, int status) { struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i); struct nvme_bdev *bdev = spdk_io_channel_iter_get_io_device(i); if (status == 0) { nvme_ctrlr_populate_namespace_done(nvme_ns, 0); } else { /* Delete the added io_paths and fail populating the namespace. */ spdk_for_each_channel(bdev, bdev_nvme_delete_io_path, nvme_ns, bdev_nvme_add_io_path_failed); } } static int nvme_bdev_add_ns(struct nvme_bdev *bdev, struct nvme_ns *nvme_ns) { struct nvme_ns *tmp_ns; const struct spdk_nvme_ns_data *nsdata; nsdata = spdk_nvme_ns_get_data(nvme_ns->ns); if (!nsdata->nmic.can_share) { SPDK_ERRLOG("Namespace cannot be shared.\n"); return -EINVAL; } pthread_mutex_lock(&bdev->mutex); tmp_ns = TAILQ_FIRST(&bdev->nvme_ns_list); assert(tmp_ns != NULL); if (!bdev_nvme_compare_ns(nvme_ns->ns, tmp_ns->ns)) { pthread_mutex_unlock(&bdev->mutex); SPDK_ERRLOG("Namespaces are not identical.\n"); return -EINVAL; } bdev->ref++; TAILQ_INSERT_TAIL(&bdev->nvme_ns_list, nvme_ns, tailq); nvme_ns->bdev = bdev; pthread_mutex_unlock(&bdev->mutex); /* Add nvme_io_path to nvme_bdev_channels dynamically. */ spdk_for_each_channel(bdev, bdev_nvme_add_io_path, nvme_ns, bdev_nvme_add_io_path_done); return 0; } static void nvme_ctrlr_populate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns) { struct spdk_nvme_ns *ns; struct nvme_bdev *bdev; int rc = 0; ns = spdk_nvme_ctrlr_get_ns(nvme_ctrlr->ctrlr, nvme_ns->id); if (!ns) { SPDK_DEBUGLOG(bdev_nvme, "Invalid NS %d\n", nvme_ns->id); rc = -EINVAL; goto done; } nvme_ns->ns = ns; nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE; if (nvme_ctrlr->ana_log_page != NULL) { bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ns_set_ana_state, nvme_ns); } bdev = nvme_bdev_ctrlr_get_bdev(nvme_ctrlr->nbdev_ctrlr, nvme_ns->id); if (bdev == NULL) { rc = nvme_bdev_create(nvme_ctrlr, nvme_ns); } else { rc = nvme_bdev_add_ns(bdev, nvme_ns); if (rc == 0) { return; } } done: nvme_ctrlr_populate_namespace_done(nvme_ns, rc); } static void nvme_ctrlr_depopulate_namespace_done(struct nvme_ns *nvme_ns) { struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr; assert(nvme_ctrlr != NULL); pthread_mutex_lock(&nvme_ctrlr->mutex); RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns); if (nvme_ns->bdev != NULL) { pthread_mutex_unlock(&nvme_ctrlr->mutex); return; } free(nvme_ns); pthread_mutex_unlock(&nvme_ctrlr->mutex); nvme_ctrlr_release(nvme_ctrlr); } static void bdev_nvme_delete_io_path_done(struct spdk_io_channel_iter *i, int status) { struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i); nvme_ctrlr_depopulate_namespace_done(nvme_ns); } static void nvme_ctrlr_depopulate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns) { struct nvme_bdev *bdev; bdev = nvme_ns->bdev; if (bdev != NULL) { pthread_mutex_lock(&bdev->mutex); assert(bdev->ref > 0); bdev->ref--; if (bdev->ref == 0) { pthread_mutex_unlock(&bdev->mutex); spdk_bdev_unregister(&bdev->disk, NULL, NULL); } else { /* spdk_bdev_unregister() is not called until the last nvme_ns is * depopulated. Hence we need to remove nvme_ns from bdev->nvme_ns_list * and clear nvme_ns->bdev here. */ TAILQ_REMOVE(&bdev->nvme_ns_list, nvme_ns, tailq); nvme_ns->bdev = NULL; pthread_mutex_unlock(&bdev->mutex); /* Delete nvme_io_paths from nvme_bdev_channels dynamically. After that, * we call depopulate_namespace_done() to avoid use-after-free. */ spdk_for_each_channel(bdev, bdev_nvme_delete_io_path, nvme_ns, bdev_nvme_delete_io_path_done); return; } } nvme_ctrlr_depopulate_namespace_done(nvme_ns); } static void nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr, struct nvme_async_probe_ctx *ctx) { struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr; struct nvme_ns *nvme_ns, *next; struct spdk_nvme_ns *ns; struct nvme_bdev *bdev; uint32_t nsid; int rc; uint64_t num_sectors; if (ctx) { /* Initialize this count to 1 to handle the populate functions * calling nvme_ctrlr_populate_namespace_done() immediately. */ ctx->populates_in_progress = 1; } /* First loop over our existing namespaces and see if they have been * removed. */ nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr); while (nvme_ns != NULL) { next = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns); if (spdk_nvme_ctrlr_is_active_ns(ctrlr, nvme_ns->id)) { /* NS is still there but attributes may have changed */ ns = spdk_nvme_ctrlr_get_ns(ctrlr, nvme_ns->id); num_sectors = spdk_nvme_ns_get_num_sectors(ns); bdev = nvme_ns->bdev; assert(bdev != NULL); if (bdev->disk.blockcnt != num_sectors) { SPDK_NOTICELOG("NSID %u is resized: bdev name %s, old size %" PRIu64 ", new size %" PRIu64 "\n", nvme_ns->id, bdev->disk.name, bdev->disk.blockcnt, num_sectors); rc = spdk_bdev_notify_blockcnt_change(&bdev->disk, num_sectors); if (rc != 0) { SPDK_ERRLOG("Could not change num blocks for nvme bdev: name %s, errno: %d.\n", bdev->disk.name, rc); } } } else { /* Namespace was removed */ nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns); } nvme_ns = next; } /* Loop through all of the namespaces at the nvme level and see if any of them are new */ nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr); while (nsid != 0) { nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid); if (nvme_ns == NULL) { /* Found a new one */ nvme_ns = calloc(1, sizeof(struct nvme_ns)); if (nvme_ns == NULL) { SPDK_ERRLOG("Failed to allocate namespace\n"); /* This just fails to attach the namespace. It may work on a future attempt. */ continue; } nvme_ns->id = nsid; nvme_ns->ctrlr = nvme_ctrlr; nvme_ns->bdev = NULL; if (ctx) { ctx->populates_in_progress++; } nvme_ns->probe_ctx = ctx; RB_INSERT(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns); nvme_ctrlr_populate_namespace(nvme_ctrlr, nvme_ns); } nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid); } if (ctx) { /* Decrement this count now that the loop is over to account * for the one we started with. If the count is then 0, we * know any populate_namespace functions completed immediately, * so we'll kick the callback here. */ ctx->populates_in_progress--; if (ctx->populates_in_progress == 0) { nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx); } } } static void nvme_ctrlr_depopulate_namespaces(struct nvme_ctrlr *nvme_ctrlr) { struct nvme_ns *nvme_ns, *tmp; RB_FOREACH_SAFE(nvme_ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp) { nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns); } } static int nvme_ctrlr_set_ana_states(const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg) { struct nvme_ctrlr *nvme_ctrlr = cb_arg; struct nvme_ns *nvme_ns; uint32_t i, nsid; for (i = 0; i < desc->num_of_nsid; i++) { nsid = desc->nsid[i]; if (nsid == 0) { continue; } nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid); assert(nvme_ns != NULL); if (nvme_ns == NULL) { /* Target told us that an inactive namespace had an ANA change */ continue; } nvme_ns->ana_group_id = desc->ana_group_id; nvme_ns->ana_state = desc->ana_state; nvme_ns->ana_state_updating = false; } return 0; } static void bdev_nvme_clear_io_path_cache(struct spdk_io_channel_iter *i) { struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i); struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch); _bdev_nvme_clear_io_path_cache(ctrlr_ch); spdk_for_each_channel_continue(i, 0); } static void bdev_nvme_clear_io_path_cache_done(struct spdk_io_channel_iter *i, int status) { struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i); pthread_mutex_lock(&nvme_ctrlr->mutex); assert(nvme_ctrlr->ana_log_page_updating == true); nvme_ctrlr->ana_log_page_updating = false; if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) { pthread_mutex_unlock(&nvme_ctrlr->mutex); return; } pthread_mutex_unlock(&nvme_ctrlr->mutex); nvme_ctrlr_unregister(nvme_ctrlr); } static void bdev_nvme_disable_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr) { struct nvme_ns *nvme_ns; spdk_free(nvme_ctrlr->ana_log_page); nvme_ctrlr->ana_log_page = NULL; for (nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr); nvme_ns != NULL; nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns)) { nvme_ns->ana_state_updating = false; nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE; } } static void nvme_ctrlr_read_ana_log_page_done(void *ctx, const struct spdk_nvme_cpl *cpl) { struct nvme_ctrlr *nvme_ctrlr = ctx; if (cpl != NULL && spdk_nvme_cpl_is_success(cpl)) { bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ctrlr_set_ana_states, nvme_ctrlr); } else { bdev_nvme_disable_read_ana_log_page(nvme_ctrlr); } spdk_for_each_channel(nvme_ctrlr, bdev_nvme_clear_io_path_cache, NULL, bdev_nvme_clear_io_path_cache_done); } static int nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr) { int rc; if (nvme_ctrlr->ana_log_page == NULL) { return -EINVAL; } pthread_mutex_lock(&nvme_ctrlr->mutex); if (!nvme_ctrlr_is_available(nvme_ctrlr) || nvme_ctrlr->ana_log_page_updating) { pthread_mutex_unlock(&nvme_ctrlr->mutex); return -EBUSY; } nvme_ctrlr->ana_log_page_updating = true; pthread_mutex_unlock(&nvme_ctrlr->mutex); rc = spdk_nvme_ctrlr_cmd_get_log_page(nvme_ctrlr->ctrlr, SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS, SPDK_NVME_GLOBAL_NS_TAG, nvme_ctrlr->ana_log_page, nvme_ctrlr->ana_log_page_size, 0, nvme_ctrlr_read_ana_log_page_done, nvme_ctrlr); if (rc != 0) { nvme_ctrlr_read_ana_log_page_done(nvme_ctrlr, NULL); } return rc; } static void aer_cb(void *arg, const struct spdk_nvme_cpl *cpl) { struct nvme_ctrlr *nvme_ctrlr = arg; union spdk_nvme_async_event_completion event; if (spdk_nvme_cpl_is_error(cpl)) { SPDK_WARNLOG("AER request execute