/*- * BSD LICENSE * * Copyright (c) Intel Corporation. * All rights reserved. * * Copyright (c) 2019-2021 Mellanox Technologies LTD. All rights reserved. * Copyright (c) 2021, 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "spdk/stdinc.h" #include "spdk/env.h" #include "spdk/fd.h" #include "spdk/nvme.h" #include "spdk/vmd.h" #include "spdk/queue.h" #include "spdk/string.h" #include "spdk/nvme_intel.h" #include "spdk/histogram_data.h" #include "spdk/endian.h" #include "spdk/dif.h" #include "spdk/util.h" #include "spdk/log.h" #include "spdk/likely.h" #include "spdk/sock.h" #include "spdk/zipf.h" #ifdef SPDK_CONFIG_URING #include #endif #if HAVE_LIBAIO #include #endif struct ctrlr_entry { struct spdk_nvme_ctrlr *ctrlr; enum spdk_nvme_transport_type trtype; struct spdk_nvme_intel_rw_latency_page *latency_page; struct spdk_nvme_qpair **unused_qpairs; TAILQ_ENTRY(ctrlr_entry) link; char name[1024]; }; enum entry_type { ENTRY_TYPE_NVME_NS, ENTRY_TYPE_AIO_FILE, ENTRY_TYPE_URING_FILE, }; struct ns_fn_table; struct ns_entry { enum entry_type type; const struct ns_fn_table *fn_table; union { struct { struct spdk_nvme_ctrlr *ctrlr; struct spdk_nvme_ns *ns; } nvme; #ifdef SPDK_CONFIG_URING struct { int fd; } uring; #endif #if HAVE_LIBAIO struct { int fd; } aio; #endif } u; TAILQ_ENTRY(ns_entry) link; uint32_t io_size_blocks; uint32_t num_io_requests; uint64_t size_in_ios; uint32_t block_size; uint32_t md_size; bool md_interleave; unsigned int seed; struct spdk_zipf *zipf; bool pi_loc; enum spdk_nvme_pi_type pi_type; uint32_t io_flags; char name[1024]; }; static const double g_latency_cutoffs[] = { 0.01, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95, 0.98, 0.99, 0.995, 0.999, 0.9999, 0.99999, 0.999999, 0.9999999, -1, }; struct ns_worker_stats { uint64_t io_completed; uint64_t last_io_completed; uint64_t total_tsc; uint64_t min_tsc; uint64_t max_tsc; uint64_t last_tsc; uint64_t busy_tsc; uint64_t idle_tsc; uint64_t last_busy_tsc; uint64_t last_idle_tsc; }; struct ns_worker_ctx { struct ns_entry *entry; struct ns_worker_stats stats; uint64_t current_queue_depth; uint64_t offset_in_ios; bool is_draining; union { struct { int num_active_qpairs; int num_all_qpairs; struct spdk_nvme_qpair **qpair; struct spdk_nvme_poll_group *group; int last_qpair; } nvme; #ifdef SPDK_CONFIG_URING struct { struct io_uring ring; uint64_t io_inflight; uint64_t io_pending; struct io_uring_cqe **cqes; } uring; #endif #if HAVE_LIBAIO struct { struct io_event *events; io_context_t ctx; } aio; #endif } u; TAILQ_ENTRY(ns_worker_ctx) link; struct spdk_histogram_data *histogram; }; struct perf_task { struct ns_worker_ctx *ns_ctx; struct iovec *iovs; /* array of iovecs to transfer. */ int iovcnt; /* Number of iovecs in iovs array. */ int iovpos; /* Current iovec position. */ uint32_t iov_offset; /* Offset in current iovec. */ struct iovec md_iov; uint64_t submit_tsc; bool is_read; struct spdk_dif_ctx dif_ctx; #if HAVE_LIBAIO struct iocb iocb; #endif }; struct worker_thread { TAILQ_HEAD(, ns_worker_ctx) ns_ctx; TAILQ_ENTRY(worker_thread) link; unsigned lcore; }; struct ns_fn_table { void (*setup_payload)(struct perf_task *task, uint8_t pattern); int (*submit_io)(struct perf_task *task, struct ns_worker_ctx *ns_ctx, struct ns_entry *entry, uint64_t offset_in_ios); int64_t (*check_io)(struct ns_worker_ctx *ns_ctx); void (*verify_io)(struct perf_task *task, struct ns_entry *entry); int (*init_ns_worker_ctx)(struct ns_worker_ctx *ns_ctx); void (*cleanup_ns_worker_ctx)(struct ns_worker_ctx *ns_ctx); void (*dump_transport_stats)(uint32_t lcore, struct ns_worker_ctx *ns_ctx); }; static uint32_t g_io_unit_size = (UINT32_MAX & (~0x03)); static int g_outstanding_commands; static bool g_latency_ssd_tracking_enable; static int g_latency_sw_tracking_level; static bool g_vmd; static const char *g_workload_type; static TAILQ_HEAD(, ctrlr_entry) g_controllers = TAILQ_HEAD_INITIALIZER(g_controllers); static TAILQ_HEAD(, ns_entry) g_namespaces = TAILQ_HEAD_INITIALIZER(g_namespaces); static int g_num_namespaces; static TAILQ_HEAD(, worker_thread) g_workers = TAILQ_HEAD_INITIALIZER(g_workers); static int g_num_workers = 0; static uint32_t g_main_core; static pthread_barrier_t g_worker_sync_barrier; static uint64_t g_tsc_rate; static bool g_monitor_perf_cores = false; static uint32_t g_io_align = 0x200; static bool g_io_align_specified; static uint32_t g_io_size_bytes; static uint32_t g_max_io_md_size; static uint32_t g_max_io_size_blocks; static uint32_t g_metacfg_pract_flag; static uint32_t g_metacfg_prchk_flags; static int g_rw_percentage = -1; static int g_is_random; static int g_queue_depth; static int g_nr_io_queues_per_ns = 1; static int g_nr_unused_io_queues; static int g_time_in_sec; static uint64_t g_elapsed_time_in_usec; static int g_warmup_time_in_sec; static uint32_t g_max_completions; static uint32_t g_disable_sq_cmb; static bool g_use_uring; static bool g_warn; static bool g_header_digest; static bool g_data_digest; static bool g_no_shn_notification; static bool g_mix_specified; /* The flag is used to exit the program while keep alive fails on the transport */ static bool g_exit; /* Default to 10 seconds for the keep alive value. This value is arbitrary. */ static uint32_t g_keep_alive_timeout_in_ms = 10000; static uint32_t g_quiet_count = 1; static double g_zipf_theta; /* Set default io_queue_size to UINT16_MAX, NVMe driver will then reduce this * to MQES to maximize the io_queue_size as much as possible. */ static uint32_t g_io_queue_size = UINT16_MAX; /* When user specifies -Q, some error messages are rate limited. When rate * limited, we only print the error message every g_quiet_count times the * error occurs. * * Note: the __count is not thread safe, meaning the rate limiting will not * be exact when running perf with multiple thread with lots of errors. * Thread-local __count would mean rate-limiting per thread which doesn't * seem as useful. */ #define RATELIMIT_LOG(...) \ { \ static uint64_t __count = 0; \ if ((__count % g_quiet_count) == 0) { \ if (__count > 0 && g_quiet_count > 1) { \ fprintf(stderr, "Message suppressed %" PRIu32 " times: ", \ g_quiet_count - 1); \ } \ fprintf(stderr, __VA_ARGS__); \ } \ __count++; \ } static bool g_dump_transport_stats; static pthread_mutex_t g_stats_mutex; #define MAX_ALLOWED_PCI_DEVICE_NUM 128 static struct spdk_pci_addr g_allowed_pci_addr[MAX_ALLOWED_PCI_DEVICE_NUM]; struct trid_entry { struct spdk_nvme_transport_id trid; uint16_t nsid; char hostnqn[SPDK_NVMF_NQN_MAX_LEN + 1]; TAILQ_ENTRY(trid_entry) tailq; }; static TAILQ_HEAD(, trid_entry) g_trid_list = TAILQ_HEAD_INITIALIZER(g_trid_list); static int g_file_optind; /* Index of first filename in argv */ static inline void task_complete(struct perf_task *task); static void perf_set_sock_zcopy(const char *impl_name, bool enable) { struct spdk_sock_impl_opts sock_opts = {}; size_t opts_size = sizeof(sock_opts); int rc; rc = spdk_sock_impl_get_opts(impl_name, &sock_opts, &opts_size); if (rc != 0) { if (errno == EINVAL) { fprintf(stderr, "Unknown sock impl %s\n", impl_name); } else { fprintf(stderr, "Failed to get opts for sock impl %s: error %d (%s)\n", impl_name, errno, strerror(errno)); } return; } if (opts_size != sizeof(sock_opts)) { fprintf(stderr, "Warning: sock_opts size mismatch. Expected %zu, received %zu\n", sizeof(sock_opts), opts_size); opts_size = sizeof(sock_opts); } sock_opts.enable_zerocopy_send_client = enable; if (spdk_sock_impl_set_opts(impl_name, &sock_opts, opts_size)) { fprintf(stderr, "Failed to %s zcopy send for sock impl %s: error %d (%s)\n", enable ? "enable" : "disable", impl_name, errno, strerror(errno)); } } static void nvme_perf_reset_sgl(void *ref, uint32_t sgl_offset) { struct iovec *iov; struct perf_task *task = (struct perf_task *)ref; task->iov_offset = sgl_offset; for (task->iovpos = 0; task->iovpos < task->iovcnt; task->iovpos++) { iov = &task->iovs[task->iovpos]; if (task->iov_offset < iov->iov_len) { break; } task->iov_offset -= iov->iov_len; } } static int nvme_perf_next_sge(void *ref, void **address, uint32_t *length) { struct iovec *iov; struct perf_task *task = (struct perf_task *)ref; assert(task->iovpos < task->iovcnt); iov = &task->iovs[task->iovpos]; assert(task->iov_offset <= iov->iov_len); *address = iov->iov_base + task->iov_offset; *length = iov->iov_len - task->iov_offset; task->iovpos++; task->iov_offset = 0; return 0; } static int nvme_perf_allocate_iovs(struct perf_task *task, void *buf, uint32_t length) { int iovpos = 0; struct iovec *iov; uint32_t offset = 0; task->iovcnt = SPDK_CEIL_DIV(length, (uint64_t)g_io_unit_size); task->iovs = calloc(task->iovcnt, sizeof(struct iovec)); if (!task->iovs) { return -1; } while (length > 0) { iov = &task->iovs[iovpos]; iov->iov_len = spdk_min(length, g_io_unit_size); iov->iov_base = buf + offset; length -= iov->iov_len; offset += iov->iov_len; iovpos++; } return 0; } #ifdef SPDK_CONFIG_URING static void uring_setup_payload(struct perf_task *task, uint8_t pattern) { struct iovec *iov; task->iovs = calloc(1, sizeof(struct iovec)); if (!task->iovs) { fprintf(stderr, "perf task failed to allocate iovs\n"); exit(1); } task->iovcnt = 1; iov = &task->iovs[0]; iov->iov_base = spdk_dma_zmalloc(g_io_size_bytes, g_io_align, NULL); iov->iov_len = g_io_size_bytes; if (iov->iov_base == NULL) { fprintf(stderr, "spdk_dma_zmalloc() for task->iovs[0].iov_base failed\n"); free(task->iovs); exit(1); } memset(iov->iov_base, pattern, iov->iov_len); } static