/* SPDX-License-Identifier: BSD-3-Clause * Copyright (C) 2021 Intel Corporation. All rights reserved. */ #include "spdk/stdinc.h" #include "spdk/conf.h" #include "spdk/env.h" #include "spdk/event.h" #include "spdk/util.h" #include "spdk/string.h" #include "spdk/nvme_spec.h" #include "spdk/nvme.h" #include "spdk/likely.h" #include "spdk/file.h" static const uint8_t *g_data; static bool g_trid_specified = false; static int32_t g_time_in_sec = 10; static char *g_corpus_dir; static uint8_t *g_repro_data; static size_t g_repro_size; static pthread_t g_fuzz_td; static pthread_t g_reactor_td; static bool g_in_fuzzer; #define MAX_COMMANDS 5 struct fuzz_command { struct spdk_nvme_cmd cmd; void *buf; uint32_t len; }; static struct fuzz_command g_cmds[MAX_COMMANDS]; typedef void (*fuzz_build_cmd_fn)(struct fuzz_command *cmd); struct fuzz_type { fuzz_build_cmd_fn fn; uint32_t bytes_per_cmd; bool is_admin; }; static void fuzz_admin_command(struct fuzz_command *cmd) { memcpy(&cmd->cmd, g_data, sizeof(cmd->cmd)); g_data += sizeof(cmd->cmd); /* ASYNC_EVENT_REQUEST won't complete, so pick a different opcode. */ if (cmd->cmd.opc == SPDK_NVME_OPC_ASYNC_EVENT_REQUEST) { cmd->cmd.opc = SPDK_NVME_OPC_SET_FEATURES; } /* NVME_OPC_FABRIC is special for fabric transport, so pick a different opcode. */ if (cmd->cmd.opc == SPDK_NVME_OPC_FABRIC) { cmd->cmd.opc = SPDK_NVME_OPC_SET_FEATURES; } /* Fuzz a normal operation, so set a zero value in Fused field. */ cmd->cmd.fuse = 0; } static void fuzz_admin_get_log_page_command(struct fuzz_command *cmd) { memset(&cmd->cmd, 0, sizeof(cmd->cmd)); cmd->cmd.opc = SPDK_NVME_OPC_GET_LOG_PAGE; /* Only fuzz some of the more interesting parts of the GET_LOG_PAGE command. */ cmd->cmd.cdw10_bits.get_log_page.numdl = ((uint16_t)g_data[0] << 8) + (uint16_t)g_data[1]; cmd->cmd.cdw10_bits.get_log_page.lid = g_data[2]; cmd->cmd.cdw10_bits.get_log_page.lsp = g_data[3] & (0x60 >> 5); cmd->cmd.cdw10_bits.get_log_page.rae = g_data[3] & (0x80 >> 7); cmd->cmd.cdw11_bits.get_log_page.numdu = g_data[3] & (0x18 >> 3); /* Log Page Offset Lower */ cmd->cmd.cdw12 = ((uint16_t)g_data[4] << 8) + (uint16_t)g_data[5]; /* Offset Type */ cmd->cmd.cdw14 = g_data[3] & (0x01 >> 0); /* Log Page Offset Upper */ cmd->cmd.cdw13 = g_data[3] & (0x06 >> 1); g_data += 6; } static void fuzz_admin_identify_command(struct fuzz_command *cmd) { memset(&cmd->cmd, 0, sizeof(cmd->cmd)); cmd->cmd.opc = SPDK_NVME_OPC_IDENTIFY; cmd->cmd.cdw10_bits.identify.cns = g_data[0]; cmd->cmd.cdw10_bits.identify.cntid = ((uint16_t)g_data[1] << 8) + (uint16_t)g_data[2]; cmd->cmd.cdw11_bits.identify.nvmsetid = ((uint16_t)g_data[3] << 8) + (uint16_t)g_data[4]; cmd->cmd.cdw11_bits.identify.csi = g_data[5]; /* UUID index, bits 0-6 are used */ cmd->cmd.cdw14 = (g_data[6] & 0x7f); g_data += 7; } static void fuzz_admin_abort_command(struct fuzz_command *cmd) { memset(&cmd->cmd, 0, sizeof(cmd->cmd)); cmd->cmd.opc = SPDK_NVME_OPC_ABORT; cmd->cmd.cdw10_bits.abort.sqid = ((uint16_t)g_data[0] << 8) + (uint16_t)g_data[1]; cmd->cmd.cdw10_bits.abort.cid = ((uint16_t)g_data[2] << 8) + (uint16_t)g_data[3]; g_data += 4; } static void fuzz_admin_create_io_completion_queue_command(struct fuzz_command *cmd) { memset(&cmd->cmd, 0, sizeof(cmd->cmd)); cmd->cmd.opc = SPDK_NVME_OPC_CREATE_IO_CQ; cmd->cmd.cdw10_bits.create_io_q.qid = ((uint16_t)g_data[0] << 8) + (uint16_t)g_data[1]; cmd->cmd.cdw10_bits.create_io_q.qsize = ((uint16_t)g_data[2] << 8) + (uint16_t)g_data[3]; cmd->cmd.cdw11_bits.create_io_cq.iv = ((uint16_t)g_data[4] << 8) + (uint16_t)g_data[5]; cmd->cmd.cdw11_bits.create_io_cq.pc = (g_data[6] >> 7) & 0x01; cmd->cmd.cdw11_bits.create_io_cq.ien = (g_data[6] >> 6) & 0x01; g_data += 7; } static void fuzz_admin_create_io_submission_queue_command(struct