failed"); return; } event.raw = cpl->cdw0; if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) && (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_NS_ATTR_CHANGED)) { nvme_ctrlr_populate_namespaces(nvme_ctrlr, NULL); } else if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) && (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_ANA_CHANGE)) { nvme_ctrlr_read_ana_log_page(nvme_ctrlr); } } static void populate_namespaces_cb(struct nvme_async_probe_ctx *ctx, size_t count, int rc) { if (ctx->cb_fn) { ctx->cb_fn(ctx->cb_ctx, count, rc); } ctx->namespaces_populated = true; if (ctx->probe_done) { /* The probe was already completed, so we need to free the context * here. This can happen for cases like OCSSD, where we need to * send additional commands to the SSD after attach. */ free(ctx); } } static void nvme_ctrlr_create_done(struct nvme_ctrlr *nvme_ctrlr, struct nvme_async_probe_ctx *ctx) { spdk_io_device_register(nvme_ctrlr, bdev_nvme_create_ctrlr_channel_cb, bdev_nvme_destroy_ctrlr_channel_cb, sizeof(struct nvme_ctrlr_channel), nvme_ctrlr->nbdev_ctrlr->name); nvme_ctrlr_populate_namespaces(nvme_ctrlr, ctx); } static void nvme_ctrlr_init_ana_log_page_done(void *_ctx, const struct spdk_nvme_cpl *cpl) { struct nvme_ctrlr *nvme_ctrlr = _ctx; struct nvme_async_probe_ctx *ctx = nvme_ctrlr->probe_ctx; nvme_ctrlr->probe_ctx = NULL; if (spdk_nvme_cpl_is_error(cpl)) { nvme_ctrlr_delete(nvme_ctrlr); if (ctx != NULL) { populate_namespaces_cb(ctx, 0, -1); } return; } nvme_ctrlr_create_done(nvme_ctrlr, ctx); } static int nvme_ctrlr_init_ana_log_page(struct nvme_ctrlr *nvme_ctrlr, struct nvme_async_probe_ctx *ctx) { struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr; const struct spdk_nvme_ctrlr_data *cdata; uint32_t ana_log_page_size; cdata = spdk_nvme_ctrlr_get_data(ctrlr); ana_log_page_size = sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid * sizeof(struct spdk_nvme_ana_group_descriptor) + cdata->nn * sizeof(uint32_t); nvme_ctrlr->ana_log_page = spdk_zmalloc(ana_log_page_size, 64, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA); if (nvme_ctrlr->ana_log_page == NULL) { SPDK_ERRLOG("could not allocate ANA log page buffer\n"); return -ENXIO; } /* Each descriptor in a ANA log page is not ensured to be 8-bytes aligned. * Hence copy each descriptor to a temporary area when parsing it. * * Allocate a buffer whose size is as large as ANA log page buffer because * we do not know the size of a descriptor until actually reading it. */ nvme_ctrlr->copied_ana_desc = calloc(1, ana_log_page_size); if (nvme_ctrlr->copied_ana_desc == NULL) { SPDK_ERRLOG("could not allocate a buffer to parse ANA descriptor\n"); return -ENOMEM; } nvme_ctrlr->ana_log_page_size = ana_log_page_size; nvme_ctrlr->probe_ctx = ctx; return spdk_nvme_ctrlr_cmd_get_log_page(ctrlr, SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS, SPDK_NVME_GLOBAL_NS_TAG, nvme_ctrlr->ana_log_page, nvme_ctrlr->ana_log_page_size, 0, nvme_ctrlr_init_ana_log_page_done, nvme_ctrlr); } /* hostnqn and subnqn were already verified before attaching a controller. * Hence check only the multipath capability and cntlid here. */ static bool bdev_nvme_check_multipath(struct nvme_bdev_ctrlr *nbdev_ctrlr, struct spdk_nvme_ctrlr *ctrlr) { struct nvme_ctrlr *tmp; const struct spdk_nvme_ctrlr_data *cdata, *tmp_cdata; cdata = spdk_nvme_ctrlr_get_data(ctrlr); if (!cdata->cmic.multi_ctrlr) { SPDK_ERRLOG("Ctrlr%u does not support multipath.\n", cdata->cntlid); return false; } TAILQ_FOREACH(tmp, &nbdev_ctrlr->ctrlrs, tailq) { tmp_cdata = spdk_nvme_ctrlr_get_data(tmp->ctrlr); if (!tmp_cdata->cmic.multi_ctrlr) { SPDK_ERRLOG("Ctrlr%u does not support multipath.\n", cdata->cntlid); return false; } if (cdata->cntlid == tmp_cdata->cntlid) { SPDK_ERRLOG("cntlid %u are duplicated.\n", tmp_cdata->cntlid); return false; } } return true; } static int nvme_bdev_ctrlr_create(const char *name, struct nvme_ctrlr *nvme_ctrlr) { struct nvme_bdev_ctrlr *nbdev_ctrlr; struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr; int rc = 0; pthread_mutex_lock(&g_bdev_nvme_mutex); nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name); if (nbdev_ctrlr != NULL) { if (!bdev_nvme_check_multipath(nbdev_ctrlr, ctrlr)) { rc = -EINVAL; goto exit; } } else { nbdev_ctrlr = calloc(1, sizeof(*nbdev_ctrlr)); if (nbdev_ctrlr == NULL) { SPDK_ERRLOG("Failed to allocate nvme_bdev_ctrlr.\n"); rc = -ENOMEM; goto exit; } nbdev_ctrlr->name = strdup(name); if (nbdev_ctrlr->name == NULL) { SPDK_ERRLOG("Failed to allocate name of nvme_bdev_ctrlr.\n"); free(nbdev_ctrlr); goto exit; } TAILQ_INIT(&nbdev_ctrlr->ctrlrs); TAILQ_INIT(&nbdev_ctrlr->bdevs); TAILQ_INSERT_TAIL(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq); } nvme_ctrlr->nbdev_ctrlr = nbdev_ctrlr; TAILQ_INSERT_TAIL(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq); exit: pthread_mutex_unlock(&g_bdev_nvme_mutex); return rc; } static int nvme_ctrlr_create(struct spdk_nvme_ctrlr *ctrlr, const char *name, const struct spdk_nvme_transport_id *trid, struct nvme_async_probe_ctx *ctx) { struct nvme_ctrlr *nvme_ctrlr; struct nvme_path_id *path_id; const struct spdk_nvme_ctrlr_data *cdata; int rc; nvme_ctrlr = calloc(1, sizeof(*nvme_ctrlr)); if (nvme_ctrlr == NULL) { SPDK_ERRLOG("Failed to allocate device struct\n"); return -ENOMEM; } rc = pthread_mutex_init(&nvme_ctrlr->mutex, NULL); if (rc != 0) { free(nvme_ctrlr); return rc; } TAILQ_INIT(&nvme_ctrlr->trids); RB_INIT(&nvme_ctrlr->namespaces); path_id = calloc(1, sizeof(*path_id)); if (path_id == NULL) { SPDK_ERRLOG("Failed to allocate trid entry pointer\n"); rc = -ENOMEM; goto err; } path_id->trid = *trid; if (ctx != NULL) { memcpy(path_id->hostid.hostaddr, ctx->drv_opts.src_addr, sizeof(path_id->hostid.hostaddr)); memcpy(path_id->hostid.hostsvcid, ctx->drv_opts.src_svcid, sizeof(path_id->hostid.hostsvcid)); } nvme_ctrlr->active_path_id = path_id; TAILQ_INSERT_HEAD(&nvme_ctrlr->trids, path_id, link); nvme_ctrlr->thread = spdk_get_thread(); nvme_ctrlr->ctrlr = ctrlr; nvme_ctrlr->ref = 1; if (spdk_nvme_ctrlr_is_ocssd_supported(ctrlr)) { SPDK_ERRLOG("OCSSDs are not supported"); rc = -ENOTSUP; goto err; } if (ctx != NULL) { memcpy(&nvme_ctrlr->opts, &ctx->bdev_opts, sizeof(ctx->bdev_opts)); } nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq, nvme_ctrlr, g_opts.nvme_adminq_poll_period_us); if (g_opts.timeout_us > 0) { /* Register timeout callback. Timeout values for IO vs. admin reqs can be different. */ /* If timeout_admin_us is 0 (not specified), admin uses same timeout as IO. */ uint64_t adm_timeout_us = (g_opts.timeout_admin_us == 0) ? g_opts.timeout_us : g_opts.timeout_admin_us; spdk_nvme_ctrlr_register_timeout_callback(ctrlr, g_opts.timeout_us, adm_timeout_us, timeout_cb, nvme_ctrlr); } spdk_nvme_ctrlr_register_aer_callback(ctrlr, aer_cb, nvme_ctrlr); spdk_nvme_ctrlr_set_remove_cb(ctrlr, remove_cb, nvme_ctrlr); if (spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_SECURITY_SEND_RECV_SUPPORTED) { nvme_ctrlr->opal_dev = spdk_opal_dev_construct(ctrlr); } rc = nvme_bdev_ctrlr_create(name, nvme_ctrlr); if (rc != 0) { goto err; } cdata = spdk_nvme_ctrlr_get_data(ctrlr); if (cdata->cmic.ana_reporting) { rc = nvme_ctrlr_init_ana_log_page(nvme_ctrlr, ctx); if (rc == 0) { return 0; } } else { nvme_ctrlr_create_done(nvme_ctrlr, ctx); return 0; } err: nvme_ctrlr_delete(nvme_ctrlr); return rc; } static void attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid, struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *drv_opts) { char *name; name = spdk_sprintf_alloc("HotInNvme%d", g_hot_insert_nvme_controller_index++); if (!name) { SPDK_ERRLOG("Failed to assign name to NVMe device\n"); return; } SPDK_DEBUGLOG(bdev_nvme, "Attached to %s (%s)\n", trid->traddr, name); nvme_ctrlr_create(ctrlr, name, trid, NULL); free(name); } static void _nvme_ctrlr_destruct(void *ctx) { struct nvme_ctrlr *nvme_ctrlr = ctx; nvme_ctrlr_depopulate_namespaces(nvme_ctrlr); nvme_ctrlr_release(nvme_ctrlr); } static int _bdev_nvme_delete(struct nvme_ctrlr *nvme_ctrlr, bool hotplug) { struct nvme_probe_skip_entry *entry; pthread_mutex_lock(&nvme_ctrlr->mutex); /* The controller's destruction was already started */ if (nvme_ctrlr->destruct) { pthread_mutex_unlock(&nvme_ctrlr->mutex); return 0; } if (!hotplug && nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) { entry = calloc(1, sizeof(*entry)); if (!entry) { pthread_mutex_unlock(&nvme_ctrlr->mutex); return -ENOMEM; } entry->trid = nvme_ctrlr->active_path_id->trid; TAILQ_INSERT_TAIL(&g_skipped_nvme_ctrlrs, entry, tailq); } nvme_ctrlr->destruct = true; pthread_mutex_unlock(&nvme_ctrlr->mutex); _nvme_ctrlr_destruct(nvme_ctrlr); return 0; } static void remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr) { struct nvme_ctrlr *nvme_ctrlr = cb_ctx; _bdev_nvme_delete(nvme_ctrlr, true); } static int bdev_nvme_hotplug_probe(void *arg) { if (g_hotplug_probe_ctx == NULL) { spdk_poller_unregister(&g_hotplug_probe_poller); return SPDK_POLLER_IDLE; } if (spdk_nvme_probe_poll_async(g_hotplug_probe_ctx) != -EAGAIN) { g_hotplug_probe_ctx = NULL; spdk_poller_unregister(&g_hotplug_probe_poller); } return SPDK_POLLER_BUSY; } static int bdev_nvme_hotplug(void *arg) { struct spdk_nvme_transport_id trid_pcie; if (g_hotplug_probe_ctx) { return SPDK_POLLER_BUSY; } memset(&trid_pcie, 0, sizeof(trid_pcie)); spdk_nvme_trid_populate_transport(&trid_pcie, SPDK_NVME_TRANSPORT_PCIE); g_hotplug_probe_ctx = spdk_nvme_probe_async(&trid_pcie, NULL, hotplug_probe_cb, attach_cb, NULL); if (g_hotplug_probe_ctx) { assert(g_hotplug_probe_poller == NULL); g_hotplug_probe_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug_probe, NULL, 1000); } return SPDK_POLLER_BUSY; } void bdev_nvme_get_opts(struct spdk_bdev_nvme_opts *opts) { *opts = g_opts; } static int bdev_nvme_validate_opts(const struct spdk_bdev_nvme_opts *opts) { if ((opts->timeout_us == 0) && (opts->timeout_admin_us != 0)) { /* Can't set timeout_admin_us without also setting timeout_us */ SPDK_WARNLOG("Invalid options: Can't have (timeout_us == 0) with (timeout_admin_us > 0)\n"); return -EINVAL; } if (opts->bdev_retry_count < -1) { SPDK_WARNLOG("Invalid option: bdev_retry_count can't be less than -1.