int uring_submit_io(struct perf_task *task, struct ns_worker_ctx *ns_ctx, struct ns_entry *entry, uint64_t offset_in_ios) { struct io_uring_sqe *sqe; sqe = io_uring_get_sqe(&ns_ctx->u.uring.ring); if (!sqe) { fprintf(stderr, "Cannot get sqe\n"); return -1; } if (task->is_read) { io_uring_prep_readv(sqe, entry->u.uring.fd, task->iovs, 1, offset_in_ios * task->iovs[0].iov_len); } else { io_uring_prep_writev(sqe, entry->u.uring.fd, task->iovs, 1, offset_in_ios * task->iovs[0].iov_len); } io_uring_sqe_set_data(sqe, task); ns_ctx->u.uring.io_pending++; return 0; } static int64_t uring_check_io(struct ns_worker_ctx *ns_ctx) { int i, to_complete, to_submit, count = 0, ret = 0; struct perf_task *task; to_submit = ns_ctx->u.uring.io_pending; if (to_submit > 0) { /* If there are I/O to submit, use io_uring_submit here. * It will automatically call spdk_io_uring_enter appropriately. */ ret = io_uring_submit(&ns_ctx->u.uring.ring); if (ret < 0) { return -1; } ns_ctx->u.uring.io_pending = 0; ns_ctx->u.uring.io_inflight += to_submit; } to_complete = ns_ctx->u.uring.io_inflight; if (to_complete > 0) { count = io_uring_peek_batch_cqe(&ns_ctx->u.uring.ring, ns_ctx->u.uring.cqes, to_complete); ns_ctx->u.uring.io_inflight -= count; for (i = 0; i < count; i++) { assert(ns_ctx->u.uring.cqes[i] != NULL); task = (struct perf_task *)ns_ctx->u.uring.cqes[i]->user_data; if (ns_ctx->u.uring.cqes[i]->res != (int)task->iovs[0].iov_len) { fprintf(stderr, "cqe[i]->status=%d\n", ns_ctx->u.uring.cqes[i]->res); exit(0); } io_uring_cqe_seen(&ns_ctx->u.uring.ring, ns_ctx->u.uring.cqes[i]); task_complete(task); } } return count; } static void uring_verify_io(struct perf_task *task, struct ns_entry *entry) { } static int uring_init_ns_worker_ctx(struct ns_worker_ctx *ns_ctx) { if (io_uring_queue_init(g_queue_depth, &ns_ctx->u.uring.ring, 0) < 0) { SPDK_ERRLOG("uring I/O context setup failure\n"); return -1; } ns_ctx->u.uring.cqes = calloc(g_queue_depth, sizeof(struct io_uring_cqe *)); if (!ns_ctx->u.uring.cqes) { io_uring_queue_exit(&ns_ctx->u.uring.ring); return -1; } return 0; } static void uring_cleanup_ns_worker_ctx(struct ns_worker_ctx *ns_ctx) { io_uring_queue_exit(&ns_ctx->u.uring.ring); free(ns_ctx->u.uring.cqes); } static const struct ns_fn_table uring_fn_table = { .setup_payload = uring_setup_payload, .submit_io = uring_submit_io, .check_io = uring_check_io, .verify_io = uring_verify_io, .init_ns_worker_ctx = uring_init_ns_worker_ctx, .cleanup_ns_worker_ctx = uring_cleanup_ns_worker_ctx, }; #endif #ifdef HAVE_LIBAIO static void aio_setup_payload(struct perf_task *task, uint8_t pattern) { struct iovec *iov; task->iovs = calloc(1, sizeof(struct iovec)); if (!task->iovs) { fprintf(stderr, "perf task failed to allocate iovs\n"); exit(1); } task->iovcnt = 1; iov = &task->iovs[0]; iov->iov_base = spdk_dma_zmalloc(g_io_size_bytes, g_io_align, NULL); iov->iov_len = g_io_size_bytes; if (iov->iov_base == NULL) { fprintf(stderr, "spdk_dma_zmalloc() for task->iovs[0].iov_base failed\n"); free(task->iovs); exit(1); } memset(iov->iov_base, pattern, iov->iov_len); } static int aio_submit(io_context_t aio_ctx, struct iocb *iocb, int fd, enum io_iocb_cmd cmd, struct iovec *iov, uint64_t offset, void *cb_ctx) { iocb->aio_fildes = fd; iocb->aio_reqprio = 0; iocb->aio_lio_opcode = cmd; iocb->u.c.buf = iov->iov_base; iocb->u.c.nbytes = iov->iov_len; iocb->u.c.offset = offset * iov->iov_len; iocb->data = cb_ctx; if (io_submit(aio_ctx, 1, &iocb) < 0) { printf("io_submit"); return -1; } return 0; } static int aio_submit_io(struct perf_task *task, struct ns_worker_ctx *ns_ctx, struct ns_entry *entry, uint64_t offset_in_ios) { if (task->is_read) { return aio_submit(ns_ctx->u.aio.ctx, &task->iocb, entry->u.aio.fd, IO_CMD_PREAD, task->iovs, offset_in_ios, task); } else { return aio_submit(ns_ctx->u.aio.ctx, &task->iocb, entry->u.aio.fd, IO_CMD_PWRITE, task->iovs, offset_in_ios, task); } } static int64_t aio_check_io(struct ns_worker_ctx *ns_ctx) { int count, i; struct timespec timeout; timeout.tv_sec = 0; timeout.tv_nsec = 0; count = io_getevents(ns_ctx->u.aio.ctx, 1, g_queue_depth, ns_ctx->u.aio.events, &timeout); if (count < 0) { fprintf(stderr, "io_getevents error\n"); exit(1); } for (i = 0; i < count; i++) { task_complete(ns_ctx->u.aio.events[i].data); } return count; } static void aio_verify_io(struct perf_task *task, struct ns_entry *entry) { } static int aio_init_ns_worker_ctx(struct ns_worker_ctx *ns_ctx) { ns_ctx->u.aio.events = calloc(g_queue_depth, sizeof(struct io_event)); if (!ns_ctx->u.aio.events) { return -1; } ns_ctx->u.aio.ctx = 0; if (io_setup(g_queue_depth, &ns_ctx->u.aio.ctx) < 0) { free(ns_ctx->u.aio.events); perror("io_setup"); return -1; } return 0; } static void aio_cleanup_ns_worker_ctx(struct ns_worker_ctx *ns_ctx) { io_destroy(ns_ctx->u.aio.ctx); free(ns_ctx->u.aio.events); } static const struct ns_fn_table aio_fn_table = { .setup_payload = aio_setup_payload, .submit_io = aio_submit_io, .check_io = aio_check_io, .verify_io = aio_verify_io, .init_ns_worker_ctx = aio_init_ns_worker_ctx, .cleanup_ns_worker_ctx = aio_cleanup_ns_worker_ctx, }; #endif /* HAVE_LIBAIO */ #if defined(HAVE_LIBAIO) || defined(SPDK_CONFIG_URING) static int register_file(const char *path) { struct ns_entry *entry; int flags, fd; uint64_t size; uint32_t blklen; if (g_rw_percentage == 100) { flags = O_RDONLY; } else if (g_rw_percentage == 0) { flags = O_WRONLY; } else { flags = O_RDWR; } flags |= O_DIRECT; fd = open(path, flags); if (fd < 0) { fprintf(stderr, "Could not open device %s: %s\n", path, strerror(errno)); return -1; } size = spdk_fd_get_size(fd); if (size == 0) { fprintf(stderr, "Could not determine size of device %s\n", path); close(fd); return -1; } blklen = spdk_fd_get_blocklen(fd); if (blklen == 0) { fprintf(stderr, "Could not determine block size of device %s\n", path); close(fd); return -1; } /* * TODO: This should really calculate the LCM of the current g_io_align and blklen. * For now, it's fairly safe to just assume all block sizes are powers of 2. */ if (g_io_align < blklen) { if (g_io_align_specified) { fprintf(stderr, "Wrong IO alignment (%u). aio requires block-sized alignment (%u)\n", g_io_align, blklen); close(fd); return -1; } g_io_align = blklen; } entry = malloc(sizeof(struct ns_entry)); if (entry == NULL) { close(fd); perror("ns_entry malloc"); return -1; } if (g_use_uring) { #ifdef SPDK_CONFIG_URING entry->type = ENTRY_TYPE_URING_FILE; entry->fn_table = &uring_fn_table; entry->u.uring.fd = fd; #endif } else { #if HAVE_LIBAIO entry->type = ENTRY_TYPE_AIO_FILE; entry->fn_table = &aio_fn_table; entry->u.aio.fd = fd; #endif } entry->size_in_ios = size / g_io_size_bytes; entry->io_size_blocks = g_io_size_bytes / blklen; if (g_is_random && g_zipf_theta > 0) { entry->zipf = spdk_zipf_create(entry->size_in_ios, g_zipf_theta, 0); } snprintf(entry->name, sizeof(entry->name), "%s", path); g_num_namespaces++; TAILQ_INSERT_TAIL(&g_namespaces, entry, link); return 0; } static int register_files(int argc, char **argv) { int i; /* Treat everything after the options as files for AIO/URING */ for (i = g_file_optind; i < argc; i++) { if (register_file(argv[i]) != 0) { return 1; } } return 0; } #endif static void io_complete(void *ctx, const struct spdk_nvme_cpl *cpl); static void nvme_setup_payload(struct perf_task *task, uint8_t pattern) { uint32_t max_io_size_bytes, max_io_md_size; void *buf; int rc; /* maximum extended lba format size from all active namespace, * it's same with g_io_size_bytes for namespace without metadata. */ max_io_size_bytes = g_io_size_bytes + g_max_io_md_size * g_max_io_size_blocks; buf = spdk_dma_zmalloc(max_io_size_bytes, g_io_align, NULL); if (buf == NULL) { fprintf(stderr, "task->buf spdk_dma_zmalloc failed\n"); exit(1); } memset(buf, pattern, max_io_size_bytes); rc = nvme_perf_allocate_iovs(task, buf, max_io_size_bytes); if (rc < 0) { fprintf(stderr, "perf task failed to allocate iovs\n"); spdk_dma_free(buf); exit(1); } max_io_md_size = g_max_io_md_size * g_max_io_size_blocks; if (max_io_md_size != 0) { task->md_iov.iov_base = spdk_dma_zmalloc(max_io_md_size, g_io_align, NULL); task->md_iov.iov_len = max_io_md_size; if (task->md_iov.iov_base == NULL) { fprintf(stderr, "task->md_buf spdk_dma_zmalloc failed\n"); spdk_dma_free(task->iovs[0].iov_base); free(task->iovs); exit(1); } } } static int nvme_submit_io(struct perf_task *task, struct ns_worker_ctx *ns_ctx, struct ns_entry *entry, uint64_t offset_in_ios) { uint64_t lba; int rc; int qp_num; enum dif_mode { DIF_MODE_NONE = 0, DIF_MODE_DIF = 1, DIF_MODE_DIX = 2, } mode = DIF_MODE_NONE; lba = offset_in_ios * entry->io_size_blocks; if (entry->md_size != 0 && !