fuzz_command *cmd) { memset(&cmd->cmd, 0, sizeof(cmd->cmd)); cmd->cmd.opc = SPDK_NVME_OPC_CREATE_IO_SQ; cmd->cmd.cdw10_bits.create_io_q.qid = ((uint16_t)g_data[0] << 8) + (uint16_t)g_data[1]; cmd->cmd.cdw10_bits.create_io_q.qsize = ((uint16_t)g_data[2] << 8) + (uint16_t)g_data[3]; cmd->cmd.cdw11_bits.create_io_sq.cqid = ((uint16_t)g_data[4] << 8) + (uint16_t)g_data[5]; cmd->cmd.cdw11_bits.create_io_sq.qprio = (g_data[6] >> 6) & 0x03; cmd->cmd.cdw11_bits.create_io_sq.pc = (g_data[6] >> 5) & 0x01; /* NVM Set Identifier */ cmd->cmd.cdw12 = ((uint16_t)g_data[7] << 8) + (uint16_t)g_data[8]; g_data += 9; } static void fuzz_admin_delete_io_completion_queue_command(struct fuzz_command *cmd) { memset(&cmd->cmd, 0, sizeof(cmd->cmd)); cmd->cmd.opc = SPDK_NVME_OPC_DELETE_IO_CQ; cmd->cmd.cdw10_bits.delete_io_q.qid = ((uint16_t)g_data[0] << 8) + (uint16_t)g_data[1]; g_data += 2; } static void fuzz_admin_delete_io_submission_queue_command(struct fuzz_command *cmd) { memset(&cmd->cmd, 0, sizeof(cmd->cmd)); cmd->cmd.opc = SPDK_NVME_OPC_DELETE_IO_SQ; cmd->cmd.cdw10_bits.delete_io_q.qid = ((uint16_t)g_data[0] << 8) + (uint16_t)g_data[1]; g_data += 2; } static void fuzz_admin_namespace_attachment_command(struct fuzz_command *cmd) { memset(&cmd->cmd, 0, sizeof(cmd->cmd)); cmd->cmd.opc = SPDK_NVME_OPC_NS_ATTACHMENT; cmd->cmd.cdw10_bits.ns_attach.sel = (g_data[0] >> 4) & 0x0f; g_data += 1; } static void fuzz_admin_namespace_management_command(struct fuzz_command *cmd) { memset(&cmd->cmd, 0, sizeof(cmd->cmd)); cmd->cmd.opc = SPDK_NVME_OPC_NS_MANAGEMENT; cmd->cmd.cdw10_bits.ns_manage.sel = (g_data[0] >> 4) & 0x0f; g_data += 1; } static void fuzz_admin_security_receive_command(struct fuzz_command *cmd) { memset(&cmd->cmd, 0, sizeof(cmd->cmd)); cmd->cmd.opc = SPDK_NVME_OPC_SECURITY_RECEIVE; cmd->cmd.cdw10_bits.sec_send_recv.secp = g_data[0]; cmd->cmd.cdw10_bits.sec_send_recv.spsp1 = g_data[1]; cmd->cmd.cdw10_bits.sec_send_recv.spsp0 = g_data[2]; cmd->cmd.cdw10_bits.sec_send_recv.nssf = g_data[3]; /* Allocation Length(AL) */ cmd->cmd.cdw11 = ((uint32_t)g_data[4] << 24) + ((uint32_t)g_data[5] << 16) + ((uint32_t)g_data[6] << 8) + (uint32_t)g_data[7]; g_data += 8; } static void fuzz_admin_security_send_command(struct fuzz_command *cmd) { memset(&cmd->cmd, 0, sizeof(cmd->cmd)); cmd->cmd.opc = SPDK_NVME_OPC_SECURITY_SEND; cmd->cmd.cdw10_bits.sec_send_recv.secp = g_data[0]; cmd->cmd.cdw10_bits.sec_send_recv.spsp1 = g_data[1]; cmd->cmd.cdw10_bits.sec_send_recv.spsp0 = g_data[2]; cmd->cmd.cdw10_bits.sec_send_recv.nssf = g_data[3]; /* Transfer Length(TL) */ cmd->cmd.cdw11 = ((uint32_t)g_data[4] << 24) + ((uint32_t)g_data[5] << 16) + ((uint32_t)g_data[6] << 8) + (uint32_t)g_data[7]; g_data += 8; } static void fuzz_admin_directive_send_command(struct fuzz_command *cmd) { memset(&cmd->cmd, 0, sizeof(cmd->cmd)); cmd->cmd.opc = SPDK_NVME_OPC_DIRECTIVE_SEND; cmd->cmd.cdw10 = ((uint32_t)g_data[0] << 24) + ((uint32_t)g_data[1] << 16) + ((uint32_t)g_data[2] << 8) + (uint32_t)g_data[3]; cmd->cmd.cdw11_bits.directive.dspec = ((uint16_t)g_data[4] << 8) + (uint16_t)g_data[5]; cmd->cmd.cdw11_bits.directive.dtype = g_data[6]; cmd->cmd.cdw11_bits.directive.doper = g_data[7]; g_data += 8; } static void fuzz_admin_directive_receive_command(struct fuzz_command *cmd) { memset(&cmd->cmd, 0, sizeof(cmd->cmd)); cmd->cmd.opc = SPDK_NVME_OPC_DIRECTIVE_RECEIVE; cmd->cmd.cdw10 = ((uint32_t)g_data[0] << 24) + ((uint32_t)g_data[1] << 16) + ((uint32_t)g_data[2] << 8) + (uint32_t)g_data[3]; cmd->cmd.cdw11_bits.directive.dspec = ((uint16_t)g_data[4] << 8) + (uint16_t)g_data[5]; cmd->cmd.cdw11_bits.directive.dtype = g_data[6]; cmd->cmd.cdw11_bits.directive.doper = g_data[7]; g_data += 8; } static void feat_arbitration(struct fuzz_command *cmd) { cmd->cmd.cdw11_bits.feat_arbitration.bits.hpw = g_data[2]; cmd->cmd.cdw11_bits.feat_arbitration.bits.mpw = g_data[3]; cmd->cmd.cdw11_bits.feat_arbitration.bits.lpw = g_data[4]; cmd->cmd.cdw11_bits.feat_arbitration.bits.ab = g_data[5] & 0x07; } static void feat_power_management(struct fuzz_command *cmd) { cmd->cmd.cdw11_bits.feat_power_management.bits.wh = g_data[2] & 0x07; cmd->cmd.cdw11_bits.feat_power_management.bits.ps = (g_data[2] >> 3) & 0x1f; } static void feat_lba_range_type(struct fuzz_command *cmd) { cmd->cmd.cdw11_bits.feat_lba_range_type.bits.num = (g_data[2] >> 2) & 0x3f; } static void feat_temperature_threshold(struct fuzz_command *cmd) { cmd->cmd.cdw11_bits.feat_temp_threshold.bits.thsel = g_data[2] & 0x03; cmd->cmd.cdw11_bits.feat_temp_threshold.bits.tmpsel = (g_data[2] >> 2) & 0x0f; cmd->cmd.cdw11_bits.feat_temp_threshold.bits.tmpth = ((uint16_t)g_data[3] << 8) + (uint16_t)g_data[4]; } static void feat_error_recover(struct fuzz_command *cmd) { cmd->cmd.cdw11_bits.feat_error_recovery.bits.dulbe = g_data[2] & 0x01; cmd->cmd.cdw11_bits.feat_error_recovery.bits.tler = ((uint16_t)g_data[3] << 8) + (uint16_t)g_data[4]; } static void feat_volatile_write_cache(struct fuzz_command *cmd) { cmd->cmd.cdw11_bits.feat_volatile_write_cache.bits.wce = g_data[2] & 0x01; } static void feat_number_of_queues(struct fuzz_command *cmd) { cmd->cmd.cdw11_bits.feat_num_of_queues.bits.ncqr = ((uint16_t)g_data[2] << 8) + (uint16_t)g_data[3]; cmd->cmd.cdw11_bits.feat_num_of_queues.bits.nsqr = ((uint16_t)g_data[4] << 8) + (uint16_t)g_data[5]; } static void feat_interrupt_coalescing(struct fuzz_command *cmd) { cmd->cmd.cdw11_bits.feat_interrupt_coalescing.bits.time = g_data[2]; cmd->cmd.cdw11_bits.feat_interrupt_coalescing.bits.thr = g_data[3]; } static void feat_interrupt_vector_configuration(struct fuzz_command *cmd) { cmd->cmd.cdw11_bits.feat_interrupt_vector_configuration.bits.cd = g_data[2] & 0x01; cmd->cmd.cdw11_bits.feat_interrupt_vector_configuration.bits.iv = ((uint16_t)g_data[3] << 8) + (uint16_t)g_data[4]; } static void feat_write_atomicity(struct fuzz_command *cmd) { cmd->cmd.cdw11_bits.feat_write_atomicity.bits.dn = g_data[2] & 0x01; } static void feat_async_event_cfg(struct fuzz_command *cmd) { cmd->cmd.cdw11_bits.feat_async_event_cfg.bits.ana_change_notice = g_data[2] & 0x01; cmd->cmd.cdw11_bits.feat_async_event_cfg.bits.discovery_log_change_notice = (g_data[2] >> 1) & 0x01; cmd->cmd.cdw11_bits.feat_async_event_cfg.bits.fw_activation_notice = (g_data[2] >> 2) & 0x01; cmd->cmd.cdw11_bits.feat_async_event_cfg.bits.ns_attr_notice = (g_data[2] >> 3) & 0x01; cmd->cmd.cdw11_bits.feat_async_event_cfg.bits.telemetry_log_notice = (g_data[2] >> 4) & 0x01; cmd->cmd.cdw11_bits.feat_async_event_cfg.bits.crit_warn.bits.available_spare = g_data[3] & 0x01; cmd->cmd.cdw11_bits.feat_async_event_cfg.bits.crit_warn.bits.device_reliability = (g_data[3] >> 1) & 0x01; cmd->cmd.cdw11_bits.feat_async_event_cfg.bits.crit_warn.bits.read_only = (g_data[3] >> 2) & 0x01; cmd->cmd.cdw11_bits.feat_async_event_cfg.bits.crit_warn.bits.temperature = (g_data[3] >> 3) & 0x01; cmd->cmd.cdw11_bits.feat_async_event_cfg.bits.crit_warn.bits.volatile_memory_backup = (g_data[3] >> 4) & 0x01; } static void feat_keep_alive_timer(struct fuzz_command *cmd) { cmd->cmd.cdw11_bits.feat_keep_alive_timer.bits.kato = ((uint32_t)g_data[2] << 24) + (( uint32_t)g_data[3] << 16) + ((uint32_t)g_data[4] << 8) + (uint32_t)g_data[5]; } static void feat_host_identifier(struct fuzz_command *cmd) { cmd->cmd.cdw11_bits.feat_host_identifier.bits.exhid = g_data[2] & 0x01; } static void feat_rsv_notification_mask(struct fuzz_command *cmd) { cmd->cmd.cdw11_bits.feat_rsv_notification_mask.bits.regpre = g_data[2] & 