\n"); return -EINVAL; } return 0; } int bdev_nvme_set_opts(const struct spdk_bdev_nvme_opts *opts) { int ret = bdev_nvme_validate_opts(opts); if (ret) { SPDK_WARNLOG("Failed to set nvme opts.\n"); return ret; } if (g_bdev_nvme_init_thread != NULL) { if (!TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) { return -EPERM; } } g_opts = *opts; return 0; } struct set_nvme_hotplug_ctx { uint64_t period_us; bool enabled; spdk_msg_fn fn; void *fn_ctx; }; static void set_nvme_hotplug_period_cb(void *_ctx) { struct set_nvme_hotplug_ctx *ctx = _ctx; spdk_poller_unregister(&g_hotplug_poller); if (ctx->enabled) { g_hotplug_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug, NULL, ctx->period_us); } g_nvme_hotplug_poll_period_us = ctx->period_us; g_nvme_hotplug_enabled = ctx->enabled; if (ctx->fn) { ctx->fn(ctx->fn_ctx); } free(ctx); } int bdev_nvme_set_hotplug(bool enabled, uint64_t period_us, spdk_msg_fn cb, void *cb_ctx) { struct set_nvme_hotplug_ctx *ctx; if (enabled == true && !spdk_process_is_primary()) { return -EPERM; } ctx = calloc(1, sizeof(*ctx)); if (ctx == NULL) { return -ENOMEM; } period_us = period_us == 0 ? NVME_HOTPLUG_POLL_PERIOD_DEFAULT : period_us; ctx->period_us = spdk_min(period_us, NVME_HOTPLUG_POLL_PERIOD_MAX); ctx->enabled = enabled; ctx->fn = cb; ctx->fn_ctx = cb_ctx; spdk_thread_send_msg(g_bdev_nvme_init_thread, set_nvme_hotplug_period_cb, ctx); return 0; } static void nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr, struct nvme_async_probe_ctx *ctx) { struct nvme_ns *nvme_ns; struct nvme_bdev *nvme_bdev; size_t j; assert(nvme_ctrlr != NULL); if (ctx->names == NULL) { populate_namespaces_cb(ctx, 0, 0); return; } /* * Report the new bdevs that were created in this call. * There can be more than one bdev per NVMe controller. */ j = 0; nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr); while (nvme_ns != NULL) { nvme_bdev = nvme_ns->bdev; if (j < ctx->count) { ctx->names[j] = nvme_bdev->disk.name; j++; } else { SPDK_ERRLOG("Maximum number of namespaces supported per NVMe controller is %du. Unable to return all names of created bdevs\n", ctx->count); populate_namespaces_cb(ctx, 0, -ERANGE); return; } nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns); } populate_namespaces_cb(ctx, j, 0); } static int bdev_nvme_compare_trids(struct nvme_ctrlr *nvme_ctrlr, struct spdk_nvme_ctrlr *new_ctrlr, struct spdk_nvme_transport_id *trid) { struct nvme_path_id *tmp_trid; if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) { SPDK_ERRLOG("PCIe failover is not supported.\n"); return -ENOTSUP; } /* Currently we only support failover to the same transport type. */ if (nvme_ctrlr->active_path_id->trid.trtype != trid->trtype) { return -EINVAL; } /* Currently we only support failover to the same NQN. */ if (strncmp(trid->subnqn, nvme_ctrlr->active_path_id->trid.subnqn, SPDK_NVMF_NQN_MAX_LEN)) { return -EINVAL; } /* Skip all the other checks if we've already registered this path. */ TAILQ_FOREACH(tmp_trid, &nvme_ctrlr->trids, link) { if (!spdk_nvme_transport_id_compare(&tmp_trid->trid, trid)) { return -EEXIST; } } return 0; } static int bdev_nvme_compare_namespaces(struct nvme_ctrlr *nvme_ctrlr, struct spdk_nvme_ctrlr *new_ctrlr) { struct nvme_ns *nvme_ns; struct spdk_nvme_ns *new_ns; nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr); while (nvme_ns != NULL) { new_ns = spdk_nvme_ctrlr_get_ns(new_ctrlr, nvme_ns->id); assert(new_ns != NULL); if (!bdev_nvme_compare_ns(nvme_ns->ns, new_ns)) { return -EINVAL; } nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns); } return 0; } static int _bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr, struct spdk_nvme_transport_id *trid) { struct nvme_path_id *new_trid, *tmp_trid; new_trid = calloc(1, sizeof(*new_trid)); if (new_trid == NULL) { return -ENOMEM; } new_trid->trid = *trid; new_trid->is_failed = false; TAILQ_FOREACH(tmp_trid, &nvme_ctrlr->trids, link) { if (tmp_trid->is_failed && tmp_trid != nvme_ctrlr->active_path_id) { TAILQ_INSERT_BEFORE(tmp_trid, new_trid, link); return 0; } } TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, new_trid, link); return 0; } /* This is the case that a secondary path is added to an existing * nvme_ctrlr for failover. After checking if it can access the same * namespaces as the primary path, it is disconnected until failover occurs. */ static int bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr, struct spdk_nvme_ctrlr *new_ctrlr, struct spdk_nvme_transport_id *trid) { int rc; assert(nvme_ctrlr != NULL); pthread_mutex_lock(&nvme_ctrlr->mutex); rc = bdev_nvme_compare_trids(nvme_ctrlr, new_ctrlr, trid); if (rc != 0) { goto exit; } rc = bdev_nvme_compare_namespaces(nvme_ctrlr, new_ctrlr); if (rc != 0) { goto exit; } rc = _bdev_nvme_add_secondary_trid(nvme_ctrlr, trid); exit: pthread_mutex_unlock(&nvme_ctrlr->mutex); spdk_nvme_detach(new_ctrlr); return rc; } static void connect_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid, struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts) { struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx; struct nvme_async_probe_ctx *ctx; int rc; ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts); ctx->ctrlr_attached = true; rc = nvme_ctrlr_create(ctrlr, ctx->base_name, &ctx->trid, ctx); if (rc != 0) { populate_namespaces_cb(ctx, 0, rc); } } static void connect_set_failover_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid, struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts) { struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx; struct nvme_ctrlr *nvme_ctrlr; struct nvme_async_probe_ctx *ctx; int rc; ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts); ctx->ctrlr_attached = true; nvme_ctrlr = nvme_ctrlr_get_by_name(ctx->base_name); if (nvme_ctrlr) { rc = bdev_nvme_add_secondary_trid(nvme_ctrlr, ctrlr, &ctx->trid); } else { rc = -ENODEV; } populate_namespaces_cb(ctx, 0, rc); } static int bdev_nvme_async_poll(void *arg) { struct nvme_async_probe_ctx *ctx = arg; int rc; rc = spdk_nvme_probe_poll_async(ctx->probe_ctx); if (spdk_unlikely(rc != -EAGAIN)) { ctx->probe_done = true; spdk_poller_unregister(&ctx->poller); if (!ctx->ctrlr_attached) { /* The probe is done, but no controller was attached. * That means we had a failure, so report -EIO back to * the caller (usually the RPC). populate_namespaces_cb() * will take care of freeing the nvme_async_probe_ctx. */ populate_namespaces_cb(ctx, 0, -EIO); } else if (ctx->namespaces_populated) { /* The namespaces for the attached controller were all * populated and the response was already sent to the * caller (usually the RPC). So free the context here. */ free(ctx); } } return SPDK_POLLER_BUSY; } static bool bdev_nvme_check_multipath_params(int32_t ctrlr_loss_timeout_sec, uint32_t reconnect_delay_sec, uint32_t fast_io_fail_timeout_sec) { if (ctrlr_loss_timeout_sec < -1) { SPDK_ERRLOG("ctrlr_loss_timeout_sec can't be less than -1.\n"); return false; } else if (ctrlr_loss_timeout_sec == -1) { if (reconnect_delay_sec == 0) { SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n"); return false; } else if (fast_io_fail_timeout_sec != 0 && fast_io_fail_timeout_sec < reconnect_delay_sec) { SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io-fail_timeout_sec.\n"); return false; } } else if (ctrlr_loss_timeout_sec != 0) { if (reconnect_delay_sec == 0) { SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n"); return false; } else if (reconnect_delay_sec > (uint32_t)ctrlr_loss_timeout_sec) { SPDK_ERRLOG("reconnect_delay_sec can't be more than ctrlr_loss_timeout_sec.\n"); return false; } else if (fast_io_fail_timeout_sec != 0) { if (fast_io_fail_timeout_sec < reconnect_delay_sec) { SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io_fail_timeout_sec.\n"); return false; } else if (fast_io_fail_timeout_sec > (uint32_t)ctrlr_loss_timeout_sec) { SPDK_ERRLOG("fast_io_fail_timeout_sec can't be more than ctrlr_loss_timeout_sec.\n"); return false; } } } else if (reconnect_delay_sec != 0 || fast_io_fail_timeout_sec != 0) { SPDK_ERRLOG("Both reconnect_delay_sec and fast_io_fail_timeout_sec must be 0 if ctrlr_loss_timeout_sec is 0.\n"); return false; } return true; } int bdev_nvme_create(struct spdk_nvme_transport_id *trid, const char *base_name, const char **names, uint32_t count, spdk_bdev_create_nvme_fn cb_fn, void *cb_ctx, struct spdk_nvme_ctrlr_opts *drv_opts, struct nvme_ctrlr_opts *bdev_opts, bool multipath) { struct nvme_probe_skip_entry *entry, *tmp; struct nvme_async_probe_ctx *ctx; spdk_nvme_attach_cb attach_cb; /* TODO expand this check to include both the host and target TRIDs. * Only if both are the same should we fail. */ if (nvme_ctrlr_get(trid) != NULL) { SPDK_ERRLOG("A controller with the provided trid (traddr: %s) already exists.