(entry->io_flags & SPDK_NVME_IO_FLAGS_PRACT)) { if (entry->md_interleave) { mode = DIF_MODE_DIF; } else { mode = DIF_MODE_DIX; } } qp_num = ns_ctx->u.nvme.last_qpair; ns_ctx->u.nvme.last_qpair++; if (ns_ctx->u.nvme.last_qpair == ns_ctx->u.nvme.num_active_qpairs) { ns_ctx->u.nvme.last_qpair = 0; } if (mode != DIF_MODE_NONE) { rc = spdk_dif_ctx_init(&task->dif_ctx, entry->block_size, entry->md_size, entry->md_interleave, entry->pi_loc, (enum spdk_dif_type)entry->pi_type, entry->io_flags, lba, 0xFFFF, (uint16_t)entry->io_size_blocks, 0, 0); if (rc != 0) { fprintf(stderr, "Initialization of DIF context failed\n"); exit(1); } } if (task->is_read) { if (task->iovcnt == 1) { return spdk_nvme_ns_cmd_read_with_md(entry->u.nvme.ns, ns_ctx->u.nvme.qpair[qp_num], task->iovs[0].iov_base, task->md_iov.iov_base, lba, entry->io_size_blocks, io_complete, task, entry->io_flags, task->dif_ctx.apptag_mask, task->dif_ctx.app_tag); } else { return spdk_nvme_ns_cmd_readv_with_md(entry->u.nvme.ns, ns_ctx->u.nvme.qpair[qp_num], lba, entry->io_size_blocks, io_complete, task, entry->io_flags, nvme_perf_reset_sgl, nvme_perf_next_sge, task->md_iov.iov_base, task->dif_ctx.apptag_mask, task->dif_ctx.app_tag); } } else { switch (mode) { case DIF_MODE_DIF: rc = spdk_dif_generate(task->iovs, task->iovcnt, entry->io_size_blocks, &task->dif_ctx); if (rc != 0) { fprintf(stderr, "Generation of DIF failed\n"); return rc; } break; case DIF_MODE_DIX: rc = spdk_dix_generate(task->iovs, task->iovcnt, &task->md_iov, entry->io_size_blocks, &task->dif_ctx); if (rc != 0) { fprintf(stderr, "Generation of DIX failed\n"); return rc; } break; default: break; } if (task->iovcnt == 1) { return spdk_nvme_ns_cmd_write_with_md(entry->u.nvme.ns, ns_ctx->u.nvme.qpair[qp_num], task->iovs[0].iov_base, task->md_iov.iov_base, lba, entry->io_size_blocks, io_complete, task, entry->io_flags, task->dif_ctx.apptag_mask, task->dif_ctx.app_tag); } else { return spdk_nvme_ns_cmd_writev_with_md(entry->u.nvme.ns, ns_ctx->u.nvme.qpair[qp_num], lba, entry->io_size_blocks, io_complete, task, entry->io_flags, nvme_perf_reset_sgl, nvme_perf_next_sge, task->md_iov.iov_base, task->dif_ctx.apptag_mask, task->dif_ctx.app_tag); } } } static void perf_disconnect_cb(struct spdk_nvme_qpair *qpair, void *ctx) { } static int64_t nvme_check_io(struct ns_worker_ctx *ns_ctx) { int64_t rc; rc = spdk_nvme_poll_group_process_completions(ns_ctx->u.nvme.group, g_max_completions, perf_disconnect_cb); if (rc < 0) { fprintf(stderr, "NVMe io qpair process completion error\n"); exit(1); } return rc; } static void nvme_verify_io(struct perf_task *task, struct ns_entry *entry) { struct spdk_dif_error err_blk = {}; int rc; if (!task->is_read || (entry->io_flags & SPDK_NVME_IO_FLAGS_PRACT)) { return; } if (entry->md_interleave) { rc = spdk_dif_verify(task->iovs, task->iovcnt, entry->io_size_blocks, &task->dif_ctx, &err_blk); if (rc != 0) { fprintf(stderr, "DIF error detected. type=%d, offset=%" PRIu32 "\n", err_blk.err_type, err_blk.err_offset); } } else { rc = spdk_dix_verify(task->iovs, task->iovcnt, &task->md_iov, entry->io_size_blocks, &task->dif_ctx, &err_blk); if (rc != 0) { fprintf(stderr, "DIX error detected. type=%d, offset=%" PRIu32 "\n", err_blk.err_type, err_blk.err_offset); } } } /* * TODO: If a controller has multiple namespaces, they could all use the same queue. * For now, give each namespace/thread combination its own queue. */ static int nvme_init_ns_worker_ctx(struct ns_worker_ctx *ns_ctx) { struct spdk_nvme_io_qpair_opts opts; struct ns_entry *entry = ns_ctx->entry; struct spdk_nvme_poll_group *group; struct spdk_nvme_qpair *qpair; int i; ns_ctx->u.nvme.num_active_qpairs = g_nr_io_queues_per_ns; ns_ctx->u.nvme.num_all_qpairs = g_nr_io_queues_per_ns + g_nr_unused_io_queues; ns_ctx->u.nvme.qpair = calloc(ns_ctx->u.nvme.num_all_qpairs, sizeof(struct spdk_nvme_qpair *)); if (!ns_ctx->u.nvme.qpair) { return -1; } spdk_nvme_ctrlr_get_default_io_qpair_opts(entry->u.nvme.ctrlr, &opts, sizeof(opts)); if (opts.io_queue_requests < entry->num_io_requests) { opts.io_queue_requests = entry->num_io_requests; } opts.delay_cmd_submit = true; opts.create_only = true; ns_ctx->u.nvme.group = spdk_nvme_poll_group_create(NULL, NULL); if (ns_ctx->u.nvme.group == NULL) { goto poll_group_failed; } group = ns_ctx->u.nvme.group; for (i = 0; i < ns_ctx->u.nvme.num_all_qpairs; i++) { ns_ctx->u.nvme.qpair[i] = spdk_nvme_ctrlr_alloc_io_qpair(entry->u.nvme.ctrlr, &opts, sizeof(opts)); qpair = ns_ctx->u.nvme.qpair[i]; if (!qpair) { printf("ERROR: spdk_nvme_ctrlr_alloc_io_qpair failed\n"); goto qpair_failed; } if (spdk_nvme_poll_group_add(group, qpair)) { printf("ERROR: unable to add I/O qpair to poll group.\n"); spdk_nvme_ctrlr_free_io_qpair(qpair); goto qpair_failed; } if (spdk_nvme_ctrlr_connect_io_qpair(entry->u.nvme.ctrlr, qpair)) { printf("ERROR: unable to connect I/O qpair.\n"); spdk_nvme_ctrlr_free_io_qpair(qpair); goto qpair_failed; } } return 0; qpair_failed: for (; i > 0; --i) { spdk_nvme_ctrlr_free_io_qpair(ns_ctx->u.nvme.qpair[i - 1]); } spdk_nvme_poll_group_destroy(ns_ctx->u.nvme.group); poll_group_failed: free(ns_ctx->u.nvme.qpair); return -1; } static void nvme_cleanup_ns_worker_ctx(struct ns_worker_ctx *ns_ctx) { int i; for (i = 0; i < ns_ctx->u.nvme.num_all_qpairs; i++) { spdk_nvme_ctrlr_free_io_qpair(ns_ctx->u.nvme.qpair[i]); } spdk_nvme_poll_group_destroy(ns_ctx->u.nvme.group); free(ns_ctx->u.nvme.qpair); } static void nvme_dump_rdma_statistics(struct spdk_nvme_transport_poll_group_stat *stat) { struct spdk_nvme_rdma_device_stat *device_stats; uint32_t i; printf("RDMA transport:\n"); for (i = 0; i < stat->rdma.num_devices; i++) { device_stats = &stat->rdma.device_stats[i]; printf("\tdev name: %s\n", device_stats->name); printf("\tpolls: %"PRIu64"\n", device_stats->polls); printf("\tidle_polls: %"PRIu64"\n", device_stats->idle_polls); printf("\tcompletions: %"PRIu64"\n", device_stats->completions); printf("\tqueued_requests: %"PRIu64"\n", device_stats->queued_requests); printf("\ttotal_send_wrs: %"PRIu64"\n", device_stats->total_send_wrs); printf("\tsend_doorbell_updates: %"PRIu64"\n", device_stats->send_doorbell_updates); printf("\ttotal_recv_wrs: %"PRIu64"\n", device_stats->total_recv_wrs); printf("\trecv_doorbell_updates: %"PRIu64"\n", device_stats->recv_doorbell_updates); printf("\t---------------------------------\n"); } } static void nvme_dump_pcie_statistics(struct spdk_nvme_transport_poll_group_stat *stat) { struct spdk_nvme_pcie_stat *pcie_stat; pcie_stat = &stat->pcie; printf("PCIE transport:\n"); printf("\tpolls: %"PRIu64"\n", pcie_stat->polls); printf("\tidle_polls: %"PRIu64"\n", pcie_stat->idle_polls); printf("\tcompletions: %"PRIu64"\n", pcie_stat->completions); printf("\tcq_mmio_doorbell_updates: %"PRIu64"\n", pcie_stat->cq_mmio_doorbell_updates); printf("\tcq_shadow_doorbell_updates: %"PRIu64"\n", pcie_stat->cq_shadow_doorbell_updates); printf("\tsubmitted_requests: %"PRIu64"\n", pcie_stat->submitted_requests); printf("\tsq_mmio_doorbell_updates: %"PRIu64"\n", pcie_stat->sq_mmio_doorbell_updates); printf("\tsq_shadow_doorbell_updates: %"PRIu64"\n", pcie_stat->sq_shadow_doorbell_updates); printf("\tqueued_requests: %"PRIu64"\n", pcie_stat->queued_requests); } static void nvme_dump_tcp_statistics(struct spdk_nvme_transport_poll_group_stat *stat) { struct spdk_nvme_tcp_stat *tcp_stat; tcp_stat = &stat->tcp; printf("TCP transport:\n"); printf("\tpolls: %"PRIu64"\n", tcp_stat->polls); printf("\tidle_polls: %"PRIu64"\n", tcp_stat->idle_polls); printf("\tsock_completions: %"PRIu64"\n", tcp_stat->socket_completions); printf("\tnvme_completions: %"PRIu64"\n", tcp_stat->nvme_completions); printf("\tsubmitted_requests: %"PRIu64"\n", tcp_stat->submitted_requests); printf("\tqueued_requests: %"PRIu64"\n", tcp_stat->queued_requests); } static void nvme_dump_transport_stats(uint32_t lcore, struct ns_worker_ctx *ns_ctx) { struct spdk_nvme_poll_group *group; struct spdk_nvme_poll_group_stat *stat = NULL; uint32_t i; int rc; group = ns_ctx->u.nvme.group; if (group == NULL) { return; } rc = spdk_nvme_poll_group_get_stats(group, &stat); if (rc) { fprintf(stderr, "Can't get transport stats, error %d\n", rc); return; } printf("\n====================\n"); printf("lcore %u, ns %s statistics:\n", lcore, ns_ctx->entry->name); for (i = 0; i < stat->num_transports; i++) { switch (stat->transport_stat[i]->trtype) { case SPDK_NVME_TRANSPORT_RDMA: nvme_dump_rdma_statistics(stat->transport_stat[i]); break; case SPDK_NVME_TRANSPORT_PCIE: nvme_dump_pcie_statistics(stat->transport_stat[i]); break; case SPDK_NVME_TRANSPORT_TCP: nvme_dump_tcp_statistics(stat->transport_stat[i]); break; default: fprintf(stderr, "Unknown transport statistics %d %s\n", stat->transport_stat[i]->trtype, spdk_nvme_transport_id_trtype_str(stat->transport_stat[i]->trtype)); } } spdk_nvme_poll_group_free_stats(group, stat); } static const struct ns_fn_table nvme_fn_table = { .setup_payload = nvme_setup_payload, .submit_io = nvme_submit_io, .check_io = nvme_check_io, .verify_io = nvme_verify_io, .init_ns_worker_ctx = nvme_init_ns_worker_ctx, .cleanup_ns_worker_ctx = nvme_cleanup_ns_worker_ctx, .dump_transport_stats = nvme_dump_transport_stats }; static int build_nvme_name(char *name, size_t length, struct spdk_nvme_ctrlr *ctrlr) { const struct spdk_nvme_transport_id *trid; int res = 0; trid = spdk_nvme_ctrlr_get_transport_id(ctrlr); switch (trid->trtype) { case SPDK_NVME_TRANSPORT_PCIE: res = snprintf(name, length, "PCIE (%s)", trid->traddr); break; case SPDK_NVME_TRANSPORT_RDMA: res = snprintf(name, length, "RDMA (addr:%s subnqn:%s)", trid->traddr, trid->subnqn); break; case SPDK_NVME_TRANSPORT_TCP: res = snprintf(name, length, "TCP (addr:%s subnqn:%s)", trid->traddr, trid->subnqn); break; case SPDK_NVME_TRANSPORT_VFIOUSER: res = snprintf(name, length, "VFIOUSER (%s)", trid->traddr); break; case SPDK_NVME_TRANSPORT_CUSTOM: res = snprintf(name, length, "CUSTOM (%s)", trid->traddr); break; default: fprintf(stderr, "Unknown transport type %d\n", trid->trtype); break; } return res; } static void build_nvme_ns_name(char *name, size_t length, struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid) { int res = 0; res = build_nvme_name(name, length, ctrlr); if (res > 0) { snprintf(name + res, length - res, " NSID %u", nsid); } } static void register_ns(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns) { struct ns_entry *entry; const struct spdk_nvme_ctrlr_data *cdata; uint32_t max_xfer_size, entries, sector_size; uint64_t ns_size; struct spdk_nvme_io_qpair_opts opts; cdata = spdk_nvme_ctrlr_get_data(ctrlr); if (!spdk_nvme_ns_is_active(ns)) { printf("Controller %-20.20s (%-20.20s): Skipping inactive NS %u\n", cdata->mn, cdata->sn, spdk_nvme_ns_get_id(ns)); g_warn = true; return; } ns_size = spdk_nvme_ns_get_size(ns); sector_size = spdk_nvme_ns_get_sector_size(ns); if (ns_size < g_io_size_bytes || sector_size > g_io_size_bytes) { printf("WARNING: controller %-20.20s (%-20.20s) ns %u has invalid " "ns size %" PRIu64 " / block size %u for I/O size %u\n", cdata->mn, cdata->sn, spdk_nvme_ns_get_id(ns), ns_size, spdk_nvme_ns_get_sector_size(ns), g_io_size_bytes); g_warn = true; return; } if (g_io_size_bytes % sector_size != 0) { printf("WARNING: IO size %u (-o) is not a multiple of nsid %u sector size %u." " Removing this ns from test\n", g_io_size_bytes, spdk_nvme_ns_get_id(ns), sector_size); g_warn = true; return; } max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns); spdk_nvme_ctrlr_get_default_io_qpair_opts(ctrlr, &opts, sizeof(opts)); /* NVMe driver may add additional entries based on * stripe size and maximum transfer size, we assume * 1 more entry be used for stripe. */ entries = (g_io_size_bytes - 1) / max_xfer_size + 2; if ((g_queue_depth * entries) > opts.io_queue_size) { printf("controller IO queue size %u less than required\n", opts.io_queue_size); printf("Consider using lower queue depth or small IO size because " "IO requests may be queued at the NVMe driver.\n"); } /* For requests which have children requests, parent request itself * will also occupy 1 entry. */ entries += 1; entry = calloc(1, sizeof(struct ns_entry)); if (entry == NULL) { perror("ns_entry malloc"); exit(1); } entry->type = ENTRY_TYPE_NVME_NS; entry->fn_table = &nvme_fn_table; entry->u.nvme.ctrlr = ctrlr; entry->u.nvme.ns = ns; entry->num_io_requests = g_queue_depth * entries; entry->size_in_ios = ns_size / g_io_size_bytes; entry->io_size_blocks = g_io_size_bytes / sector_size; if (g_is_random && g_zipf_theta > 0) { entry->zipf = spdk_zipf_create(entry->size_in_ios, g_zipf_theta, 0); } entry->block_size = spdk_nvme_ns_get_extended_sector_size(ns); entry->md_size = spdk_nvme_ns_get_md_size(ns); entry->md_interleave = spdk_nvme_ns_supports_extended_lba(ns); entry->pi_loc = spdk_nvme_ns_get_data(ns)->dps.md_start; entry->pi_type = spdk_nvme_ns_get_pi_type(ns); if (spdk_nvme_ns_get_flags(ns) & SPDK_NVME_NS_DPS_PI_SUPPORTED) { entry->io_flags = g_metacfg_pract_flag | g_metacfg_prchk_flags; } /* If metadata size = 8 bytes, PI is stripped (read) or inserted (write), * and so reduce metadata size from block size. (If metadata size > 8 bytes, * PI is passed (read) or replaced (write). So block size is not necessary * to change.) */ if ((entry->io_flags & SPDK_NVME_IO_FLAGS_PRACT) && (entry->md_size == 8)) { entry->block_size = spdk_nvme_ns_get_sector_size(ns); } if (g_max_io_md_size < entry->md_size) { g_max_io_md_size = entry->md_size; } if (g_max_io_size_blocks < entry->io_size_blocks) { g_max_io_size_blocks = entry->io_size_blocks; } build_nvme_ns_name(entry->name, sizeof(entry->name), ctrlr, spdk_nvme_ns_get_id(ns)); g_num_namespaces++; TAILQ_INSERT_TAIL(&g_namespaces, entry, link); } static void unregister_namespaces(void) { struct ns_entry *entry, *tmp; TAILQ_FOREACH_SAFE(entry, &g_namespaces, link, tmp) { TAILQ_REMOVE(&g_namespaces, entry, link); spdk_zipf_free(&entry->zipf); free(entry); } } static void enable_latency_tracking_complete(void *cb_arg, const struct spdk_nvme_cpl *cpl) { if (spdk_nvme_cpl_is_error(cpl)) { printf("enable_latency_tracking_complete failed\n"); } g_outstanding_commands--; } static void set_latency_tracking_feature(struct spdk_nvme_ctrlr *ctrlr, bool enable) { int res; union spdk_nvme_intel_feat_latency_tracking latency_tracking; if (enable) { latency_tracking.bits.enable = 0x01; } else { latency_tracking.bits.enable = 0x00; } res = spdk_nvme_ctrlr_cmd_set_feature(ctrlr, SPDK_NVME_INTEL_FEAT_LATENCY_TRACKING, latency_tracking.raw, 0, NULL, 0, enable_latency_tracking_complete, NULL); if (res) { printf("fail to allocate nvme request.\n"); return; } g_outstanding_commands++; while (g_outstanding_commands) { spdk_nvme_ctrlr_process_admin_completions(ctrlr); } } static void register_ctrlr(struct spdk_nvme_ctrlr *ctrlr, struct trid_entry *trid_entry) { struct spdk_nvme_ns *ns; struct ctrlr_entry *entry = malloc(sizeof(struct ctrlr_entry)); uint32_t nsid; if (entry == NULL) { perror("ctrlr_entry malloc"); exit(1); } entry->latency_page = spdk_dma_zmalloc(sizeof(struct spdk_nvme_intel_rw_latency_page), 4096, NULL); if (entry->latency_page == NULL) { printf("Allocation error (latency page)\n"); exit(1); } build_nvme_name(entry->name, sizeof(entry->name), ctrlr); entry->ctrlr = ctrlr; entry->trtype = trid_entry->trid.trtype; TAILQ_INSERT_TAIL(&g_controllers, entry, link); if (g_latency_ssd_tracking_enable && spdk_nvme_ctrlr_is_feature_supported(ctrlr, SPDK_NVME_INTEL_FEAT_LATENCY_TRACKING)) { set_latency_tracking_feature(ctrlr, true); } if (trid_entry->nsid == 0) { for (nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr); nsid != 0; nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid)) { ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid); if (ns == NULL) { continue; } register_ns(ctrlr, ns); } } else { ns = spdk_nvme_ctrlr_get_ns(ctrlr, trid_entry->nsid); if (!ns) { perror("Namespace does not exist."); exit(1); } register_ns(ctrlr, ns); } } static inline void submit_single_io(struct perf_task *task) { uint64_t offset_in_ios; int rc; struct ns_worker_ctx *ns_ctx = task->ns_ctx; struct ns_entry *entry = ns_ctx->entry; if (entry->zipf) { offset_in_ios = spdk_zipf_generate(entry->zipf); } else if (g_is_random) { offset_in_ios = rand_r(&entry->seed) % entry->size_in_ios; } else { offset_in_ios = ns_ctx->offset_in_ios++; if (ns_ctx->offset_in_ios == entry->size_in_ios) { ns_ctx->offset_in_ios = 0; } } task->submit_tsc = spdk_get_ticks(); if ((g_rw_percentage == 100) || (g_rw_percentage != 0 && ((rand_r(&entry->seed) % 100) < g_rw_percentage))) { task->is_read = true; } else { task->is_read = false; } rc = entry->fn_table->submit_io(task, ns_ctx, entry, offset_in_ios); if (spdk_unlikely(rc != 0)) { RATELIMIT_LOG("starting I/O failed\n"); spdk_dma_free(task->iovs[0].iov_base); free(task->iovs); spdk_dma_free(task->md_iov.iov_base); free(task); } else { ns_ctx->current_queue_depth++; } } static inline void task_complete(struct perf_task *task) { struct ns_worker_ctx *ns_ctx; uint64_t tsc_diff; struct ns_entry *entry; ns_ctx = task->ns_ctx; entry = ns_ctx->entry; ns_ctx->current_queue_depth--; ns_ctx->stats.io_completed++; tsc_diff = spdk_get_ticks() - task->submit_tsc; ns_ctx->stats.total_tsc += tsc_diff; if (spdk_unlikely(ns_ctx->stats.min_tsc > tsc_diff)) { ns_ctx->stats.min_tsc = tsc_diff; } if (spdk_unlikely(ns_ctx->stats.max_tsc < tsc_diff)) { ns_ctx->stats.max_tsc = tsc_diff; } if (spdk_unlikely(g_latency_sw_tracking_level > 0)) { spdk_histogram_data_tally(ns_ctx->histogram, tsc_diff); } if (spdk_unlikely(entry->md_size > 0)) { /* add application level verification for end-to-end data protection */ entry->fn_table->verify_io(task, entry); } /* * is_draining indicates when time has expired for the test run * and we are just waiting for the previously submitted I/O * to complete. In this case, do not submit a new I/O to replace * the one just completed. */ if (spdk_unlikely(ns_ctx->is_draining)) { spdk_dma_free(task->iovs[0].iov_base); free(task->iovs); spdk_dma_free(task->md_iov.iov_base); free(task); } else { submit_single_io(task); } } static void io_complete(void *ctx, const struct spdk_nvme_cpl *cpl) { struct perf_task *task = ctx; if (spdk_unlikely(spdk_nvme_cpl_is_error(cpl))) { if (task->is_read) { RATELIMIT_LOG("Read completed with error (sct=%d, sc=%d)\n", cpl->status.sct, cpl->status.sc); } else { RATELIMIT_LOG("Write completed with error (sct=%d, sc=%d)\n", cpl->status.sct, cpl->status.sc); } if (cpl->status.sct == SPDK_NVME_SCT_GENERIC && cpl->status.sc == SPDK_NVME_SC_INVALID_NAMESPACE_OR_FORMAT) { /* The namespace was hotplugged. Stop trying to send I/O to it. */ task->ns_ctx->is_draining = true; } } task_complete(task); } static struct perf_task * allocate_task(struct ns_worker_ctx *ns_ctx, int queue_depth) { struct perf_task *task; task = calloc(1, sizeof(*task)); if (task == NULL) { fprintf(stderr, "Out of memory allocating tasks\n"); exit(1); } ns_ctx->entry->fn_table->setup_payload(task, queue_depth % 8 + 1); task->ns_ctx = ns_ctx; return task; } static void submit_io(struct ns_worker_ctx *ns_ctx, int queue_depth) { struct perf_task *task; while (queue_depth-- > 0) { task = allocate_task(ns_ctx, queue_depth); submit_single_io(task); } } static int init_ns_worker_ctx(struct ns_worker_ctx *ns_ctx) { return ns_ctx->entry->fn_table->init_ns_worker_ctx(ns_ctx); } static void cleanup_ns_worker_ctx(struct ns_worker_ctx *ns_ctx) { ns_ctx->entry->fn_table->cleanup_ns_worker_ctx(ns_ctx); } static void print_periodic_performance(bool warmup) { uint64_t io_this_second; double mb_this_second; struct worker_thread *worker; struct ns_worker_ctx *ns_ctx; uint64_t busy_tsc; uint64_t idle_tsc; uint64_t core_busy_tsc = 0; uint64_t core_idle_tsc = 0; double core_busy_perc = 0; if (!isatty(STDOUT_FILENO)) { /* Don't print periodic stats if output is not going * to a terminal. */ return; } io_this_second = 0; TAILQ_FOREACH(worker, &g_workers, link) { busy_tsc = 0; idle_tsc = 0; TAILQ_FOREACH(ns_ctx, &worker->ns_ctx, link) { io_this_second += ns_ctx->stats.io_completed - ns_ctx->stats.last_io_completed; ns_ctx->stats.last_io_completed = ns_ctx->stats.io_completed; if (g_monitor_perf_cores) { busy_tsc += ns_ctx->stats.busy_tsc - ns_ctx->stats.last_busy_tsc; idle_tsc += ns_ctx->stats.idle_tsc - ns_ctx->stats.last_idle_tsc; ns_ctx->stats.last_busy_tsc = ns_ctx->stats.busy_tsc; ns_ctx->stats.last_idle_tsc = ns_ctx->stats.idle_tsc; } } if (g_monitor_perf_cores) { core_busy_tsc += busy_tsc; core_idle_tsc += idle_tsc; } } mb_this_second = (double)io_this_second * g_io_size_bytes / (1024 * 1024); printf("%s%9ju IOPS, %8.2f MiB/s", warmup ? "[warmup] " : "", io_this_second, mb_this_second); if (g_monitor_perf_cores) { core_busy_perc = (double)core_busy_tsc / (core_idle_tsc + core_busy_tsc) * 100; printf("%3d Core(s): %6.2f%% Busy", g_num_workers, core_busy_perc); } printf("\r"); fflush(stdout); } static void perf_dump_transport_statistics(struct worker_thread *worker) { struct ns_worker_ctx *ns_ctx; TAILQ_FOREACH(ns_ctx, &worker->ns_ctx, link) { if (ns_ctx->entry->fn_table->dump_transport_stats) { ns_ctx->entry->fn_table->dump_transport_stats(worker->lcore, ns_ctx); } } } static int work_fn(void *arg) { uint64_t tsc_start, tsc_end, tsc_current, tsc_next_print; struct worker_thread *worker = (struct worker_thread *) arg; struct ns_worker_ctx *ns_ctx = NULL; uint32_t unfinished_ns_ctx; bool warmup = false; int rc; int64_t check_rc; uint64_t check_now; /* Allocate queue pairs for each namespace. */ TAILQ_FOREACH(ns_ctx, &worker->ns_ctx, link) { if (init_ns_worker_ctx(ns_ctx) != 0) { printf("ERROR: init_ns_worker_ctx() failed\n"); /* Wait on barrier to avoid blocking of successful workers */ pthread_barrier_wait(&g_worker_sync_barrier); return 1; } } rc = pthread_barrier_wait(&g_worker_sync_barrier); if (rc != 0 && rc != PTHREAD_BARRIER_SERIAL_THREAD) { printf("ERROR: failed to wait on thread sync barrier\n"); return 1; } tsc_start = spdk_get_ticks(); tsc_current = tsc_start; tsc_next_print = tsc_current + g_tsc_rate; if (g_warmup_time_in_sec) { warmup = true; tsc_end = tsc_current + g_warmup_time_in_sec * g_tsc_rate; } else { tsc_end = tsc_current + g_time_in_sec * g_tsc_rate; } /* Submit initial I/O for each namespace. */ TAILQ_FOREACH(ns_ctx, &worker->ns_ctx, link) { submit_io(ns_ctx, g_queue_depth); } while (spdk_likely(!g_exit)) { /* * Check for completed I/O for each controller. A new * I/O will be submitted in the io_complete callback * to replace each I/O that is completed. */ TAILQ_FOREACH(ns_ctx, &worker->ns_ctx, link) { check_now = spdk_get_ticks(); check_rc = ns_ctx->entry->fn_table->check_io(ns_ctx); if (check_rc > 0) { ns_ctx->stats.busy_tsc += check_now - ns_ctx->stats.last_tsc; } else { ns_ctx->stats.idle_tsc += check_now - ns_ctx->stats.last_tsc; } ns_ctx->stats.last_tsc = check_now; } tsc_current = spdk_get_ticks(); if (worker->lcore == g_main_core && tsc_current > tsc_next_print) { tsc_next_print += g_tsc_rate; print_periodic_performance(warmup); } if (tsc_current > tsc_end) { if (warmup) { /* Update test start and end time, clear statistics */ tsc_start = spdk_get_ticks(); tsc_end = tsc_start + g_time_in_sec * g_tsc_rate; TAILQ_FOREACH(ns_ctx, &worker->ns_ctx, link) { memset(&ns_ctx->stats, 0, sizeof(ns_ctx->stats)); ns_ctx->stats.min_tsc = UINT64_MAX; } if (worker->lcore == g_main_core && isatty(STDOUT_FILENO)) { /* warmup stage prints a longer string to stdout, need to erase it */ printf("%c[2K", 27); } warmup = false; } else { break; } } } /* Capture the actual elapsed time when we break out of the main loop. This will account * for cases where we exit prematurely due to a signal. We only need to capture it on * one core, so use the main core. */ if (worker->lcore == g_main_core) { g_elapsed_time_in_usec = (tsc_current - tsc_start) * SPDK_SEC_TO_USEC / g_tsc_rate; } if (g_dump_transport_stats) { pthread_mutex_lock(&g_stats_mutex); perf_dump_transport_statistics(worker); pthread_mutex_unlock(&g_stats_mutex); } /* drain the io of each ns_ctx in round robin to make the fairness */ do { unfinished_ns_ctx = 0; TAILQ_FOREACH(ns_ctx, &worker->ns_ctx, link) { /* first time will enter into this if case */ if (!ns_ctx->is_draining) { ns_ctx->is_draining = true; } if (ns_ctx->current_queue_depth > 0) { ns_ctx->entry->fn_table->check_io(ns_ctx); if (ns_ctx->current_queue_depth > 0) { unfinished_ns_ctx++; } } } } while (unfinished_ns_ctx > 0); TAILQ_FOREACH(ns_ctx, &worker->ns_ctx, link) { cleanup_ns_worker_ctx(ns_ctx); } return 0; } static void usage(char *program_name) { printf("%s options", program_name); #if defined(SPDK_CONFIG_URING) || defined(HAVE_LIBAIO) printf(" [Kernel device(s)]..."); #endif printf("\n"); printf("\t[-b, --allowed-pci-addr allowed local PCIe device address]\n"); printf("\t Example: -b 0000:d8:00.0 -b 0000:d9:00.0\n"); printf("\t[-q, --io-depth io depth]\n"); printf("\t[-o, --io-size io size in bytes]\n"); printf("\t[-O, --io-unit-size io unit size in bytes (4-byte aligned) for SPDK driver. default: same as io size]\n"); printf("\t[-P, --num-qpairs number of io queues per namespace. default: 1]\n"); printf("\t[-U, --num-unused-qpairs number of unused io queues per controller. default: 0]\n"); printf("\t[-w, --io-pattern io pattern type, must be one of\n"); printf("\t\t(read, write, randread, randwrite, rw, randrw)]\n"); printf("\t[-M, --rwmixread <0-100> rwmixread (100 for reads, 0 for writes)]\n"); printf("\t[-F, --zipf use zipf distribution for random I/O\n"); printf("\t[-L, --enable-sw-latency-tracking enable latency tracking via sw, default: disabled]\n"); printf("\t\t-L for latency summary, -LL for detailed histogram\n"); printf("\t[-l, --enable-ssd-latency-tracking enable latency tracking via ssd (if supported), default: disabled]\n"); printf("\t[-t, --time time in seconds]\n"); printf("\t[-a, --warmup-time warmup time in seconds]\n"); printf("\t[-c, --core-mask core mask for I/O submission/completion.]\n"); printf("\t\t(default: 1)\n"); printf("\t[-D, --disable-sq-cmb disable submission queue in controller memory buffer, default: enabled]\n"); printf("\t[-H, --enable-tcp-hdgst enable header digest for TCP transport, default: disabled]\n"); printf("\t[-I, --enable-tcp-ddgst enable data digest for TCP transport, default: disabled]\n"); printf("\t[-N, --no-shst-notification no shutdown notification process for controllers, default: disabled]\n"); printf("\t[-r, --transport Transport ID for local PCIe NVMe or NVMeoF]\n"); printf("\t Format: 'key:value [key:value] ...'\n"); printf("\t Keys:\n"); printf("\t trtype Transport type (e.g. PCIe, RDMA)\n"); printf("\t adrfam Address family (e.g. IPv4, IPv6)\n"); printf("\t traddr Transport address (e.g. 0000:04:00.0 for PCIe or 192.168.100.8 for RDMA)\n"); printf("\t trsvcid Transport service identifier (e.g. 4420)\n"); printf("\t subnqn Subsystem NQN (default: %s)\n", SPDK_NVMF_DISCOVERY_NQN); printf("\t ns NVMe namespace ID (all active namespaces are used by default)\n"); printf("\t hostnqn Host NQN\n"); printf("\t Example: -r 'trtype:PCIe traddr:0000:04:00.0' for PCIe or\n"); printf("\t -r 'trtype:RDMA adrfam:IPv4 traddr:192.168.100.8 trsvcid:4420' for NVMeoF\n"); printf("\t Note: can be specified multiple times to test multiple disks/targets.\n"); printf("\t[-e, --metadata metadata configuration]\n"); printf("\t Keys:\n"); printf("\t PRACT Protection Information Action bit (PRACT=1 or PRACT=0)\n"); printf("\t PRCHK Control of Protection Information Checking (PRCHK=GUARD|REFTAG|APPTAG)\n"); printf("\t Example: -e 'PRACT=0,PRCHK=GUARD|REFTAG|APPTAG'\n"); printf("\t -e 'PRACT=1,PRCHK=GUARD'\n"); printf("\t[-k, --keepalive keep alive timeout period in millisecond]\n"); printf("\t[-s, --hugemem-size DPDK huge memory size in MB.]