0x01; cmd->cmd.cdw11_bits.feat_rsv_notification_mask.bits.respre = (g_data[2] >> 1) & 0x01; cmd->cmd.cdw11_bits.feat_rsv_notification_mask.bits.resrel = (g_data[2] >> 2) & 0x01; } static void feat_rsv_persistence(struct fuzz_command *cmd) { cmd->cmd.cdw11_bits.feat_rsv_persistence.bits.ptpl = g_data[2] & 0x01; } static void fuzz_admin_set_features_command(struct fuzz_command *cmd) { memset(&cmd->cmd, 0, sizeof(cmd->cmd)); cmd->cmd.opc = SPDK_NVME_OPC_SET_FEATURES; cmd->cmd.cdw10_bits.set_features.fid = g_data[0]; cmd->cmd.cdw10_bits.set_features.sv = (g_data[1] >> 7) & 0x01; switch (cmd->cmd.cdw10_bits.set_features.fid) { case SPDK_NVME_FEAT_ARBITRATION: feat_arbitration(cmd); break; case SPDK_NVME_FEAT_POWER_MANAGEMENT: feat_power_management(cmd); break; case SPDK_NVME_FEAT_LBA_RANGE_TYPE: feat_lba_range_type(cmd); break; case SPDK_NVME_FEAT_TEMPERATURE_THRESHOLD: feat_temperature_threshold(cmd); break; case SPDK_NVME_FEAT_ERROR_RECOVERY: feat_error_recover(cmd); break; case SPDK_NVME_FEAT_VOLATILE_WRITE_CACHE: feat_volatile_write_cache(cmd); break; case SPDK_NVME_FEAT_NUMBER_OF_QUEUES: feat_number_of_queues(cmd); break; case SPDK_NVME_FEAT_INTERRUPT_COALESCING: feat_interrupt_coalescing(cmd); break; case SPDK_NVME_FEAT_INTERRUPT_VECTOR_CONFIGURATION: feat_interrupt_vector_configuration(cmd); break; case SPDK_NVME_FEAT_WRITE_ATOMICITY: feat_write_atomicity(cmd); break; case SPDK_NVME_FEAT_ASYNC_EVENT_CONFIGURATION: feat_async_event_cfg(cmd); break; case SPDK_NVME_FEAT_KEEP_ALIVE_TIMER: feat_keep_alive_timer(cmd); break; case SPDK_NVME_FEAT_HOST_IDENTIFIER: feat_host_identifier(cmd); break; case SPDK_NVME_FEAT_HOST_RESERVE_MASK: feat_rsv_notification_mask(cmd); break; case SPDK_NVME_FEAT_HOST_RESERVE_PERSIST: feat_rsv_persistence(cmd); break; default: break; } /* Use g_data[2] through g_data[5] for feature-specific bits and set g_data[6] for cdw14 every iteration UUID index, bits 0-6 are used */ cmd->cmd.cdw14 = (g_data[6] & 0x7f); g_data += 7; } static void fuzz_admin_get_features_command(struct fuzz_command *cmd) { memset(&cmd->cmd, 0, sizeof(cmd->cmd)); cmd->cmd.opc = SPDK_NVME_OPC_GET_FEATURES; cmd->cmd.cdw10_bits.get_features.fid = g_data[0]; cmd->cmd.cdw10_bits.get_features.sel = (g_data[1] >> 5) & 0x07; switch (cmd->cmd.cdw10_bits.set_features.fid) { case SPDK_NVME_FEAT_ARBITRATION: feat_arbitration(cmd); break; case SPDK_NVME_FEAT_POWER_MANAGEMENT: feat_power_management(cmd); break; case SPDK_NVME_FEAT_LBA_RANGE_TYPE: feat_lba_range_type(cmd); break; case SPDK_NVME_FEAT_TEMPERATURE_THRESHOLD: feat_temperature_threshold(cmd); break; case SPDK_NVME_FEAT_ERROR_RECOVERY: feat_error_recover(cmd); break; case SPDK_NVME_FEAT_VOLATILE_WRITE_CACHE: feat_volatile_write_cache(cmd); break; case SPDK_NVME_FEAT_NUMBER_OF_QUEUES: feat_number_of_queues(cmd); break; case SPDK_NVME_FEAT_INTERRUPT_COALESCING: feat_interrupt_coalescing(cmd); break; case SPDK_NVME_FEAT_INTERRUPT_VECTOR_CONFIGURATION: feat_interrupt_vector_configuration(cmd); break; case SPDK_NVME_FEAT_WRITE_ATOMICITY: feat_write_atomicity(cmd); break; case SPDK_NVME_FEAT_ASYNC_EVENT_CONFIGURATION: feat_async_event_cfg(cmd); break; case SPDK_NVME_FEAT_KEEP_ALIVE_TIMER: feat_keep_alive_timer(cmd); break; default: break; } /* Use g_data[2] through g_data[5] for feature-specific bits and set g_data[6] for cdw14 every iteration UUID index, bits 0-6 are used */ cmd->cmd.cdw14 = (g_data[6] & 0x7f); g_data += 7; } static void fuzz_nvm_read_command(struct fuzz_command *cmd) { memset(&cmd->cmd, 0, sizeof(cmd->cmd)); cmd->cmd.opc = SPDK_NVME_OPC_READ; cmd->cmd.cdw10 = ((uint32_t)g_data[0] << 24) + ((uint32_t)g_data[1] << 16) + ((uint32_t)g_data[2] << 8) + (uint32_t)g_data[3]; cmd->cmd.cdw11 = ((uint32_t)g_data[4] << 24) + ((uint32_t)g_data[5] << 