\n", trid->traddr); return -EEXIST; } if (bdev_opts != NULL && !bdev_nvme_check_multipath_params(bdev_opts->ctrlr_loss_timeout_sec, bdev_opts->reconnect_delay_sec, bdev_opts->fast_io_fail_timeout_sec)) { return -EINVAL; } ctx = calloc(1, sizeof(*ctx)); if (!ctx) { return -ENOMEM; } ctx->base_name = base_name; ctx->names = names; ctx->count = count; ctx->cb_fn = cb_fn; ctx->cb_ctx = cb_ctx; ctx->trid = *trid; if (bdev_opts) { memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts)); } if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) { TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, tmp) { if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) { TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq); free(entry); break; } } } if (drv_opts) { memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts)); } else { spdk_nvme_ctrlr_get_default_ctrlr_opts(&ctx->drv_opts, sizeof(ctx->drv_opts)); } ctx->drv_opts.transport_retry_count = g_opts.transport_retry_count; ctx->drv_opts.transport_ack_timeout = g_opts.transport_ack_timeout; ctx->drv_opts.keep_alive_timeout_ms = g_opts.keep_alive_timeout_ms; ctx->drv_opts.disable_read_ana_log_page = true; if (nvme_bdev_ctrlr_get_by_name(base_name) == NULL || multipath) { attach_cb = connect_attach_cb; } else { attach_cb = connect_set_failover_cb; } ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, attach_cb); if (ctx->probe_ctx == NULL) { SPDK_ERRLOG("No controller was found with provided trid (traddr: %s)\n", trid->traddr); free(ctx); return -ENODEV; } ctx->poller = SPDK_POLLER_REGISTER(bdev_nvme_async_poll, ctx, 1000); return 0; } int bdev_nvme_delete(const char *name, const struct nvme_path_id *path_id) { struct nvme_bdev_ctrlr *nbdev_ctrlr; struct nvme_ctrlr *nvme_ctrlr, *tmp_nvme_ctrlr; struct nvme_path_id *p, *t; int rc = -ENXIO; if (name == NULL || path_id == NULL) { return -EINVAL; } nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name); if (nbdev_ctrlr == NULL) { SPDK_ERRLOG("Failed to find NVMe bdev controller\n"); return -ENODEV; } TAILQ_FOREACH_SAFE(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq, tmp_nvme_ctrlr) { TAILQ_FOREACH_REVERSE_SAFE(p, &nvme_ctrlr->trids, nvme_paths, link, t) { if (path_id->trid.trtype != 0) { if (path_id->trid.trtype == SPDK_NVME_TRANSPORT_CUSTOM) { if (strcasecmp(path_id->trid.trstring, p->trid.trstring) != 0) { continue; } } else { if (path_id->trid.trtype != p->trid.trtype) { continue; } } } if (!spdk_mem_all_zero(path_id->trid.traddr, sizeof(path_id->trid.traddr))) { if (strcasecmp(path_id->trid.traddr, p->trid.traddr) != 0) { continue; } } if (path_id->trid.adrfam != 0) { if (path_id->trid.adrfam != p->trid.adrfam) { continue; } } if (!spdk_mem_all_zero(path_id->trid.trsvcid, sizeof(path_id->trid.trsvcid))) { if (strcasecmp(path_id->trid.trsvcid, p->trid.trsvcid) != 0) { continue; } } if (!spdk_mem_all_zero(path_id->trid.subnqn, sizeof(path_id->trid.subnqn))) { if (strcmp(path_id->trid.subnqn, p->trid.subnqn) != 0) { continue; } } if (!spdk_mem_all_zero(path_id->hostid.hostaddr, sizeof(path_id->hostid.hostaddr))) { if (strcmp(path_id->hostid.hostaddr, p->hostid.hostaddr) != 0) { continue; } } if (!spdk_mem_all_zero(path_id->hostid.hostsvcid, sizeof(path_id->hostid.hostsvcid))) { if (strcmp(path_id->hostid.hostsvcid, p->hostid.hostsvcid) != 0) { continue; } } /* If we made it here, then this path is a match! Now we need to remove it. */ if (p == nvme_ctrlr->active_path_id) { /* This is the active path in use right now. The active path is always the first in the list. */ if (!TAILQ_NEXT(p, link)) { /* The current path is the only path. */ rc = _bdev_nvme_delete(nvme_ctrlr, false); } else { /* There is an alternative path. */ rc = bdev_nvme_failover(nvme_ctrlr, true); } } else { /* We are not using the specified path. */ TAILQ_REMOVE(&nvme_ctrlr->trids, p, link); free(p); rc = 0; } if (rc < 0 && rc != -ENXIO) { return rc; } } } /* All nvme_ctrlrs were deleted or no nvme_ctrlr which had the trid was found. */ return rc; } #define DISCOVERY_INFOLOG(ctx, format, ...) \ SPDK_INFOLOG(bdev_nvme, "Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__); #define DISCOVERY_ERRLOG(ctx, format, ...) \ SPDK_ERRLOG("Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__); struct discovery_entry_ctx { char name[128]; struct spdk_nvme_transport_id trid; struct spdk_nvme_ctrlr_opts drv_opts; struct spdk_nvmf_discovery_log_page_entry entry; TAILQ_ENTRY(discovery_entry_ctx) tailq; struct discovery_ctx *ctx; }; struct discovery_ctx { char *name; spdk_bdev_nvme_start_discovery_fn start_cb_fn; spdk_bdev_nvme_stop_discovery_fn stop_cb_fn; void *cb_ctx; struct spdk_nvme_probe_ctx *probe_ctx; struct spdk_nvme_detach_ctx *detach_ctx; struct spdk_nvme_ctrlr *ctrlr; struct spdk_nvme_transport_id trid; struct spdk_poller *poller; struct spdk_nvme_ctrlr_opts drv_opts; struct spdk_nvmf_discovery_log_page *log_page; TAILQ_ENTRY(discovery_ctx) tailq; TAILQ_HEAD(, discovery_entry_ctx) nvm_entry_ctxs; TAILQ_HEAD(, discovery_entry_ctx) discovery_entry_ctxs; int rc; /* Denotes if a discovery is currently in progress for this context. * That includes connecting to newly discovered subsystems. Used to * ensure we do not start a new discovery until an existing one is * complete. */ bool in_progress; /* Denotes if another discovery is needed after the one in progress * completes. Set when we receive an AER completion while a discovery * is already in progress. */ bool pending; /* Signal to the discovery context poller that it should detach from * the discovery controller. */ bool detach; struct spdk_thread *calling_thread; uint32_t index; uint32_t attach_in_progress; char *hostnqn; }; TAILQ_HEAD(discovery_ctxs, discovery_ctx); static struct discovery_ctxs g_discovery_ctxs = TAILQ_HEAD_INITIALIZER(g_discovery_ctxs); static void get_discovery_log_page(struct discovery_ctx *ctx); static void free_discovery_ctx(struct discovery_ctx *ctx) { free(ctx->hostnqn); free(ctx->name); free(ctx); } static void discovery_complete(struct discovery_ctx *ctx) { ctx->in_progress = false; if (ctx->pending) { ctx->pending = false; get_discovery_log_page(ctx); } } static void build_trid_from_log_page_entry(struct spdk_nvme_transport_id *trid, struct spdk_nvmf_discovery_log_page_entry *entry) { char *space; trid->trtype = entry->trtype; trid->adrfam = entry->adrfam; memcpy(trid->traddr, entry->traddr, sizeof(trid->traddr)); memcpy(trid->trsvcid, entry->trsvcid, sizeof(trid->trsvcid)); memcpy(trid->subnqn, entry->subnqn, sizeof(trid->subnqn)); /* We want the traddr, trsvcid and subnqn fields to be NULL-terminated. * But the log page entries typically pad them with spaces, not zeroes. * So add a NULL terminator to each of these fields at the appropriate * location. */ space = strchr(trid->traddr, ' '); if (space) { *space = 0; } space = strchr(trid->trsvcid, ' '); if (space) { *space = 0; } space = strchr(trid->subnqn, ' '); if (space) { *space = 0; } } static void discovery_remove_controllers(struct discovery_ctx *ctx) { struct spdk_nvmf_discovery_log_page *log_page = ctx->log_page; struct discovery_entry_ctx *entry_ctx, *tmp; struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry; struct spdk_nvme_transport_id old_trid; uint64_t numrec, i; bool found; numrec = from_le64(&log_page->numrec); TAILQ_FOREACH_SAFE(entry_ctx, &ctx->nvm_entry_ctxs, tailq, tmp) { found = false; old_entry = &entry_ctx->entry; build_trid_from_log_page_entry(&old_trid, old_entry); for (i = 0; i < numrec; i++) { new_entry = &log_page->entries[i]; if (!memcmp(old_entry, new_entry, sizeof(*old_entry))) { DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s found again\n", old_trid.subnqn, old_trid.traddr, old_trid.trsvcid); found = true; break; } } if (!found) { struct nvme_path_id path = {}; DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s not found\n", old_trid.subnqn, old_trid.traddr, old_trid.trsvcid); path.trid = entry_ctx->trid; bdev_nvme_delete(entry_ctx->name, &path); TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq); free(entry_ctx); } } free(log_page); ctx->log_page = NULL; discovery_complete(ctx); } static void discovery_attach_controller_done(void *cb_ctx, size_t bdev_count, int rc) { struct discovery_entry_ctx *entry_ctx = cb_ctx; struct discovery_ctx *ctx = entry_ctx->ctx;; DISCOVERY_INFOLOG(ctx, "attach %s done\n", entry_ctx->name); ctx->attach_in_progress--; if (ctx->attach_in_progress == 0) { discovery_remove_controllers(ctx); } } static void discovery_log_page_cb(void *cb_arg, int rc, const struct spdk_nvme_cpl *cpl, struct spdk_nvmf_discovery_log_page *log_page) { struct discovery_ctx *ctx = cb_arg; struct discovery_entry_ctx *entry_ctx, *tmp; struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry; uint64_t numrec, i; bool found; if (rc || spdk_nvme_cpl_is_error(cpl)) { DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n"); return; } ctx->log_page = log_page; assert(ctx->attach_in_progress == 0); numrec = from_le64(&log_page->numrec); TAILQ_FOREACH_SAFE(entry_ctx, &ctx->discovery_entry_ctxs, tailq, tmp) { TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq); free(entry_ctx); } for (i = 0; i < numrec; i++) { found = false; new_entry = &log_page->entries[i]; if (new_entry->subtype == SPDK_NVMF_SUBTYPE_DISCOVERY) { struct discovery_entry_ctx *new_ctx; new_ctx = calloc(1, sizeof(*new_ctx)); if (new_ctx == NULL) { DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n"); break; } new_ctx->ctx = ctx; memcpy(&new_ctx->entry, new_entry, sizeof(*new_entry)); build_trid_from_log_page_entry(&new_ctx->trid, new_entry); spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts)); snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn); TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, new_ctx, tailq); continue; } TAILQ_FOREACH(entry_ctx, &ctx->nvm_entry_ctxs, tailq) { old_entry = &entry_ctx->entry; if (!memcmp(new_entry, old_entry, sizeof(*new_entry))) { found = true; break; } } if (!found) { struct discovery_entry_ctx *subnqn_ctx, *new_ctx; TAILQ_FOREACH(subnqn_ctx, &ctx->nvm_entry_ctxs, tailq) { if (!memcmp(subnqn_ctx->entry.subnqn, new_entry->subnqn, sizeof(new_entry->subnqn))) { break; } } new_ctx = calloc(1, sizeof(*new_ctx)); if (new_ctx == NULL) { DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n"); break; } new_ctx->ctx = ctx; memcpy(&new_ctx->entry, new_entry, sizeof(*new_entry)); build_trid_from_log_page_entry(&new_ctx->trid, new_entry); if (subnqn_ctx) { snprintf(new_ctx->name, sizeof(new_ctx->name), "%s", subnqn_ctx->name); DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new path for %s\n", new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid, new_ctx->name); } else { snprintf(new_ctx->name, sizeof(new_ctx->name), "%s%d", ctx->name, ctx->index++); DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new subsystem %s\n", new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid, new_ctx->name); } spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts)); snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn); rc = bdev_nvme_create(&new_ctx->trid, new_ctx->name, NULL, 0, discovery_attach_controller_done, new_ctx, &new_ctx->drv_opts, NULL, true); if (rc == 0) { TAILQ_INSERT_TAIL(&ctx->nvm_entry_ctxs, new_ctx, tailq); ctx->attach_in_progress++; } else { DISCOVERY_ERRLOG(ctx, "bdev_nvme_create failed (%s)\n", spdk_strerror(-rc)); } } } if (ctx->attach_in_progress == 0) { discovery_remove_controllers(ctx); } } static void get_discovery_log_page(struct discovery_ctx *ctx) { int rc; assert(ctx->in_progress == false); ctx->in_progress = true; rc = spdk_nvme_ctrlr_get_discovery_log_page(ctx->ctrlr, discovery_log_page_cb, ctx); if (rc != 0) { DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n"); } DISCOVERY_INFOLOG(ctx, "sent discovery log page command\n"); } static void discovery_aer_cb(void *arg, const struct spdk_nvme_cpl *cpl) { struct discovery_ctx *ctx = arg; uint32_t log_page_id = (cpl->cdw0 & 0xFF0000) >> 16; if (spdk_nvme_cpl_is_error(cpl)) { DISCOVERY_ERRLOG(ctx, "aer failed\n"); return; } if (log_page_id != SPDK_NVME_LOG_DISCOVERY) { DISCOVERY_ERRLOG(ctx, "unexpected log page 0x%x\n", log_page_id); return; } DISCOVERY_INFOLOG(ctx, "got aer\n"); if (ctx->in_progress) { ctx->pending = true; return; } get_discovery_log_page(ctx); } static void start_discovery_done(void *cb_ctx) { struct discovery_ctx *ctx = cb_ctx; DISCOVERY_INFOLOG(ctx, "start discovery done\n"); ctx->start_cb_fn(ctx->cb_ctx, ctx->rc); if (ctx->rc != 0) { DISCOVERY_ERRLOG(ctx, "could not connect to discovery ctrlr\n"); TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq); free_discovery_ctx(ctx); } } static void discovery_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid, struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts) { struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx; struct discovery_ctx *ctx; ctx = SPDK_CONTAINEROF(user_opts, struct discovery_ctx, drv_opts); DISCOVERY_INFOLOG(ctx, "discovery ctrlr attached\n"); ctx->probe_ctx = NULL; ctx->ctrlr = ctrlr; spdk_nvme_ctrlr_register_aer_callback(ctx->ctrlr, discovery_aer_cb, ctx); } static int discovery_poller(void *arg) { struct discovery_ctx *ctx = arg; int rc; if (ctx->detach) { bool detach_done = false; if (ctx->detach_ctx == NULL) { rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx); if (rc != 0) { DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n"); detach_done = true; } } else { rc = spdk_nvme_detach_poll_async(ctx->detach_ctx); if (rc != -EAGAIN) { detach_done = true; } } if (detach_done) { spdk_poller_unregister(&ctx->poller); TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq); ctx->stop_cb_fn(ctx->cb_ctx); free_discovery_ctx(ctx); } } else if (ctx->probe_ctx) { rc = spdk_nvme_probe_poll_async(ctx->probe_ctx); if (rc != -EAGAIN) { DISCOVERY_INFOLOG(ctx, "discovery ctrlr connected\n"); ctx->rc = rc; spdk_thread_send_msg(ctx->calling_thread, start_discovery_done, ctx); if (rc == 0) { get_discovery_log_page(ctx); } } } else { spdk_nvme_ctrlr_process_admin_completions(ctx->ctrlr); } return SPDK_POLLER_BUSY; } static void start_discovery_poller(void *arg) { struct discovery_ctx *ctx = arg; TAILQ_INSERT_TAIL(&g_discovery_ctxs, ctx, tailq); ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000); } int bdev_nvme_start_discovery(struct spdk_nvme_transport_id *trid, const char *base_name, struct spdk_nvme_ctrlr_opts *drv_opts, spdk_bdev_nvme_start_discovery_fn cb_fn, void *cb_ctx) { struct discovery_ctx *ctx; ctx = calloc(1, sizeof(*ctx)); if (ctx == NULL) { return -ENOMEM; } ctx->name = strdup(base_name); if (ctx->name == NULL) { free_discovery_ctx(ctx); return -ENOMEM; } ctx->start_cb_fn = cb_fn; ctx->cb_ctx = cb_ctx; memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts)); ctx->calling_thread = spdk_get_thread(); TAILQ_INIT(&ctx->nvm_entry_ctxs); TAILQ_INIT(&ctx->discovery_entry_ctxs); snprintf(trid->subnqn, sizeof(trid->subnqn), "%s", SPDK_NVMF_DISCOVERY_NQN); memcpy(&ctx->trid, trid, sizeof(*trid)); /* Even if user did not specify hostnqn, we can still strdup("\0"); */ ctx->hostnqn = strdup(ctx->drv_opts.hostnqn); if (ctx->hostnqn == NULL) { free_discovery_ctx(ctx); return -ENOMEM; } ctx->probe_ctx = spdk_nvme_connect_async(&ctx->trid, &ctx->drv_opts, discovery_attach_cb); if (ctx->probe_ctx == NULL) { DISCOVERY_ERRLOG(ctx, "could not start discovery connect\n"); free_discovery_ctx(ctx); return -EIO; } spdk_thread_send_msg(g_bdev_nvme_init_thread, start_discovery_poller, ctx); return 0; } int bdev_nvme_stop_discovery(const char *name, spdk_bdev_nvme_stop_discovery_fn cb_fn, void *cb_ctx) { struct discovery_ctx *ctx; TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) { if (strcmp(name, ctx->name) == 0) { if (ctx->detach) { return -EALREADY; } ctx->detach = true; ctx->stop_cb_fn = cb_fn; ctx->cb_ctx = cb_ctx; while (!TAILQ_EMPTY(&ctx->nvm_entry_ctxs)) { struct discovery_entry_ctx *entry_ctx; struct nvme_path_id path = {}; entry_ctx = TAILQ_FIRST(&ctx->nvm_entry_ctxs); path.trid = entry_ctx->trid; bdev_nvme_delete(entry_ctx->name, &path); TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq); free(entry_ctx); } while (!TAILQ_EMPTY(&ctx->discovery_entry_ctxs)) { struct discovery_entry_ctx *entry_ctx; entry_ctx = TAILQ_FIRST(&ctx->discovery_entry_ctxs); TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq); free(entry_ctx); } return 0; } } return -ENOENT; } static int bdev_nvme_library_init(void) { g_bdev_nvme_init_thread = spdk_get_thread(); spdk_io_device_register(&g_nvme_bdev_ctrlrs, bdev_nvme_create_poll_group_cb, bdev_nvme_destroy_poll_group_cb, sizeof(struct nvme_poll_group), "nvme_poll_groups"); return 0; } static void bdev_nvme_fini_destruct_ctrlrs(void) { struct nvme_bdev_ctrlr *nbdev_ctrlr; struct nvme_ctrlr *nvme_ctrlr; pthread_mutex_lock(&g_bdev_nvme_mutex); TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) { TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) { pthread_mutex_lock(&nvme_ctrlr->mutex); if (nvme_ctrlr->destruct) { /* This controller's destruction was already started * before the application started shutting down */ pthread_mutex_unlock(&nvme_ctrlr->mutex); continue; } nvme_ctrlr->destruct = true; pthread_mutex_unlock(&nvme_ctrlr->mutex); spdk_thread_send_msg(nvme_ctrlr->thread, _nvme_ctrlr_destruct, nvme_ctrlr); } } g_bdev_nvme_module_finish = true; if (TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) { pthread_mutex_unlock(&g_bdev_nvme_mutex); spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL); spdk_bdev_module_fini_done(); return; } pthread_mutex_unlock(&g_bdev_nvme_mutex); } static void check_discovery_fini(void *arg) { if (TAILQ_EMPTY(&g_discovery_ctxs)) { bdev_nvme_fini_destruct_ctrlrs(); } } static void bdev_nvme_library_fini(void) { struct nvme_probe_skip_entry *entry, *entry_tmp; struct discovery_ctx *ctx; spdk_poller_unregister(&g_hotplug_poller); free(g_hotplug_probe_ctx); g_hotplug_probe_ctx = NULL; TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, entry_tmp) { TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq); free(entry); } assert(spdk_get_thread() == g_bdev_nvme_init_thread); if (TAILQ_EMPTY(&g_discovery_ctxs)) { bdev_nvme_fini_destruct_ctrlrs(); } else { TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) { ctx->detach = true; ctx->stop_cb_fn = check_discovery_fini; } } } static void bdev_nvme_verify_pi_error(struct nvme_bdev_io *bio) { struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio); struct spdk_bdev *bdev = bdev_io->bdev; struct spdk_dif_ctx dif_ctx; struct spdk_dif_error err_blk = {}; int rc; rc = spdk_dif_ctx_init(&dif_ctx, bdev->blocklen, bdev->md_len, bdev->md_interleave, bdev->dif_is_head_of_md, bdev->dif_type, bdev->dif_check_flags, bdev_io->u.bdev.offset_blocks, 0, 0, 0, 0); if (rc != 0) { SPDK_ERRLOG("Initialization of DIF context failed\n"); return; } if (bdev->md_interleave) { rc = spdk_dif_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt, bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk); } else { struct iovec md_iov = { .iov_base = bdev_io->u.bdev.md_buf, .iov_len = bdev_io->u.bdev.num_blocks * bdev->md_len, }; rc = spdk_dix_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt, &md_iov, bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk); } if (rc != 0) { SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n", err_blk.err_type, err_blk.err_offset); } else { SPDK_ERRLOG("Hardware reported PI error but SPDK could not find any.