\n"); printf("\t[-g, --mem-single-seg use single file descriptor for DPDK memory segments]\n"); printf("\t[-C, --max-completion-per-poll max completions per poll]\n"); printf("\t\t(default: 0 - unlimited)\n"); printf("\t[-i, --shmem-grp-id shared memory group ID]\n"); printf("\t[-Q, --skip-errors log I/O errors every N times (default: 1)\n"); printf("\t"); spdk_log_usage(stdout, "-T"); printf("\t[-V, --enable-vmd enable VMD enumeration]\n"); printf("\t[-z, --disable-zcopy disable zero copy send for the given sock implementation. Default for posix impl]\n"); printf("\t[-Z, --enable-zcopy enable zero copy send for the given sock implementation]\n"); printf("\t[-A, --buffer-alignment IO buffer alignment. Must be power of 2 and not less than cache line (%u)]\n", SPDK_CACHE_LINE_SIZE); printf("\t[-S, --default-sock-impl set the default sock impl, e.g. \"posix\"]\n"); printf("\t[-m, --cpu-usage display real-time overall cpu usage on used cores]\n"); #ifdef SPDK_CONFIG_URING printf("\t[-R, --enable-uring enable using liburing to drive kernel devices (Default: libaio)]\n"); #endif #ifdef DEBUG printf("\t[-G, --enable-debug enable debug logging]\n"); #else printf("\t[-G, --enable-debug enable debug logging (flag disabled, must reconfigure with --enable-debug)\n"); #endif printf("\t[--transport-stats dump transport statistics]\n"); printf("\t[--iova-mode specify DPDK IOVA mode: va|pa]\n"); printf("\t[--io-queue-size size of NVMe IO queue. Default: maximum allowed by controller]\n"); } static void check_cutoff(void *ctx, uint64_t start, uint64_t end, uint64_t count, uint64_t total, uint64_t so_far) { double so_far_pct; double **cutoff = ctx; if (count == 0) { return; } so_far_pct = (double)so_far / total; while (so_far_pct >= **cutoff && **cutoff > 0) { printf("%9.5f%% : %9.3fus\n", **cutoff * 100, (double)end * 1000 * 1000 / g_tsc_rate); (*cutoff)++; } } static void print_bucket(void *ctx, uint64_t start, uint64_t end, uint64_t count, uint64_t total, uint64_t so_far) { double so_far_pct; if (count == 0) { return; } so_far_pct = (double)so_far * 100 / total; printf("%9.3f - %9.3f: %9.4f%% (%9ju)\n", (double)start * 1000 * 1000 / g_tsc_rate, (double)end * 1000 * 1000 / g_tsc_rate, so_far_pct, count); } static void print_performance(void) { uint64_t total_io_completed, total_io_tsc; double io_per_second, mb_per_second, average_latency, min_latency, max_latency; double sum_ave_latency, min_latency_so_far, max_latency_so_far; double total_io_per_second, total_mb_per_second; int ns_count; struct worker_thread *worker; struct ns_worker_ctx *ns_ctx; uint32_t max_strlen; total_io_per_second = 0; total_mb_per_second = 0; total_io_completed = 0; total_io_tsc = 0; min_latency_so_far = (double)UINT64_MAX; max_latency_so_far = 0; ns_count = 0; max_strlen = 0; TAILQ_FOREACH(worker, &g_workers, link) { TAILQ_FOREACH(ns_ctx, &worker->ns_ctx, link) { max_strlen = spdk_max(strlen(ns_ctx->entry->name), max_strlen); } } printf("========================================================\n"); printf("%*s\n", max_strlen + 60, "Latency(us)"); printf("%-*s: %10s %10s %10s %10s %10s\n", max_strlen + 13, "Device Information", "IOPS", "MiB/s", "Average", "min", "max"); TAILQ_FOREACH(worker, &g_workers, link) { TAILQ_FOREACH(ns_ctx, &worker->ns_ctx, link) { if (ns_ctx->stats.io_completed != 0) { io_per_second = (double)ns_ctx->stats.io_completed * 1000 * 1000 / g_elapsed_time_in_usec; mb_per_second = io_per_second * g_io_size_bytes / (1024 * 1024); average_latency = ((double)ns_ctx->stats.total_tsc / ns_ctx->stats.io_completed) * 1000 * 1000 / g_tsc_rate; min_latency = (double)ns_ctx->stats.min_tsc * 1000 * 1000 / g_tsc_rate; if (min_latency < min_latency_so_far) { min_latency_so_far = min_latency; } max_latency = (double)ns_ctx->stats.max_tsc * 1000 * 1000 / g_tsc_rate; if (max_latency > max_latency_so_far) { max_latency_so_far = max_latency; } printf("%-*.*s from core %2u: %10.2f %10.2f %10.2f %10.2f %10.2f\n", max_strlen, max_strlen, ns_ctx->entry->name, worker->lcore, io_per_second, mb_per_second, average_latency, min_latency, max_latency); total_io_per_second += io_per_second; total_mb_per_second += mb_per_second; total_io_completed += ns_ctx->stats.io_completed; total_io_tsc += ns_ctx->stats.total_tsc; ns_count++; } } } if (ns_count != 0 && total_io_completed) { sum_ave_latency = ((double)total_io_tsc / total_io_completed) * 1000 * 1000 / g_tsc_rate; printf("========================================================\n"); printf("%-*s: %10.2f %10.2f %10.2f %10.2f %10.2f\n", max_strlen + 13, "Total", total_io_per_second, total_mb_per_second, sum_ave_latency, min_latency_so_far, max_latency_so_far); printf("\n"); } if (g_latency_sw_tracking_level == 0 || total_io_completed == 0) { return; } TAILQ_FOREACH(worker, &g_workers, link) { TAILQ_FOREACH(ns_ctx, &worker->ns_ctx, link) { const double *cutoff = g_latency_cutoffs; printf("Summary latency data for %-43.43s from core %u:\n", ns_ctx->entry->name, worker->lcore); printf("=================================================================================\n"); spdk_histogram_data_iterate(ns_ctx->histogram, check_cutoff, &cutoff); printf("\n"); } } if (g_latency_sw_tracking_level == 1) { return; } TAILQ_FOREACH(worker, &g_workers, link) { TAILQ_FOREACH(ns_ctx, &worker->ns_ctx, link) { printf("Latency histogram for %-43.43s from core %u:\n", ns_ctx->entry->name, worker->lcore); printf("==============================================================================\n"); printf(" Range in us Cumulative IO count\n"); spdk_histogram_data_iterate(ns_ctx->histogram, print_bucket, NULL); printf("\n"); } } } static void print_latency_page(struct ctrlr_entry *entry) { int i; printf("\n"); printf("%s\n", entry->name); printf("--------------------------------------------------------\n"); for (i = 0; i < 32; i++) { if (entry->latency_page->buckets_32us[i]) { printf("Bucket %dus - %dus: %d\n", i * 32, (i + 1) * 32, entry->latency_page->buckets_32us[i]); } } for (i = 0; i < 31; i++) { if (entry->latency_page->buckets_1ms[i]) { printf("Bucket %dms - %dms: %d\n", i + 1, i + 2, entry->latency_page->buckets_1ms[i]); } } for (i = 0; i < 31; i++) { if (entry->latency_page->buckets_32ms[i]) printf("Bucket %dms - %dms: %d\n", (i + 1) * 32, (i + 2) * 32, entry->latency_page->buckets_32ms[i]); } } static void print_latency_statistics(const char *op_name, enum spdk_nvme_intel_log_page log_page) { struct ctrlr_entry *ctrlr; printf("%s Latency Statistics:\n", op_name); printf("========================================================\n"); TAILQ_FOREACH(ctrlr, &g_controllers, link) { if (spdk_nvme_ctrlr_is_log_page_supported(ctrlr->ctrlr, log_page)) { if (spdk_nvme_ctrlr_cmd_get_log_page(ctrlr->ctrlr, log_page, SPDK_NVME_GLOBAL_NS_TAG, ctrlr->latency_page, sizeof(struct spdk_nvme_intel_rw_latency_page), 0, enable_latency_tracking_complete, NULL)) { printf("nvme_ctrlr_cmd_get_log_page() failed\n"); exit(1); } g_outstanding_commands++; } else { printf("Controller %s: %s latency statistics not supported\n", ctrlr->name, op_name); } } while (g_outstanding_commands) { TAILQ_FOREACH(ctrlr, &g_controllers, link) { spdk_nvme_ctrlr_process_admin_completions(ctrlr->ctrlr); } } TAILQ_FOREACH(ctrlr, &g_controllers, link) { if (spdk_nvme_ctrlr_is_log_page_supported(ctrlr->ctrlr, log_page)) { print_latency_page(ctrlr); } } printf("\n"); } static void print_stats(void) { print_performance(); if (g_latency_ssd_tracking_enable) { if (g_rw_percentage != 0) { print_latency_statistics("Read", SPDK_NVME_INTEL_LOG_READ_CMD_LATENCY); } if (g_rw_percentage != 100) { print_latency_statistics("Write", SPDK_NVME_INTEL_LOG_WRITE_CMD_LATENCY); } } } static void unregister_trids(void) { struct trid_entry *trid_entry, *tmp; TAILQ_FOREACH_SAFE(trid_entry, &g_trid_list, tailq, tmp) { TAILQ_REMOVE(&g_trid_list, trid_entry, tailq); free(trid_entry); } } static int add_trid(const char *trid_str) { struct trid_entry *trid_entry; struct spdk_nvme_transport_id *trid; char *ns; char *hostnqn; trid_entry = calloc(1, sizeof(*trid_entry)); if (trid_entry == NULL) { return -1; } trid = &trid_entry->trid; trid->trtype = SPDK_NVME_TRANSPORT_PCIE; snprintf(trid->subnqn, sizeof(trid->subnqn), "%s", SPDK_NVMF_DISCOVERY_NQN); if (spdk_nvme_transport_id_parse(trid, trid_str) != 0) { fprintf(stderr, "Invalid transport ID format '%s'\n", trid_str); free(trid_entry); return 1; } spdk_nvme_transport_id_populate_trstring(trid, spdk_nvme_transport_id_trtype_str(trid->trtype)); ns = strcasestr(trid_str, "ns:"); if (ns) { char nsid_str[6]; /* 5 digits maximum in an nsid */ int len; int nsid; ns += 3; len = strcspn(ns, " \t\n"); if (len > 5) { fprintf(stderr, "NVMe namespace IDs must be 5 digits or less\n"); free(trid_entry); return 1; } memcpy(nsid_str, ns, len); nsid_str[len] = '\0'; nsid = spdk_strtol(nsid_str, 10); if (nsid <= 0 || nsid > 65535) { fprintf(stderr, "NVMe namespace IDs must be less than 65536 and greater than 0\n"); free(trid_entry); return 1; } trid_entry->nsid = (uint16_t)nsid; } hostnqn = strcasestr(trid_str, "hostnqn:"); if (hostnqn) { size_t len; hostnqn += strlen("hostnqn:"); len = strcspn(hostnqn, " \t\n"); if (len > (sizeof(trid_entry->hostnqn) - 1)) { fprintf(stderr, "Host NQN is too long\n"); free(trid_entry); return 1; } memcpy(trid_entry->hostnqn, hostnqn, len); trid_entry->hostnqn[len] = '\0'; } TAILQ_INSERT_TAIL(&g_trid_list, trid_entry, tailq); return 0; } static int add_allowed_pci_device(const char *bdf_str, struct spdk_env_opts *env_opts) { int rc; if (env_opts->num_pci_addr >= MAX_ALLOWED_PCI_DEVICE_NUM) { fprintf(stderr, "Currently we only support allowed PCI device num=%d\n", MAX_ALLOWED_PCI_DEVICE_NUM); return -1; } rc = spdk_pci_addr_parse(&env_opts->pci_allowed[env_opts->num_pci_addr], bdf_str); if (rc < 0) { fprintf(stderr, "Failed to parse the given bdf_str=%s\n", bdf_str); return -1; } env_opts->num_pci_addr++; return 0; } static size_t parse_next_key(const char **str, char *key, char *val, size_t key_buf_size, size_t val_buf_size) { const char *sep; const char *separator = ", \t\n"; size_t key_len, val_len; *str += strspn(*str, separator); sep = strchr(*str, '='); if (!sep) { fprintf(stderr, "Key without '=' separator\n"); return 0; } key_len = sep - *str; if (key_len >= key_buf_size) { fprintf(stderr, "Key length %zu is greater than maximum allowed %zu\n", key_len, key_buf_size - 1); return 0; } memcpy(key, *str, key_len); key[key_len] = '\0'; *str += key_len + 1; /* Skip key */ val_len = strcspn(*str, separator); if (val_len == 0) { fprintf(stderr, "Key without value\n"); return 0; } if (val_len >= val_buf_size) { fprintf(stderr, "Value length %zu is greater than maximum allowed %zu\n", val_len, val_buf_size - 1); return 0; } memcpy(val, *str, val_len); val[val_len] = '\0'; *str += val_len; return val_len; } static int parse_metadata(const char *metacfg_str) { const char *str; size_t val_len; char key[32]; char val[1024]; if (metacfg_str == NULL) { return -EINVAL; } str = metacfg_str; while (*str != '\0') { val_len = parse_next_key(&str, key, val, sizeof(key), sizeof(val)); if (val_len == 0) { fprintf(stderr, "Failed to parse metadata\n"); return -EINVAL; } if (strcmp(key, "PRACT") == 0) { if (*val == '1') { g_metacfg_pract_flag = SPDK_NVME_IO_FLAGS_PRACT; } } else if (strcmp(key, "PRCHK") == 0) { if (strstr(val, "GUARD") != NULL) { g_metacfg_prchk_flags |= SPDK_NVME_IO_FLAGS_PRCHK_GUARD; } if (strstr(val, "REFTAG") != NULL) { g_metacfg_prchk_flags |= SPDK_NVME_IO_FLAGS_PRCHK_REFTAG; } if (strstr(val, "APPTAG") != NULL) { g_metacfg_prchk_flags |= SPDK_NVME_IO_FLAGS_PRCHK_APPTAG; } } else { fprintf(stderr, "Unknown key '%s'\n", key); } } return 0; } #define PERF_GETOPT_SHORT "a:b:c:e:gi:lmo:q:r:k:s:t:w:z:A:C:DF:GHILM:NO:P:Q:RS:T:U:VZ:" static const struct option g_perf_cmdline_opts[] = { #define PERF_WARMUP_TIME 'a' {"warmup-time", required_argument, NULL, PERF_WARMUP_TIME}, #define PERF_ALLOWED_PCI_ADDR 'b' {"allowed-pci-addr", required_argument, NULL, PERF_ALLOWED_PCI_ADDR}, #define PERF_CORE_MASK 'c' {"core-mask", required_argument, NULL, PERF_CORE_MASK}, #define PERF_METADATA 'e' {"metadata", required_argument, NULL, PERF_METADATA}, #define PERF_MEM_SINGL_SEG 'g' {"mem-single-seg", no_argument, NULL, PERF_MEM_SINGL_SEG}, #define PERF_SHMEM_GROUP_ID 'i' {"shmem-grp-id", required_argument, NULL, PERF_SHMEM_GROUP_ID}, #define PERF_ENABLE_SSD_LATENCY_TRACING 'l' {"enable-ssd-latency-tracking", no_argument, NULL, PERF_ENABLE_SSD_LATENCY_TRACING}, #define PERF_CPU_USAGE 'm' {"cpu-usage", no_argument, NULL, PERF_CPU_USAGE}, #define PERF_IO_SIZE 'o' {"io-size", required_argument, NULL, PERF_IO_SIZE}, #define PERF_IO_DEPTH 'q' {"io-depth", required_argument, NULL, PERF_IO_DEPTH}, #define PERF_TRANSPORT 'r' {"transport", required_argument, NULL, PERF_TRANSPORT}, #define PERF_KEEPALIVE 'k' {"keepalive", required_argument, NULL, PERF_KEEPALIVE}, #define PERF_HUGEMEM_SIZE 's' {"hugemem-size", required_argument, NULL, PERF_HUGEMEM_SIZE}, #define PERF_TIME 't' {"time", required_argument, NULL, PERF_TIME}, #define PERF_IO_PATTERN 'w' {"io-pattern", required_argument, NULL, PERF_IO_PATTERN}, #define PERF_DISABLE_ZCOPY 'z' {"disable-zcopy", required_argument, NULL, PERF_DISABLE_ZCOPY}, #define PERF_BUFFER_ALIGNMENT 'A' {"buffer-alignment", required_argument, NULL, PERF_BUFFER_ALIGNMENT}, #define PERF_MAX_COMPLETIONS_PER_POLL 'C' {"max-completion-per-poll", required_argument, NULL, PERF_MAX_COMPLETIONS_PER_POLL}, #define PERF_DISABLE_SQ_CMB 'D' {"disable-sq-cmb", no_argument, NULL, PERF_DISABLE_SQ_CMB}, #define PERF_ZIPF 'F' {"zipf", required_argument, NULL, PERF_ZIPF}, #define PERF_ENABLE_DEBUG 'G' {"enable-debug", no_argument, NULL, PERF_ENABLE_DEBUG}, #define PERF_ENABLE_TCP_HDGST 'H' {"enable-tcp-hdgst", no_argument, NULL, PERF_ENABLE_TCP_HDGST}, #define PERF_ENABLE_TCP_DDGST 'I' {"enable-tcp-ddgst", no_argument, NULL, PERF_ENABLE_TCP_DDGST}, #define PERF_ENABLE_SW_LATENCY_TRACING 'L' {"enable-sw-latency-tracking", no_argument, NULL, PERF_ENABLE_SW_LATENCY_TRACING}, #define PERF_RW_MIXREAD 'M' {"rwmixread", required_argument, NULL, PERF_RW_MIXREAD}, #define PERF_NO_SHST_NOTIFICATION 'N' {"no-shst-notification", no_argument, NULL, PERF_NO_SHST_NOTIFICATION}, #define PERF_IO_UNIT_SIZE 'O' {"io-unit-size", required_argument, NULL, PERF_IO_UNIT_SIZE}, #define PERF_IO_QUEUES_PER_NS 'P' {"num-qpairs", required_argument, NULL, PERF_IO_QUEUES_PER_NS}, #define PERF_SKIP_ERRORS 'Q' {"skip-errors", required_argument, NULL, PERF_SKIP_ERRORS}, #define PERF_ENABLE_URING 'R' {"enable-uring", no_argument, NULL, PERF_ENABLE_URING}, #define PERF_DEFAULT_SOCK_IMPL 'S' {"default-sock-impl", required_argument, NULL, PERF_DEFAULT_SOCK_IMPL}, #define PERF_LOG_FLAG 'T' {"logflag", required_argument, NULL, PERF_LOG_FLAG}, #define PERF_NUM_UNUSED_IO_QPAIRS 'U' {"num-unused-qpairs", required_argument, NULL, PERF_NUM_UNUSED_IO_QPAIRS}, #define PERF_ENABLE_VMD 'V' {"enable-vmd", no_argument, NULL, PERF_ENABLE_VMD}, #define PERF_ENABLE_ZCOPY 'Z' {"enable-zcopy", required_argument, NULL, PERF_ENABLE_ZCOPY}, #define PERF_TRANSPORT_STATISTICS 257 {"transport-stats", no_argument, NULL, PERF_TRANSPORT_STATISTICS}, #define PERF_IOVA_MODE 258 {"iova-mode", required_argument, NULL, PERF_IOVA_MODE}, #define PERF_IO_QUEUE_SIZE 259 {"io-queue-size", required_argument, NULL, PERF_IO_QUEUE_SIZE}, /* Should be the last element */ {0, 0, 0, 0} }; static int parse_args(int argc, char **argv, struct spdk_env_opts *env_opts) { int op, long_idx; long int val; int rc; char *endptr; while ((op = getopt_long(argc, argv, PERF_GETOPT_SHORT, g_perf_cmdline_opts, &long_idx)) != -1) { switch (op) { case PERF_WARMUP_TIME: case PERF_BUFFER_ALIGNMENT: case PERF_SHMEM_GROUP_ID: case PERF_MAX_COMPLETIONS_PER_POLL: case PERF_IO_QUEUES_PER_NS: case PERF_IO_SIZE: case PERF_IO_UNIT_SIZE: case PERF_IO_DEPTH: case PERF_KEEPALIVE: case PERF_HUGEMEM_SIZE: case PERF_TIME: case PERF_RW_MIXREAD: case PERF_NUM_UNUSED_IO_QPAIRS: case PERF_SKIP_ERRORS: case PERF_IO_QUEUE_SIZE: val = spdk_strtol(optarg, 10); if (val < 0) { fprintf(stderr, "Converting a string to integer failed\n"); return val; } switch (op) { case PERF_WARMUP_TIME: g_warmup_time_in_sec = val; break; case PERF_SHMEM_GROUP_ID: env_opts->shm_id = val; break; case PERF_MAX_COMPLETIONS_PER_POLL: g_max_completions = val; break; case PERF_IO_QUEUES_PER_NS: g_nr_io_queues_per_ns = val; break; case PERF_IO_SIZE: g_io_size_bytes = val; break; case PERF_IO_UNIT_SIZE: g_io_unit_size = val; break; case PERF_IO_DEPTH: g_queue_depth = val; break; case PERF_KEEPALIVE: g_keep_alive_timeout_in_ms = val; break; case PERF_HUGEMEM_SIZE: env_opts->mem_size = val; break; case PERF_TIME: g_time_in_sec = val; break; case PERF_RW_MIXREAD: g_rw_percentage = val; g_mix_specified = true; break; case PERF_SKIP_ERRORS: g_quiet_count = val; break; case PERF_NUM_UNUSED_IO_QPAIRS: g_nr_unused_io_queues = val; break; case PERF_BUFFER_ALIGNMENT: g_io_align = val; if (!spdk_u32_is_pow2(g_io_align) || g_io_align < SPDK_CACHE_LINE_SIZE) { fprintf(stderr, "Wrong alignment %u. Must be power of 2 and not less than cache lize (%u)\n", g_io_align, SPDK_CACHE_LINE_SIZE); usage(argv[0]); return 1; } g_io_align_specified = true; break; case PERF_IO_QUEUE_SIZE: g_io_queue_size = val; break; } break; case PERF_ZIPF: errno = 0; g_zipf_theta = strtod(optarg, &endptr); if (errno || optarg == endptr || g_zipf_theta < 0) { fprintf(stderr, "Illegal zipf theta value %s\n", optarg); return 1; } break; case PERF_ALLOWED_PCI_ADDR: if (add_allowed_pci_device(optarg, env_opts)) { usage(argv[0]); return 1; } break; case PERF_CORE_MASK: env_opts->core_mask = optarg; break; case PERF_METADATA: if (parse_metadata(optarg)) { usage(argv[0]); return 1; } break; case PERF_MEM_SINGL_SEG: env_opts->hugepage_single_segments = true; break; case PERF_ENABLE_SSD_LATENCY_TRACING: g_latency_ssd_tracking_enable = true; break; case PERF_CPU_USAGE: g_monitor_perf_cores = true; break; case PERF_TRANSPORT: if (add_trid(optarg)) { usage(argv[0]); return 1; } break; case PERF_IO_PATTERN: g_workload_type = optarg; break; case PERF_DISABLE_SQ_CMB: g_disable_sq_cmb = 1; break; case PERF_ENABLE_DEBUG: #ifndef DEBUG fprintf(stderr, "%s must be configured with --enable-debug for -G flag\n", argv[0]); usage(argv[0]); return 1; #else spdk_log_set_flag("nvme"); spdk_log_set_print_level(SPDK_LOG_DEBUG); break; #endif case PERF_ENABLE_TCP_HDGST: g_header_digest = 1; break; case PERF_ENABLE_TCP_DDGST: g_data_digest = 1; break; case PERF_ENABLE_SW_LATENCY_TRACING: g_latency_sw_tracking_level++; break; case PERF_NO_SHST_NOTIFICATION: g_no_shn_notification = true; break; case PERF_ENABLE_URING: #ifndef SPDK_CONFIG_URING fprintf(stderr, "%s must be rebuilt with CONFIG_URING=y for -R flag.\n", argv[0]); usage(argv[0]); return 0; #endif g_use_uring = true; break; case PERF_LOG_FLAG: rc = spdk_log_set_flag(optarg); if (rc < 0) { fprintf(stderr, "unknown flag\n"); usage(argv[0]); exit(EXIT_FAILURE); } #ifdef DEBUG spdk_log_set_print_level(SPDK_LOG_DEBUG); #endif break; case PERF_ENABLE_VMD: g_vmd = true; break; case PERF_DISABLE_ZCOPY: perf_set_sock_zcopy(optarg, false); break; case PERF_ENABLE_ZCOPY: perf_set_sock_zcopy(optarg, true); break; case PERF_DEFAULT_SOCK_IMPL: rc = spdk_sock_set_default_impl(optarg); if (rc) { fprintf(stderr, "Failed to set sock impl %s, err %d (%s)\n", optarg, errno, strerror(errno)); return 1; } break; case PERF_TRANSPORT_STATISTICS: g_dump_transport_stats = true; break; case PERF_IOVA_MODE: env_opts->iova_mode = optarg; break; default: usage(argv[0]); return 1; } } if (!g_nr_io_queues_per_ns) { usage(argv[0]); return 1; } if (!g_queue_depth) { fprintf(stderr, "missing -q (--io-depth) operand\n"); usage(argv[0]); return 1; } if (!g_io_size_bytes) { fprintf(stderr, "missing -o (--io-size) operand\n"); usage(argv[0]); return 1; } if (!g_io_unit_size || g_io_unit_size % 4) { fprintf(stderr, "io unit size can not be 0 or non 4-byte aligned\n"); return 1; } if (!g_workload_type) { fprintf(stderr, "missing -w (--io-pattern) operand\n"); usage(argv[0]); return 1; } if (!g_time_in_sec) { fprintf(stderr, "missing -t (--time) operand\n"); usage(argv[0]); return 1; } if (!g_quiet_count) { fprintf(stderr, "-Q (--skip-errors) value must be greater than 0\n"); usage(argv[0]); return 1; } if (strncmp(g_workload_type, "rand", 4) == 0) { g_is_random = 1; g_workload_type = &g_workload_type[4]; } if (strcmp(g_workload_type, "read") == 0 || strcmp(g_workload_type, "write") == 0) { g_rw_percentage = strcmp(g_workload_type, "read") == 0 ? 