16) + ((uint32_t)g_data[6] << 8) + (uint32_t)g_data[7]; cmd->cmd.cdw12 = ((uint32_t)g_data[8] << 24) + ((uint32_t)g_data[9] << 16) + ((uint32_t)g_data[10] << 8) + (uint32_t)g_data[11]; cmd->cmd.cdw13 = g_data[12]; cmd->cmd.cdw14 = ((uint32_t)g_data[13] << 24) + ((uint32_t)g_data[14] << 16) + ((uint32_t)g_data[15] << 8) + (uint32_t)g_data[16]; cmd->cmd.cdw15 = ((uint32_t)g_data[17] << 24) + ((uint32_t)g_data[18] << 16) + ((uint32_t)g_data[19] << 8) + (uint32_t)g_data[20]; g_data += 21; } static void fuzz_nvm_write_command(struct fuzz_command *cmd) { memset(&cmd->cmd, 0, sizeof(cmd->cmd)); cmd->cmd.opc = SPDK_NVME_OPC_WRITE; cmd->cmd.cdw10 = ((uint32_t)g_data[0] << 24) + ((uint32_t)g_data[1] << 16) + ((uint32_t)g_data[2] << 8) + (uint32_t)g_data[3]; cmd->cmd.cdw11 = ((uint32_t)g_data[4] << 24) + ((uint32_t)g_data[5] << 16) + ((uint32_t)g_data[6] << 8) + (uint32_t)g_data[7]; cmd->cmd.cdw12 = ((uint32_t)g_data[8] << 24) + ((uint32_t)g_data[9] << 16) + ((uint32_t)g_data[10] << 8) + (uint32_t)g_data[11]; cmd->cmd.cdw13 = ((uint32_t)g_data[12] << 24) + ((uint32_t)g_data[13] << 16) + ((uint32_t)g_data[14] << 8) + (uint32_t)g_data[15]; cmd->cmd.cdw14 = ((uint32_t)g_data[16] << 24) + ((uint32_t)g_data[17] << 16) + ((uint32_t)g_data[18] << 8) + (uint32_t)g_data[19]; cmd->cmd.cdw15 = ((uint32_t)g_data[20] << 24) + ((uint32_t)g_data[21] << 16) + ((uint32_t)g_data[22] << 8) + (uint32_t)g_data[23]; g_data += 24; } static void fuzz_nvm_write_zeroes_command(struct fuzz_command *cmd) { memset(&cmd->cmd, 0, sizeof(cmd->cmd)); cmd->cmd.opc = SPDK_NVME_OPC_WRITE_ZEROES; cmd->cmd.cdw10 = ((uint32_t)g_data[0] << 24) + ((uint32_t)g_data[1] << 16) + ((uint32_t)g_data[2] << 8) + (uint32_t)g_data[3]; cmd->cmd.cdw11 = ((uint32_t)g_data[4] << 24) + ((uint32_t)g_data[5] << 16) + ((uint32_t)g_data[6] << 8) + (uint32_t)g_data[7]; cmd->cmd.cdw12 = ((uint32_t)g_data[8] << 24) + ((uint32_t)g_data[9] << 16) + ((uint32_t)g_data[10] << 8) + (uint32_t)g_data[11]; cmd->cmd.cdw14 = ((uint32_t)g_data[12] << 24) + ((uint32_t)g_data[13] << 16) + ((uint32_t)g_data[14] << 8) + (uint32_t)g_data[15]; cmd->cmd.cdw15 = ((uint32_t)g_data[16] << 24) + ((uint32_t)g_data[17] << 16) + ((uint32_t)g_data[18] << 8) + (uint32_t)g_data[19]; g_data += 20; } static void fuzz_nvm_write_uncorrectable_command(struct fuzz_command *cmd) { memset(&cmd->cmd, 0, sizeof(cmd->cmd)); cmd->cmd.opc = SPDK_NVME_OPC_WRITE_UNCORRECTABLE; cmd->cmd.cdw10 = ((uint32_t)g_data[0] << 24) + ((uint32_t)g_data[1] << 16) + ((uint32_t)g_data[2] << 8) + (uint32_t)g_data[3]; cmd->cmd.cdw11 = ((uint32_t)g_data[4] << 24) + ((uint32_t)g_data[5] << 16) + ((uint32_t)g_data[6] << 8) + (uint32_t)g_data[7]; cmd->cmd.cdw12 = (g_data[8] << 8) + g_data[9]; g_data += 10; } static void fuzz_nvm_reservation_acquire_command(struct fuzz_command *cmd) { struct spdk_nvme_reservation_acquire_data *payload = cmd->buf; memset(&cmd->cmd, 0, sizeof(cmd->cmd)); cmd->cmd.opc = SPDK_NVME_OPC_RESERVATION_ACQUIRE; cmd->cmd.cdw10_bits.resv_acquire.rtype = g_data[0]; cmd->cmd.cdw10_bits.resv_acquire.iekey = (g_data[1] >> 7) & 0x01; cmd->cmd.cdw10_bits.resv_acquire.racqa = (g_data[1] >> 4) & 0x07; payload->crkey = ((uint64_t)g_data[2] << 56) + ((uint64_t)g_data[3] << 48) + ((uint64_t)g_data[4] << 40) + ((uint64_t)g_data[5] << 32) + ((uint64_t)g_data[6] << 24) + ((uint64_t)g_data[7] << 16) + ((uint64_t)g_data[8] << 8) + (uint64_t)g_data[9]; payload->prkey = ((uint64_t)g_data[10] << 56) + ((uint64_t)g_data[11] << 48) + ((uint64_t)g_data[12] << 40) + ((uint64_t)g_data[13] << 32) + ((uint64_t)g_data[14] << 24) + ((uint64_t)g_data[15] << 16) + ((uint64_t)g_data[16] << 8) + (uint64_t)g_data[17]; cmd->len = sizeof(struct spdk_nvme_reservation_acquire_data); g_data += 18; } static void fuzz_nvm_reservation_release_command(struct