\n"); } } static void bdev_nvme_no_pi_readv_done(void *ref, const struct spdk_nvme_cpl *cpl) { struct nvme_bdev_io *bio = ref; if (spdk_nvme_cpl_is_success(cpl)) { /* Run PI verification for read data buffer. */ bdev_nvme_verify_pi_error(bio); } /* Return original completion status */ bdev_nvme_io_complete_nvme_status(bio, &bio->cpl); } static void bdev_nvme_readv_done(void *ref, const struct spdk_nvme_cpl *cpl) { struct nvme_bdev_io *bio = ref; struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio); int ret; if (spdk_unlikely(spdk_nvme_cpl_is_pi_error(cpl))) { SPDK_ERRLOG("readv completed with PI error (sct=%d, sc=%d)\n", cpl->status.sct, cpl->status.sc); /* Save completion status to use after verifying PI error. */ bio->cpl = *cpl; if (spdk_likely(nvme_io_path_is_available(bio->io_path))) { /* Read without PI checking to verify PI error. */ ret = bdev_nvme_no_pi_readv(bio, bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt, bdev_io->u.bdev.md_buf, bdev_io->u.bdev.num_blocks, bdev_io->u.bdev.offset_blocks); if (ret == 0) { return; } } } bdev_nvme_io_complete_nvme_status(bio, cpl); } static void bdev_nvme_writev_done(void *ref, const struct spdk_nvme_cpl *cpl) { struct nvme_bdev_io *bio = ref; if (spdk_nvme_cpl_is_pi_error(cpl)) { SPDK_ERRLOG("writev completed with PI error (sct=%d, sc=%d)\n", cpl->status.sct, cpl->status.sc); /* Run PI verification for write data buffer if PI error is detected. */ bdev_nvme_verify_pi_error(bio); } bdev_nvme_io_complete_nvme_status(bio, cpl); } static void bdev_nvme_zone_appendv_done(void *ref, const struct spdk_nvme_cpl *cpl) { struct nvme_bdev_io *bio = ref; struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio); /* spdk_bdev_io_get_append_location() requires that the ALBA is stored in offset_blocks. * Additionally, offset_blocks has to be set before calling bdev_nvme_verify_pi_error(). */ bdev_io->u.bdev.offset_blocks = *(uint64_t *)&cpl->cdw0; if (spdk_nvme_cpl_is_pi_error(cpl)) { SPDK_ERRLOG("zone append completed with PI error (sct=%d, sc=%d)\n", cpl->status.sct, cpl->status.sc); /* Run PI verification for zone append data buffer if PI error is detected. */ bdev_nvme_verify_pi_error(bio); } bdev_nvme_io_complete_nvme_status(bio, cpl); } static void bdev_nvme_comparev_done(void *ref, const struct spdk_nvme_cpl *cpl) { struct nvme_bdev_io *bio = ref; if (spdk_nvme_cpl_is_pi_error(cpl)) { SPDK_ERRLOG("comparev completed with PI error (sct=%d, sc=%d)\n", cpl->status.sct, cpl->status.sc); /* Run PI verification for compare data buffer if PI error is detected. */ bdev_nvme_verify_pi_error(bio); } bdev_nvme_io_complete_nvme_status(bio, cpl); } static void bdev_nvme_comparev_and_writev_done(void *ref, const struct spdk_nvme_cpl *cpl) { struct nvme_bdev_io *bio = ref; /* Compare operation completion */ if ((cpl->cdw0 & 0xFF) == SPDK_NVME_OPC_COMPARE) { /* Save compare result for write callback */ bio->cpl = *cpl; return; } /* Write operation completion */ if (spdk_nvme_cpl_is_error(&bio->cpl)) { /* If bio->cpl is already an error, it means the compare operation failed. In that case, * complete the IO with the compare operation's status. */ if (!spdk_nvme_cpl_is_error(cpl)) { SPDK_ERRLOG("Unexpected write success after compare failure.\n"); } bdev_nvme_io_complete_nvme_status(bio, &bio->cpl); } else { bdev_nvme_io_complete_nvme_status(bio, cpl); } } static void bdev_nvme_queued_done(void *ref, const struct spdk_nvme_cpl *cpl) { struct nvme_bdev_io *bio = ref; bdev_nvme_io_complete_nvme_status(bio, cpl); } static int fill_zone_from_report(struct spdk_bdev_zone_info *info, struct spdk_nvme_zns_zone_desc *desc) { switch (desc->zs) { case SPDK_NVME_ZONE_STATE_EMPTY: info->state = SPDK_BDEV_ZONE_STATE_EMPTY; break; case SPDK_NVME_ZONE_STATE_IOPEN: info->state = SPDK_BDEV_ZONE_STATE_IMP_OPEN; break; case SPDK_NVME_ZONE_STATE_EOPEN: info->state = SPDK_BDEV_ZONE_STATE_EXP_OPEN; break; case SPDK_NVME_ZONE_STATE_CLOSED: info->state = SPDK_BDEV_ZONE_STATE_CLOSED; break; case SPDK_NVME_ZONE_STATE_RONLY: info->state = SPDK_BDEV_ZONE_STATE_READ_ONLY; break; case SPDK_NVME_ZONE_STATE_FULL: info->state = SPDK_BDEV_ZONE_STATE_FULL; break; case SPDK_NVME_ZONE_STATE_OFFLINE: info->state = SPDK_BDEV_ZONE_STATE_OFFLINE; break; default: SPDK_ERRLOG("Invalid zone state: %#x in zone report\n", desc->zs); return -EIO; } info->zone_id = desc->zslba; info->write_pointer = desc->wp; info->capacity = desc->zcap; return 0; } static void bdev_nvme_get_zone_info_done(void *ref, const struct spdk_nvme_cpl *cpl) { struct nvme_bdev_io *bio = ref; struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio); uint64_t zone_id = bdev_io->u.zone_mgmt.zone_id; uint32_t zones_to_copy = bdev_io->u.zone_mgmt.num_zones; struct spdk_bdev_zone_info *info = bdev_io->u.zone_mgmt.buf; uint64_t max_zones_per_buf, i; uint32_t zone_report_bufsize; struct spdk_nvme_ns *ns; struct spdk_nvme_qpair *qpair; int ret; if (spdk_nvme_cpl_is_error(cpl)) { goto out_complete_io_nvme_cpl; } if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) { ret = -ENXIO; goto out_complete_io_ret; } ns = bio->io_path->nvme_ns->ns; qpair = bio->io_path->ctrlr_ch->qpair; zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns); max_zones_per_buf = (zone_report_bufsize - sizeof(*bio->zone_report_buf)) / sizeof(bio->zone_report_buf->descs[0]); if (bio->zone_report_buf->nr_zones > max_zones_per_buf) { ret = -EINVAL; goto out_complete_io_ret; } if (!bio->zone_report_buf->nr_zones) { ret = -EINVAL; goto out_complete_io_ret; } for (i = 0; i < bio->zone_report_buf->nr_zones && bio->handled_zones < zones_to_copy; i++) { ret = fill_zone_from_report(&info[bio->handled_zones], &bio->zone_report_buf->descs[i]); if (ret) { goto out_complete_io_ret; } bio->handled_zones++; } if (bio->handled_zones < zones_to_copy) { uint64_t zone_size_lba = spdk_nvme_zns_ns_get_zone_size_sectors(ns); uint64_t slba = zone_id + (zone_size_lba * bio->handled_zones); memset(bio->zone_report_buf, 0, zone_report_bufsize); ret = spdk_nvme_zns_report_zones(ns, qpair, bio->zone_report_buf, zone_report_bufsize, slba, SPDK_NVME_ZRA_LIST_ALL, true, bdev_nvme_get_zone_info_done, bio); if (!ret) { return; } else { goto out_complete_io_ret; } } out_complete_io_nvme_cpl: free(bio->zone_report_buf); bio->zone_report_buf = NULL; bdev_nvme_io_complete_nvme_status(bio, cpl); return; out_complete_io_ret: free(bio->zone_report_buf); bio->zone_report_buf = NULL; bdev_nvme_io_complete(bio, ret); } static void bdev_nvme_zone_management_done(void *ref, const struct spdk_nvme_cpl *cpl) { struct nvme_bdev_io *bio = ref; bdev_nvme_io_complete_nvme_status(bio, cpl); } static void bdev_nvme_admin_passthru_complete_nvme_status(void *ctx) { struct nvme_bdev_io *bio = ctx; struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio); const struct spdk_nvme_cpl *cpl = &bio->cpl; struct nvme_bdev_channel *nbdev_ch; struct nvme_ctrlr *nvme_ctrlr; const struct spdk_nvme_ctrlr_data *cdata; uint64_t delay_ms; assert(bdev_nvme_io_type_is_admin(bdev_io->type)); if (spdk_likely(spdk_nvme_cpl_is_success(cpl))) { goto complete; } if (cpl->status.dnr != 0 || (g_opts.bdev_retry_count != -1 && bio->retry_count >= g_opts.bdev_retry_count)) { goto complete; } nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io)); nvme_ctrlr = nvme_ctrlr_channel_get_ctrlr(bio->io_path->ctrlr_ch); if (spdk_nvme_cpl_is_path_error(cpl) || spdk_nvme_cpl_is_aborted_sq_deletion(cpl) || !nvme_ctrlr_is_available(nvme_ctrlr)) { delay_ms = 0; } else if (spdk_nvme_cpl_is_aborted_by_request(cpl)) { goto complete; } else { bio->retry_count++; cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr); if (cpl->status.crd != 0) { delay_ms = cdata->crdt[cpl->status.crd] * 100; } else { delay_ms = 0; } } if (any_ctrlr_may_become_available(nbdev_ch)) { bdev_nvme_queue_retry_io(nbdev_ch, bio, delay_ms); return; } complete: bio->retry_count = 0; spdk_bdev_io_complete_nvme_status(bdev_io, cpl->cdw0, cpl->status.sct, cpl->status.sc); } static void bdev_nvme_abort_complete(void *ctx) { struct nvme_bdev_io *bio = ctx; struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio); if (spdk_nvme_cpl_is_abort_success(&bio->cpl)) { spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS); } else { spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED); } } static void bdev_nvme_abort_done(void *ref, const struct spdk_nvme_cpl *cpl) { struct nvme_bdev_io *bio = ref; bio->cpl = *cpl; spdk_thread_send_msg(bio->orig_thread, bdev_nvme_abort_complete, bio); } static void bdev_nvme_admin_passthru_done(void *ref, const struct spdk_nvme_cpl *cpl) { struct nvme_bdev_io *bio = ref; bio->cpl = *cpl; spdk_thread_send_msg(bio->orig_thread, bdev_nvme_admin_passthru_complete_nvme_status, bio); } static void bdev_nvme_queued_reset_sgl(void *ref, uint32_t sgl_offset) { struct nvme_bdev_io *bio = ref; struct iovec *iov; bio->iov_offset = sgl_offset; for (bio->iovpos = 0; bio->iovpos < bio->iovcnt; bio->iovpos++) { iov = &bio->iovs[bio->iovpos]; if (bio->iov_offset < iov->iov_len) { break; } bio->iov_offset -= iov->iov_len; } } static int bdev_nvme_queued_next_sge(void *ref, void **address, uint32_t *length) { struct nvme_bdev_io *bio = ref; struct iovec *iov; assert(bio->iovpos < bio->iovcnt); iov = &bio->iovs[bio->iovpos]; *address = iov->iov_base; *length = iov->iov_len; if (bio->iov_offset) { assert(bio->iov_offset <= iov->iov_len); *address += bio->iov_offset; *length -= bio->iov_offset; } bio->iov_offset += *length; if (bio->iov_offset == iov->iov_len) { bio->iovpos++; bio->iov_offset = 