100 : 0; if (g_mix_specified) { fprintf(stderr, "Ignoring -M (--rwmixread) option... Please use -M option" " only when using rw or randrw.\n"); } } else if (strcmp(g_workload_type, "rw") == 0) { if (g_rw_percentage < 0 || g_rw_percentage > 100) { fprintf(stderr, "-M (--rwmixread) must be specified to value from 0 to 100 " "for rw or randrw.\n"); return 1; } } else { fprintf(stderr, "-w (--io-pattern) io pattern type must be one of\n" "(read, write, randread, randwrite, rw, randrw)\n"); return 1; } if (TAILQ_EMPTY(&g_trid_list)) { /* If no transport IDs specified, default to enumerating all local PCIe devices */ add_trid("trtype:PCIe"); } else { struct trid_entry *trid_entry, *trid_entry_tmp; env_opts->no_pci = true; /* check whether there is local PCIe type */ TAILQ_FOREACH_SAFE(trid_entry, &g_trid_list, tailq, trid_entry_tmp) { if (trid_entry->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) { env_opts->no_pci = false; break; } } } g_file_optind = optind; return 0; } static int register_workers(void) { uint32_t i; struct worker_thread *worker; SPDK_ENV_FOREACH_CORE(i) { worker = calloc(1, sizeof(*worker)); if (worker == NULL) { fprintf(stderr, "Unable to allocate worker\n"); return -1; } TAILQ_INIT(&worker->ns_ctx); worker->lcore = i; TAILQ_INSERT_TAIL(&g_workers, worker, link); g_num_workers++; } return 0; } static void unregister_workers(void) { struct worker_thread *worker, *tmp_worker; struct ns_worker_ctx *ns_ctx, *tmp_ns_ctx; /* Free namespace context and worker thread */ TAILQ_FOREACH_SAFE(worker, &g_workers, link, tmp_worker) { TAILQ_REMOVE(&g_workers, worker, link); TAILQ_FOREACH_SAFE(ns_ctx, &worker->ns_ctx, link, tmp_ns_ctx) { TAILQ_REMOVE(&worker->ns_ctx, ns_ctx, link); spdk_histogram_data_free(ns_ctx->histogram); free(ns_ctx); } free(worker); } } static bool probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid, struct spdk_nvme_ctrlr_opts *opts) { struct trid_entry *trid_entry = cb_ctx; if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) { if (g_disable_sq_cmb) { opts->use_cmb_sqs = false; } if (g_no_shn_notification) { opts->no_shn_notification = true; } } if (trid->trtype != trid_entry->trid.trtype && strcasecmp(trid->trstring, trid_entry->trid.trstring)) { return false; } opts->io_queue_size = g_io_queue_size; /* Set the header and data_digest */ opts->header_digest = g_header_digest; opts->data_digest = g_data_digest; opts->keep_alive_timeout_ms = g_keep_alive_timeout_in_ms; memcpy(opts->hostnqn, trid_entry->hostnqn, sizeof(opts->hostnqn)); return true; } static void attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid, struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts) { struct trid_entry *trid_entry = cb_ctx; struct spdk_pci_addr pci_addr; struct spdk_pci_device *pci_dev; struct spdk_pci_id pci_id; if (trid->trtype != SPDK_NVME_TRANSPORT_PCIE) { printf("Attached to NVMe over Fabrics controller at %s:%s: %s\n", trid->traddr, trid->trsvcid, trid->subnqn); } else { if (spdk_pci_addr_parse(&pci_addr, trid->traddr)) { return; } pci_dev = spdk_nvme_ctrlr_get_pci_device(ctrlr); if (!pci_dev) { return; } pci_id = spdk_pci_device_get_id(pci_dev); printf("Attached to NVMe Controller at %s [%04x:%04x]\n", trid->traddr, pci_id.vendor_id, pci_id.device_id); } register_ctrlr(ctrlr, trid_entry); } static int register_controllers(void) { struct trid_entry *trid_entry; printf("Initializing NVMe Controllers\n"); if (g_vmd && spdk_vmd_init()) { fprintf(stderr, "Failed to initialize VMD." " Some NVMe devices can be unavailable.\n"); } TAILQ_FOREACH(trid_entry, &g_trid_list, tailq) { if (spdk_nvme_probe(&trid_entry->trid, trid_entry, probe_cb, attach_cb, NULL) != 0) { fprintf(stderr, "spdk_nvme_probe() failed for transport address '%s'\n", trid_entry->trid.traddr); return -1; } } return 0; } static void unregister_controllers(void) { struct ctrlr_entry *entry, *tmp; struct spdk_nvme_detach_ctx *detach_ctx = NULL; TAILQ_FOREACH_SAFE(entry, &g_controllers, link, tmp) { TAILQ_REMOVE(&g_controllers, entry, link); spdk_dma_free(entry->latency_page); if (g_latency_ssd_tracking_enable && spdk_nvme_ctrlr_is_feature_supported(entry->ctrlr, SPDK_NVME_INTEL_FEAT_LATENCY_TRACKING)) { set_latency_tracking_feature(entry->ctrlr, false); } if (g_nr_unused_io_queues) { int i; for (i = 0; i < g_nr_unused_io_queues; i++) { spdk_nvme_ctrlr_free_io_qpair(entry->unused_qpairs[i]); } free(entry->unused_qpairs); } spdk_nvme_detach_async(entry->ctrlr, &detach_ctx); free(entry); } if (detach_ctx) { spdk_nvme_detach_poll(detach_ctx); } if (g_vmd) { spdk_vmd_fini(); } } static int associate_workers_with_ns(void) { struct ns_entry *entry = TAILQ_FIRST(&g_namespaces); struct worker_thread *worker = TAILQ_FIRST(&g_workers); struct ns_worker_ctx *ns_ctx; int i, count; count = g_num_namespaces > g_num_workers ? g_num_namespaces : g_num_workers; for (i = 0; i < count; i++) { if (entry == NULL) { break; } ns_ctx = calloc(1, sizeof(struct ns_worker_ctx)); if (!ns_ctx) { return -1; } printf("Associating %s with lcore %d\n", entry->name, worker->lcore); ns_ctx->stats.min_tsc = UINT64_MAX; ns_ctx->entry = entry; ns_ctx->histogram = spdk_histogram_data_alloc(); TAILQ_INSERT_TAIL(&worker->ns_ctx, ns_ctx, link); worker = TAILQ_NEXT(worker, link); if (worker == NULL) { worker = TAILQ_FIRST(&g_workers); } entry = TAILQ_NEXT(entry, link); if (entry == NULL) { entry = TAILQ_FIRST(&g_namespaces); } } return 0; } static void * nvme_poll_ctrlrs(void *arg) { struct ctrlr_entry *entry; int oldstate; int rc; spdk_unaffinitize_thread(); while (true) { pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &oldstate); TAILQ_FOREACH(entry, &g_controllers, link) { if (entry->trtype != SPDK_NVME_TRANSPORT_PCIE) { rc = spdk_nvme_ctrlr_process_admin_completions(entry->ctrlr); if (spdk_unlikely(rc < 0 && !g_exit)) { g_exit = true; } } } pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &oldstate); /* This is a pthread cancellation point and cannot be removed. */ sleep(1); } return NULL; } static void sig_handler(int signo) { g_exit = true; } static int setup_sig_handlers(void) { struct sigaction sigact = {}; int rc; sigemptyset(&sigact.sa_mask); sigact.sa_handler = sig_handler; rc = sigaction(SIGINT, &sigact, NULL); if (rc < 0) { fprintf(stderr, "sigaction(SIGINT) failed, errno %d (%s)\n", errno, strerror(errno)); return -1; } rc = sigaction(SIGTERM, &sigact, NULL); if (rc < 0) { fprintf(stderr, "sigaction(SIGTERM) failed, errno %d (%s)\n", errno, strerror(errno)); return -1; } return 0; } int main(int argc, char **argv) { int rc; struct worker_thread *worker, *main_worker; struct spdk_env_opts opts; pthread_t thread_id = 0; spdk_env_opts_init(&opts); opts.name = "perf"; opts.pci_allowed = g_allowed_pci_addr; rc = parse_args(argc, argv, &opts); if (rc != 0) { return rc; } /* Transport statistics are printed from each thread. * To avoid mess in terminal, init and use mutex */ rc = pthread_mutex_init(&g_stats_mutex, NULL); if (rc != 0) { fprintf(stderr, "Failed to init mutex\n"); return -1; } if (spdk_env_init(&opts) < 0) { fprintf(stderr, "Unable to initialize SPDK env\n"); unregister_trids(); pthread_mutex_destroy(&g_stats_mutex); return -1; } rc = setup_sig_handlers(); if (rc != 0) { rc = -1; goto cleanup; } g_tsc_rate = spdk_get_ticks_hz(); if (register_workers() != 0) { rc = -1; goto cleanup; } #if defined(HAVE_LIBAIO) || defined(SPDK_CONFIG_URING) if (register_files(argc, argv) != 0) { rc = -1; goto cleanup; } #endif if (register_controllers() != 0) { rc = -1; goto cleanup; } if (g_warn) { printf("WARNING: Some requested NVMe devices were skipped\n"); } if (g_num_namespaces == 0) { fprintf(stderr, "No valid NVMe controllers or AIO or URING devices found\n"); goto cleanup; } if (g_num_workers > 1 && g_quiet_count > 1) { fprintf(stderr, "Error message rate-limiting enabled across multiple threads.\n"); fprintf(stderr, "Error suppression count may not be exact.\n"); } rc = pthread_create(&thread_id, NULL, &nvme_poll_ctrlrs, NULL); if (rc != 0) { fprintf(stderr, "Unable to spawn a thread to poll admin queues.\n"); goto cleanup; } if (associate_workers_with_ns() != 0) { rc = -1; goto cleanup; } rc = pthread_barrier_init(&g_worker_sync_barrier, NULL, g_num_workers); if (rc != 0) { fprintf(stderr, "Unable to initialize thread sync barrier\n"); goto cleanup; } printf("Initialization complete. Launching workers.\n"); /* Launch all of the secondary workers */ g_main_core = spdk_env_get_current_core(); main_worker = NULL; TAILQ_FOREACH(worker, &g_workers, link) { if (worker->lcore != g_main_core) { spdk_env_thread_launch_pinned(worker->lcore, work_fn, worker); } else { assert(main_worker == NULL); main_worker = worker; } } assert(main_worker != NULL); rc = work_fn(main_worker); spdk_env_thread_wait_all(); print_stats(); pthread_barrier_destroy(&g_worker_sync_barrier); cleanup: if (thread_id && pthread_cancel(thread_id) == 0) { pthread_join(thread_id, NULL); } unregister_trids(); unregister_namespaces(); unregister_controllers(); unregister_workers(); spdk_env_fini(); pthread_mutex_destroy(&g_stats_mutex); if (rc != 0) { fprintf(stderr, "%s: errors occurred\n", argv[0]); } return rc; }