fuzz_command *cmd) { struct spdk_nvme_reservation_key_data *payload = cmd->buf; memset(&cmd->cmd, 0, sizeof(cmd->cmd)); cmd->cmd.opc = SPDK_NVME_OPC_RESERVATION_RELEASE; cmd->cmd.cdw10_bits.resv_release.rtype = g_data[0]; cmd->cmd.cdw10_bits.resv_release.iekey = (g_data[1] >> 7) & 0x01; cmd->cmd.cdw10_bits.resv_release.rrela = (g_data[1] >> 4) & 0x07; payload->crkey = ((uint64_t)g_data[2] << 56) + ((uint64_t)g_data[3] << 48) + ((uint64_t)g_data[4] << 40) + ((uint64_t)g_data[5] << 32) + ((uint64_t)g_data[6] << 24) + ((uint64_t)g_data[7] << 16) + ((uint64_t)g_data[8] << 8) + (uint64_t)g_data[9]; cmd->len = sizeof(struct spdk_nvme_reservation_key_data); g_data += 10; } static void fuzz_nvm_reservation_register_command(struct fuzz_command *cmd) { struct spdk_nvme_reservation_register_data *payload = cmd->buf; memset(&cmd->cmd, 0, sizeof(cmd->cmd)); cmd->cmd.opc = SPDK_NVME_OPC_RESERVATION_REGISTER; cmd->cmd.cdw10_bits.resv_register.cptpl = (g_data[0] >> 6) & 0x03; cmd->cmd.cdw10_bits.resv_register.iekey = (g_data[0] >> 5) & 0x01; cmd->cmd.cdw10_bits.resv_register.rrega = (g_data[0] >> 2) & 0x07; payload->crkey = ((uint64_t)g_data[1] << 56) + ((uint64_t)g_data[2] << 48) + ((uint64_t)g_data[3] << 40) + ((uint64_t)g_data[4] << 32) + ((uint64_t)g_data[5] << 24) + ((uint64_t)g_data[6] << 16) + ((uint64_t)g_data[7] << 8) + (uint64_t)g_data[8]; payload->nrkey = ((uint64_t)g_data[9] << 56) + ((uint64_t)g_data[10] << 48) + ((uint64_t)g_data[11] << 40) + ((uint64_t)g_data[12] << 32) + ((uint64_t)g_data[13] << 24) + ((uint64_t)g_data[14] << 16) + ((uint64_t)g_data[15] << 8) + (uint64_t)g_data[16]; cmd->len = sizeof(struct spdk_nvme_reservation_register_data); g_data += 17; } static void fuzz_nvm_reservation_report_command(struct fuzz_command *cmd) { memset(&cmd->cmd, 0, sizeof(cmd->cmd)); cmd->cmd.opc = SPDK_NVME_OPC_RESERVATION_REPORT; cmd->cmd.cdw10 = ((uint32_t)g_data[0] << 24) + ((uint32_t)g_data[1] << 16) + ((uint32_t)g_data[2] << 8) + (uint32_t)g_data[3]; cmd->cmd.cdw11_bits.resv_report.eds = (g_data[4] >> 7) & 0x01; g_data += 5; } static void fuzz_nvm_compare_command(struct fuzz_command *cmd) { memset(&cmd->cmd, 0, sizeof(cmd->cmd)); cmd->cmd.opc = SPDK_NVME_OPC_COMPARE; cmd->cmd.cdw10 = ((uint32_t)g_data[0] << 24) + ((uint32_t)g_data[1] << 16) + ((uint32_t)g_data[2] << 8) + (uint32_t)g_data[3]; cmd->cmd.cdw11 = ((uint32_t)g_data[4] << 24) + ((uint32_t)g_data[5] << 16) + ((uint32_t)g_data[6] << 8) + (uint32_t)g_data[7]; cmd->cmd.cdw12 = ((uint32_t)g_data[8] << 24) + ((uint32_t)g_data[9] << 16) + ((uint32_t)g_data[10] << 8) + (uint32_t)g_data[11]; cmd->cmd.cdw14 = ((uint32_t)g_data[12] << 24) + ((uint32_t)g_data[13] << 16) + ((uint32_t)g_data[14] << 8) + (uint32_t)g_data[15]; cmd->cmd.cdw15 = ((uint32_t)g_data[16] << 24) + ((uint32_t)g_data[17] << 16) + ((uint32_t)g_data[18] << 8) + (uint32_t)g_data[19]; g_data += 20; } static struct fuzz_type g_fuzzers[] = { { .fn = fuzz_admin_command, .bytes_per_cmd = sizeof(struct spdk_nvme_cmd), .is_admin = true}, { .fn = fuzz_admin_get_log_page_command, .bytes_per_cmd = 6, .is_admin = true}, { .fn = fuzz_admin_identify_command, .bytes_per_cmd = 7, .is_admin = true}, { .fn = fuzz_admin_abort_command, .bytes_per_cmd = 4, .is_admin = true}, { .fn = fuzz_admin_create_io_completion_queue_command, .bytes_per_cmd = 7, .is_admin = true}, { .fn = fuzz_admin_create_io_submission_queue_command, .bytes_per_cmd = 9, .is_admin = true}, { .fn = fuzz_admin_delete_io_completion_queue_command, .bytes_per_cmd = 2, .is_admin = true}, { .fn = fuzz_admin_delete_io_submission_queue_command, .bytes_per_cmd = 2, .is_admin = true}, { .fn = fuzz_admin_namespace_attachment_command, .bytes_per_cmd = 1, .is_admin = true}, { .fn = fuzz_admin_namespace_management_command, .bytes_per_cmd = 1, .is_admin = true}, { .fn = fuzz_admin_security_receive_command, .bytes_per_cmd = 8, .is_admin = true}, { .fn = fuzz_admin_security_send_command, .bytes_per_cmd = 8, .is_admin = true}, { .fn = fuzz_admin_directive_send_command, .bytes_per_cmd = 8, .is_admin = true}, { .fn = fuzz_admin_directive_receive_command, .bytes_per_cmd = 8, .is_admin = true}, { .fn = fuzz_admin_set_features_command, .bytes_per_cmd = 7, .is_admin = true}, { .fn = fuzz_admin_get_features_command, .bytes_per_cmd = 7, .is_admin = true}, { .fn = fuzz_nvm_read_command, .bytes_per_cmd = 21, .is_admin = false}, { .fn = fuzz_nvm_write_command, .bytes_per_cmd = 24, .is_admin = false}, { .fn = fuzz_nvm_write_zeroes_command, .bytes_per_cmd = 20, .is_admin = false}, { .fn = fuzz_nvm_write_uncorrectable_command, .bytes_per_cmd = 10, .is_admin = false}, { .fn = fuzz_nvm_reservation_acquire_command, .bytes_per_cmd = 18, .is_admin = false}, { .fn = fuzz_nvm_reservation_release_command, .bytes_per_cmd = 10, .is_admin = false}, { .fn = fuzz_nvm_reservation_register_command, .bytes_per_cmd = 17, .is_admin = false}, { .fn = fuzz_nvm_reservation_report_command, .bytes_per_cmd = 5, .is_admin = false}, { .fn = fuzz_nvm_compare_command, .bytes_per_cmd = 20, .is_admin = false}, { .fn = NULL, .bytes_per_cmd = 0, .is_admin = 0} }; #define NUM_FUZZERS (SPDK_COUNTOF(g_fuzzers) - 1) static struct fuzz_type *g_fuzzer; struct spdk_nvme_transport_id g_trid; static struct spdk_nvme_ctrlr *g_ctrlr; static struct spdk_nvme_qpair *g_io_qpair; static void nvme_fuzz_cpl_cb(void *cb_arg, const struct spdk_nvme_cpl *cpl) { int *outstanding = cb_arg; assert(*outstanding > 0); (*outstanding)--; } static int run_cmds(uint32_t queue_depth) { int rc, outstanding = 0; uint32_t i; for (i = 0; i < queue_depth; i++) { struct fuzz_command *cmd = &g_cmds[i]; g_fuzzer->fn(cmd); outstanding++; if (g_fuzzer->is_admin) { rc = spdk_nvme_ctrlr_cmd_admin_raw(g_ctrlr, &cmd->cmd, cmd->buf, cmd->len, nvme_fuzz_cpl_cb, &outstanding); } else { rc = spdk_nvme_ctrlr_cmd_io_raw(g_ctrlr, g_io_qpair, &cmd->cmd, cmd->buf, cmd->len, nvme_fuzz_cpl_cb, &outstanding); } if (rc) { return rc; } } while (outstanding > 0) { spdk_nvme_qpair_process_completions(g_io_qpair, 0); spdk_nvme_ctrlr_process_admin_completions(g_ctrlr); } return 0; } static int TestOneInput(const uint8_t *data, size_t size) { int ret = 0; struct spdk_nvme_detach_ctx *detach_ctx = NULL; g_ctrlr = spdk_nvme_connect(&g_trid, NULL, 0); if (g_ctrlr == NULL) { fprintf(stderr, "spdk_nvme_connect() failed for transport address '%s'\n", g_trid.traddr); return -1; } g_io_qpair = spdk_nvme_ctrlr_alloc_io_qpair(g_ctrlr, NULL, 0); if (g_io_qpair == NULL) { fprintf(stderr, "spdk_nvme_ctrlr_alloc_io_qpair failed\n"); ret = -1; goto detach_ctrlr; } g_data = data; run_cmds(size / g_fuzzer->bytes_per_cmd); spdk_nvme_ctrlr_free_io_qpair(g_io_qpair); detach_ctrlr: spdk_nvme_detach_async(g_ctrlr, &detach_ctx); if (detach_ctx) { spdk_nvme_detach_poll(detach_ctx); } return ret; } int LLVMFuzzerRunDriver(int *argc, char ***argv, int (*UserCb)(const uint8_t *Data, size_t Size)); static void exit_handler(void) { if (g_in_fuzzer) { spdk_app_stop(0); pthread_join(g_reactor_td, NULL); } } static void * start_fuzzer(void *ctx) { char *_argv[] = { "spdk", "-len_control=0", "-detect_leaks=1", NULL, NULL, NULL }; char time_str[128]; char len_str[128]; char **argv = _argv; int argc = SPDK_COUNTOF(_argv); uint32_t len; int rc; spdk_unaffinitize_thread(); len = MAX_COMMANDS * g_fuzzer->bytes_per_cmd; snprintf(len_str, sizeof(len_str), "-max_len=%d", len); argv[argc - 3] = len_str; snprintf(time_str, sizeof(time_str), "-max_total_time=%d", g_time_in_sec); argv[argc - 2] = time_str; argv[argc - 1] = g_corpus_dir; g_in_fuzzer = true; atexit(exit_handler); if (g_repro_data) { printf("Running single test based on reproduction data file.