0; } return 0; } static void bdev_nvme_queued_reset_fused_sgl(void *ref, uint32_t sgl_offset) { struct nvme_bdev_io *bio = ref; struct iovec *iov; bio->fused_iov_offset = sgl_offset; for (bio->fused_iovpos = 0; bio->fused_iovpos < bio->fused_iovcnt; bio->fused_iovpos++) { iov = &bio->fused_iovs[bio->fused_iovpos]; if (bio->fused_iov_offset < iov->iov_len) { break; } bio->fused_iov_offset -= iov->iov_len; } } static int bdev_nvme_queued_next_fused_sge(void *ref, void **address, uint32_t *length) { struct nvme_bdev_io *bio = ref; struct iovec *iov; assert(bio->fused_iovpos < bio->fused_iovcnt); iov = &bio->fused_iovs[bio->fused_iovpos]; *address = iov->iov_base; *length = iov->iov_len; if (bio->fused_iov_offset) { assert(bio->fused_iov_offset <= iov->iov_len); *address += bio->fused_iov_offset; *length -= bio->fused_iov_offset; } bio->fused_iov_offset += *length; if (bio->fused_iov_offset == iov->iov_len) { bio->fused_iovpos++; bio->fused_iov_offset = 0; } return 0; } static int bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt, void *md, uint64_t lba_count, uint64_t lba) { int rc; SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 " without PI check\n", lba_count, lba); bio->iovs = iov; bio->iovcnt = iovcnt; bio->iovpos = 0; bio->iov_offset = 0; rc = spdk_nvme_ns_cmd_readv_with_md(bio->io_path->nvme_ns->ns, bio->io_path->ctrlr_ch->qpair, lba, lba_count, bdev_nvme_no_pi_readv_done, bio, 0, bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge, md, 0, 0); if (rc != 0 && rc != -ENOMEM) { SPDK_ERRLOG("no_pi_readv failed: rc = %d\n", rc); } return rc; } static int bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt, void *md, uint64_t lba_count, uint64_t lba, uint32_t flags, struct spdk_bdev_ext_io_opts *ext_opts) { struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns; struct spdk_nvme_qpair *qpair = bio->io_path->ctrlr_ch->qpair; int rc; SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 "\n", lba_count, lba); bio->iovs = iov; bio->iovcnt = iovcnt; bio->iovpos = 0; bio->iov_offset = 0; if (ext_opts) { bio->ext_opts.size = sizeof(struct spdk_nvme_ns_cmd_ext_io_opts); bio->ext_opts.memory_domain = ext_opts->memory_domain; bio->ext_opts.memory_domain_ctx = ext_opts->memory_domain_ctx; bio->ext_opts.io_flags = flags; bio->ext_opts.metadata = md; rc = spdk_nvme_ns_cmd_readv_ext(ns, qpair, lba, lba_count, bdev_nvme_readv_done, bio, bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge, &bio->ext_opts); } else if (iovcnt == 1) { rc = spdk_nvme_ns_cmd_read_with_md(ns, qpair, iov[0].iov_base, md, lba, lba_count, bdev_nvme_readv_done, bio, flags, 0, 0); } else { rc = spdk_nvme_ns_cmd_readv_with_md(ns, qpair, lba, lba_count, bdev_nvme_readv_done, bio, flags, bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge, md, 0, 0); } if (rc != 0 && rc != -ENOMEM) { SPDK_ERRLOG("readv failed: rc = %d\n", rc); } return rc; } static int bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt, void *md, uint64_t lba_count, uint64_t lba, uint32_t flags, struct spdk_bdev_ext_io_opts *ext_opts) { struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns; struct spdk_nvme_qpair *qpair = bio->io_path->ctrlr_ch->qpair; int rc; SPDK_DEBUGLOG(bdev_nvme, "write %" PRIu64 " blocks with offset %#" PRIx64 "\n", lba_count, lba); bio->iovs = iov; bio->iovcnt = iovcnt; bio->iovpos = 0; bio->iov_offset = 0; if (ext_opts) { bio->ext_opts.size = sizeof(struct spdk_nvme_ns_cmd_ext_io_opts); bio->ext_opts.memory_domain = ext_opts->memory_domain; bio->ext_opts.memory_domain_ctx = ext_opts->memory_domain_ctx; bio->ext_opts.io_flags = flags; bio->ext_opts.metadata = md; rc = spdk_nvme_ns_cmd_writev_ext(ns, qpair, lba, lba_count, bdev_nvme_writev_done, bio, bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge, &bio->ext_opts); } else if (iovcnt == 1) { rc = spdk_nvme_ns_cmd_write_with_md(ns, qpair, iov[0].iov_base, md, lba, lba_count, bdev_nvme_writev_done, bio, flags, 0, 0); } else { rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count, bdev_nvme_writev_done, bio, flags, bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge, md, 0, 0); } if (rc != 0 && rc != -ENOMEM) { SPDK_ERRLOG("writev failed: rc = %d\n", rc); } return rc; } static int bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt, void *md, uint64_t lba_count, uint64_t zslba, uint32_t flags) { struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns; struct spdk_nvme_qpair *qpair = bio->io_path->ctrlr_ch->qpair; int rc; SPDK_DEBUGLOG(bdev_nvme, "zone append %" PRIu64 " blocks to zone start lba %#" PRIx64 "\n", lba_count, zslba); bio->iovs = iov; bio->iovcnt = iovcnt; bio->iovpos = 0; bio->iov_offset = 0; if (iovcnt == 1) { rc = spdk_nvme_zns_zone_append_with_md(ns, qpair, iov[0].iov_base, md, zslba, lba_count, bdev_nvme_zone_appendv_done, bio, flags, 0, 0); } else { rc = spdk_nvme_zns_zone_appendv_with_md(ns, qpair, zslba, lba_count, bdev_nvme_zone_appendv_done, bio, flags, bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge, md, 0, 0); } if (rc != 0 && rc != -ENOMEM) { SPDK_ERRLOG("zone append failed: rc = %d\n", rc); } return rc; } static int bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt, void *md, uint64_t lba_count, uint64_t lba, uint32_t flags) { int rc; SPDK_DEBUGLOG(bdev_nvme, "compare %" PRIu64 " blocks with offset %#" PRIx64 "\n", lba_count, lba); bio->iovs = iov; bio->iovcnt = iovcnt; bio->iovpos = 0; bio->iov_offset = 0; rc = spdk_nvme_ns_cmd_comparev_with_md(bio->io_path->nvme_ns->ns, bio->io_path->ctrlr_ch->qpair, lba, lba_count, bdev_nvme_comparev_done, bio, flags, bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge, md, 0, 0); if (rc != 0 && rc != -ENOMEM) { SPDK_ERRLOG("comparev failed: rc = %d\n", rc); } return rc; } static int bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio, struct iovec *cmp_iov, int cmp_iovcnt, struct iovec *write_iov, int write_iovcnt, void *md, uint64_t lba_count, uint64_t lba, uint32_t flags) { struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns; struct spdk_nvme_qpair *qpair = bio->io_path->ctrlr_ch->qpair; struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio); int rc; SPDK_DEBUGLOG(bdev_nvme, "compare and write %" PRIu64 " blocks with offset %#" PRIx64 "\n", lba_count, lba); bio->iovs = cmp_iov; bio->iovcnt = cmp_iovcnt; bio->iovpos = 0; bio->iov_offset = 0; bio->fused_iovs = write_iov; bio->fused_iovcnt = write_iovcnt; bio->fused_iovpos = 0; bio->fused_iov_offset = 0; if (bdev_io->num_retries == 0) { bio->first_fused_submitted = false; } if (!bio->first_fused_submitted) { flags |= SPDK_NVME_IO_FLAGS_FUSE_FIRST; memset(&bio->cpl, 0, sizeof(bio->cpl)); rc = spdk_nvme_ns_cmd_comparev_with_md(ns, qpair, lba, lba_count, bdev_nvme_comparev_and_writev_done, bio, flags, bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge, md, 0, 0); if (rc == 0) { bio->first_fused_submitted = true; flags &= ~SPDK_NVME_IO_FLAGS_FUSE_FIRST; } else { if (rc != -ENOMEM) { SPDK_ERRLOG("compare failed: rc = %d\n", rc); } return rc; } } flags |= SPDK_NVME_IO_FLAGS_FUSE_SECOND; rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count, bdev_nvme_comparev_and_writev_done, bio, flags, bdev_nvme_queued_reset_fused_sgl, bdev_nvme_queued_next_fused_sge, md, 0, 0); if (rc != 0 && rc != -ENOMEM) { SPDK_ERRLOG("write failed: rc = %d\n", rc); rc = 0; } return rc; } static int bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks) { struct spdk_nvme_dsm_range dsm_ranges[SPDK_NVME_DATASET_MANAGEMENT_MAX_RANGES]; struct spdk_nvme_dsm_range *range; uint64_t offset, remaining; uint64_t num_ranges_u64; uint16_t num_ranges; int rc; num_ranges_u64 = (num_blocks + SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS - 1) / SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS; if (num_ranges_u64 > SPDK_COUNTOF(dsm_ranges)) { SPDK_ERRLOG("Unmap request for %" PRIu64 " blocks is too large\n", num_blocks); return -EINVAL; } num_ranges = (uint16_t)num_ranges_u64; offset = offset_blocks; remaining = num_blocks; range = &dsm_ranges[0]; /* Fill max-size ranges until the remaining blocks fit into one range */ while (remaining > SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS) { range->attributes.raw = 0; range->length = SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS; range->starting_lba = offset; offset += SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS; remaining -= SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS; range++; } /* Final range describes the remaining blocks */ range->attributes.raw = 0; range->length = remaining; range->starting_lba = offset; rc = spdk_nvme_ns_cmd_dataset_management(bio->io_path->nvme_ns->ns, bio->io_path->ctrlr_ch->qpair, SPDK_NVME_DSM_ATTR_DEALLOCATE, dsm_ranges, num_ranges, bdev_nvme_queued_done, bio); return rc; } static int bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks) { if (num_blocks > UINT16_MAX + 1) { SPDK_ERRLOG("NVMe write zeroes is limited to 16-bit block count\n"); return -EINVAL; } return spdk_nvme_ns_cmd_write_zeroes(bio->io_path->nvme_ns->ns, bio->io_path->ctrlr_ch->qpair, offset_blocks, num_blocks, bdev_nvme_queued_done, bio, 0); } static int bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id, uint32_t num_zones, struct spdk_bdev_zone_info *info) { struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns; struct spdk_nvme_qpair *qpair = bio->io_path->ctrlr_ch->qpair; uint32_t zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns); uint64_t zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns); uint64_t total_zones = spdk_nvme_zns_ns_get_num_zones(ns); if (zone_id % zone_size != 0) { return -EINVAL; } if (num_zones > total_zones || !num_zones) { return -EINVAL; } assert(!bio->zone_report_buf); bio->zone_report_buf = calloc(1, zone_report_bufsize); if (!bio->zone_report_buf) { return -ENOMEM; } bio->handled_zones = 0; return spdk_nvme_zns_report_zones(ns, qpair, bio->zone_report_buf, zone_report_bufsize, zone_id, SPDK_NVME_ZRA_LIST_ALL, true, bdev_nvme_get_zone_info_done, bio); } static int bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id, enum spdk_bdev_zone_action action) { struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns; struct spdk_nvme_qpair *qpair = bio->io_path->ctrlr_ch->qpair; switch (action) { case SPDK_BDEV_ZONE_CLOSE: return spdk_nvme_zns_close_zone(ns, qpair, zone_id, false, bdev_nvme_zone_management_done, bio); case SPDK_BDEV_ZONE_FINISH: return spdk_nvme_zns_finish_zone(ns, qpair, zone_id, false, bdev_nvme_zone_management_done, bio); case SPDK_BDEV_ZONE_OPEN: return spdk_nvme_zns_open_zone(ns, qpair, zone_id, false, bdev_nvme_zone_management_done, bio); case SPDK_BDEV_ZONE_RESET: return spdk_nvme_zns_reset_zone(ns, qpair, zone_id, false, bdev_nvme_zone_management_done, bio); case SPDK_BDEV_ZONE_OFFLINE: return spdk_nvme_zns_offline_zone(ns, qpair, zone_id, false, bdev_nvme_zone_management_done, bio); default: return -EINVAL; } } static void bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes) { struct nvme_io_path *io_path; struct nvme_ctrlr *nvme_ctrlr; uint32_t max_xfer_size; int rc = -ENXIO; /* Choose the first ctrlr which is not failed. */ STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) { nvme_ctrlr = nvme_ctrlr_channel_get_ctrlr(io_path->ctrlr_ch); /* We should skip any unavailable nvme_ctrlr rather than checking * if the return value of spdk_nvme_ctrlr_cmd_admin_raw() is -ENXIO. */ if (!nvme_ctrlr_is_available(nvme_ctrlr)) { continue; } max_xfer_size = spdk_nvme_ctrlr_get_max_xfer_size(nvme_ctrlr->ctrlr); if (nbytes > max_xfer_size) { SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size); rc = -EINVAL; goto err; } bio->io_path = io_path; bio->orig_thread = spdk_get_thread(); rc = spdk_nvme_ctrlr_cmd_admin_raw(nvme_ctrlr->ctrlr, cmd, buf, (uint32_t)nbytes, bdev_nvme_admin_passthru_done, bio); if (rc == 0) { return; } } err: bdev_nvme_admin_passthru_complete(bio, rc); } static int bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes) { struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns; struct spdk_nvme_qpair *qpair = bio->io_path->ctrlr_ch->qpair; uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns); struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns); if (nbytes > max_xfer_size) { SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size); return -EINVAL; } /* * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid, * so fill it out automatically. */ cmd->nsid = spdk_nvme_ns_get_id(ns); return spdk_nvme_ctrlr_cmd_io_raw(ctrlr, qpair, cmd, buf, (uint32_t)nbytes, bdev_nvme_queued_done, bio); } static int bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes, void *md_buf, size_t md_len) { struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns; struct spdk_nvme_qpair *qpair = bio->io_path->ctrlr_ch->qpair; size_t nr_sectors = nbytes / spdk_nvme_ns_get_extended_sector_size(ns); uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns); struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns); if (nbytes > max_xfer_size) { SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size); return -EINVAL; } if (md_len != nr_sectors * spdk_nvme_ns_get_md_size(ns)) { SPDK_ERRLOG("invalid meta data buffer size\n"); return -EINVAL; } /* * Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid, * so fill it out automatically. */ cmd->nsid = spdk_nvme_ns_get_id(ns); return spdk_nvme_ctrlr_cmd_io_raw_with_md(ctrlr, qpair, cmd, buf, (uint32_t)nbytes, md_buf, bdev_nvme_queued_done, bio); } static void bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio, struct nvme_bdev_io *bio_to_abort) { struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio); struct spdk_bdev_io *bdev_io_to_abort; struct nvme_io_path *io_path; struct nvme_ctrlr *nvme_ctrlr; int rc = 0; bio->orig_thread = spdk_get_thread(); /* Traverse the retry_io_list first. */ TAILQ_FOREACH(bdev_io_to_abort, &nbdev_ch->retry_io_list, module_link) { if ((struct nvme_bdev_io *)bdev_io_to_abort->driver_ctx == bio_to_abort) { TAILQ_REMOVE(&nbdev_ch->retry_io_list, bdev_io_to_abort, module_link); spdk_bdev_io_complete(bdev_io_to_abort, SPDK_BDEV_IO_STATUS_ABORTED); spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS); return; } } /* Even admin commands, they were submitted to only nvme_ctrlrs which were * on any io_path. So traverse the io_path list for not only I/O commands * but also admin commands. */ STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) { nvme_ctrlr = nvme_ctrlr_channel_get_ctrlr(io_path->ctrlr_ch); rc = spdk_nvme_ctrlr_cmd_abort_ext(nvme_ctrlr->ctrlr, io_path->ctrlr_ch->qpair, bio_to_abort, bdev_nvme_abort_done, bio); if (rc == -ENOENT) { /* If no command was found in I/O qpair, the target command may be * admin command. */ rc = spdk_nvme_ctrlr_cmd_abort_ext(nvme_ctrlr->ctrlr, NULL, bio_to_abort, bdev_nvme_abort_done, bio); } if (rc != -ENOENT) { break; } } if (rc != 0) { /* If no command was found or there was any error, complete the abort * request with failure. */ spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED); } } static void bdev_nvme_opts_config_json(struct spdk_json_write_ctx *w) { const char *action; if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET) { action = "reset"; } else if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT) { action = "abort"; } else { action = "none"; } spdk_json_write_object_begin(w); spdk_json_write_named_string(w, "method", "bdev_nvme_set_options"); spdk_json_write_named_object_begin(w, "params"); spdk_json_write_named_string(w, "action_on_timeout", action); spdk_json_write_named_uint64(w, "timeout_us", g_opts.timeout_us); spdk_json_write_named_uint64(w, "timeout_admin_us", g_opts.timeout_admin_us); spdk_json_write_named_uint32(w, "keep_alive_timeout_ms", g_opts.keep_alive_timeout_ms); spdk_json_write_named_uint32(w, "transport_retry_count", g_opts.transport_retry_count); spdk_json_write_named_uint32(w, "arbitration_burst", g_opts.arbitration_burst); spdk_json_write_named_uint32(w, "low_priority_weight", g_opts.low_priority_weight); spdk_json_write_named_uint32(w, "medium_priority_weight", g_opts.medium_priority_weight); spdk_json_write_named_uint32(w, "high_priority_weight", g_opts.high_priority_weight); spdk_json_write_named_uint64(w, "nvme_adminq_poll_period_us", g_opts.nvme_adminq_poll_period_us); spdk_json_write_named_uint64(w, "nvme_ioq_poll_period_us", g_opts.nvme_ioq_poll_period_us); spdk_json_write_named_uint32(w, "io_queue_requests", g_opts.io_queue_requests); spdk_json_write_named_bool(w, "delay_cmd_submit", g_opts.delay_cmd_submit); spdk_json_write_named_int32(w, "bdev_retry_count", g_opts.bdev_retry_count); spdk_json_write_named_uint8(w, "transport_ack_timeout", g_opts.transport_ack_timeout); spdk_json_write_object_end(w); spdk_json_write_object_end(w); } static void nvme_ctrlr_config_json(struct spdk_json_write_ctx *w, struct nvme_ctrlr *nvme_ctrlr) { struct spdk_nvme_transport_id *trid; trid = &nvme_ctrlr->active_path_id->trid; spdk_json_write_object_begin(w); spdk_json_write_named_string(w, "method", "bdev_nvme_attach_controller"); spdk_json_write_named_object_begin(w, "params"); spdk_json_write_named_string(w, "name", nvme_ctrlr->nbdev_ctrlr->name); nvme_bdev_dump_trid_json(trid, w); spdk_json_write_named_bool(w, "prchk_reftag", (nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_REFTAG) != 0); spdk_json_write_named_bool(w, "prchk_guard", (nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_GUARD) != 0); spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", nvme_ctrlr->opts.ctrlr_loss_timeout_sec); spdk_json_write_named_uint32(w, "reconnect_delay_sec", nvme_ctrlr->opts.reconnect_delay_sec); spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec", nvme_ctrlr->opts.fast_io_fail_timeout_sec); spdk_json_write_object_end(w); spdk_json_write_object_end(w); } static void bdev_nvme_hotplug_config_json(struct spdk_json_write_ctx *w) { spdk_json_write_object_begin(w); spdk_json_write_named_string(w, "method", "bdev_nvme_set_hotplug"); spdk_json_write_named_object_begin(w, "params"); spdk_json_write_named_uint64(w, "period_us", g_nvme_hotplug_poll_period_us); spdk_json_write_named_bool(w, "enable", g_nvme_hotplug_enabled); spdk_json_write_object_end(w); spdk_json_write_object_end(w); } static int bdev_nvme_config_json(struct spdk_json_write_ctx *w) { struct nvme_bdev_ctrlr *nbdev_ctrlr; struct nvme_ctrlr *nvme_ctrlr; bdev_nvme_opts_config_json(w); pthread_mutex_lock(&g_bdev_nvme_mutex); TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) { TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) { nvme_ctrlr_config_json(w, nvme_ctrlr); } } /* Dump as last parameter to give all NVMe bdevs chance to be constructed * before enabling hotplug poller. */ bdev_nvme_hotplug_config_json(w); pthread_mutex_unlock(&g_bdev_nvme_mutex); return 0; } struct spdk_nvme_ctrlr * bdev_nvme_get_ctrlr(struct spdk_bdev *bdev) { struct nvme_bdev *nbdev; struct nvme_ns *nvme_ns; if (!bdev || bdev->module != &nvme_if) { return NULL; } nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk); nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list); assert(nvme_ns != NULL); return nvme_ns->ctrlr->ctrlr; } SPDK_LOG_REGISTER_COMPONENT(bdev_nvme)