\n"); rc = TestOneInput(g_repro_data, g_repro_size); printf("Done.\n"); } else { rc = LLVMFuzzerRunDriver(&argc, &argv, TestOneInput); /* TODO: in the normal case, LLVMFuzzerRunDriver never returns - it calls exit() * directly and we never get here. But this behavior isn't really documented * anywhere by LLVM, so call spdk_app_stop(0) if it does return, which will * result in the app exiting like a normal SPDK application (spdk_app_start() * returns to main(). */ } g_in_fuzzer = false; spdk_app_stop(rc); return NULL; } static void begin_fuzz(void *ctx) { int i; g_reactor_td = pthread_self(); for (i = 0; i < MAX_COMMANDS; i++) { g_cmds[i].buf = spdk_malloc(4096, 0, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); assert(g_cmds[i].buf); g_cmds[i].len = 4096; } pthread_create(&g_fuzz_td, NULL, start_fuzzer, NULL); } static void nvme_fuzz_usage(void) { fprintf(stderr, " -D Path of corpus directory.\n"); fprintf(stderr, " -F Transport ID for subsystem that should be fuzzed.\n"); fprintf(stderr, " -N Name of reproduction data file.\n"); fprintf(stderr, " -t Time to run fuzz tests (in seconds). Default: 10\n"); fprintf(stderr, " -Z Fuzzer to run (0 to %lu)\n", NUM_FUZZERS - 1); } static int nvme_fuzz_parse(int ch, char *arg) { long long tmp; int rc; FILE *repro_file; switch (ch) { case 'D': g_corpus_dir = strdup(optarg); break; case 'F': if (g_trid_specified) { fprintf(stderr, "Can only specify one trid\n"); return -1; } g_trid_specified = true; rc = spdk_nvme_transport_id_parse(&g_trid, optarg); if (rc < 0) { fprintf(stderr, "failed to parse transport ID: %s\n", optarg); return -1; } break; case 'N': repro_file = fopen(optarg, "r"); if (repro_file == NULL) { fprintf(stderr, "could not open %s: %s\n", optarg, spdk_strerror(errno)); return -1; } g_repro_data = spdk_posix_file_load(repro_file, &g_repro_size); if (g_repro_data == NULL) { fprintf(stderr, "could not load data for file %s\n", optarg); return -1; } break; case 't': case 'Z': tmp = spdk_strtoll(optarg, 10); if (tmp < 0 || tmp >= INT_MAX) { fprintf(stderr, "Invalid value '%s' for option -%c.\n", optarg, ch); return -EINVAL; } switch (ch) { case 't': g_time_in_sec = tmp; break; case 'Z': if ((unsigned long)tmp >= NUM_FUZZERS) { fprintf(stderr, "Invalid fuzz type %lld (max %lu)\n", tmp, NUM_FUZZERS - 1); return -EINVAL; } g_fuzzer = &g_fuzzers[tmp]; break; } break; case '?': default: return -EINVAL; } return 0; } static void fuzz_shutdown(void) { /* If the user terminates the fuzzer prematurely, it is likely due * to an input hang. So raise a SIGSEGV signal which will cause the * fuzzer to generate a crash file for the last input. * * Note that the fuzzer will always generate a crash file, even if * we get our TestOneInput() function (which is called by the fuzzer) * to pthread_exit(). So just doing the SIGSEGV here in all cases is * simpler than trying to differentiate between hung inputs and * an impatient user. */ pthread_kill(g_fuzz_td, SIGSEGV); } int main(int argc, char **argv) { struct spdk_app_opts opts = {}; int rc; spdk_app_opts_init(&opts, sizeof(opts)); opts.name = "nvme_fuzz"; opts.shutdown_cb = fuzz_shutdown; if ((rc = spdk_app_parse_args(argc, argv, &opts, "D:F:N:t:Z:", NULL, nvme_fuzz_parse, nvme_fuzz_usage) != SPDK_APP_PARSE_ARGS_SUCCESS)) { return rc; } if (!g_corpus_dir) { fprintf(stderr, "Must specify corpus dir with -D option\n"); return -1; } if (!g_trid_specified) { fprintf(stderr, "Must specify trid with -F option\n"); return -1; } if (!g_fuzzer) { fprintf(stderr, "Must specify fuzzer with -Z option\n"); return -1; } rc = spdk_app_start(&opts, begin_fuzz, NULL); spdk_app_fini(); return rc; }