/*- * BSD LICENSE * * Copyright (c) Intel Corporation. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "spdk/fd.h" #include "spdk/nvme.h" #include "spdk/env.h" #include "spdk/string.h" #include "spdk/nvme_intel.h" struct ctrlr_entry { bool is_removed; struct spdk_nvme_ctrlr *ctrlr; struct spdk_nvme_intel_rw_latency_page *latency_page; struct ctrlr_entry *next; char name[1024]; }; enum entry_type { ENTRY_TYPE_NVME_NS, }; struct ns_entry { enum entry_type type; struct { struct spdk_nvme_ctrlr *ctrlr; struct spdk_nvme_ns *ns; } nvme; struct ns_entry *next; uint32_t io_size_blocks; uint64_t size_in_ios; char name[1024]; }; struct ns_worker_ctx { struct ns_entry *entry; struct worker_thread *worker; uint64_t io_completed; uint64_t current_queue_depth; uint64_t offset_in_ios; bool is_draining; bool is_removed; struct { struct spdk_nvme_qpair *qpair; } nvme; struct ns_worker_ctx *next; }; struct perf_task { struct ns_worker_ctx *ns_ctx; void *buf; }; struct worker_thread { struct ns_worker_ctx *ns_ctx; struct worker_thread *next; unsigned lcore; bool is_aborted; }; static int g_outstanding_commands; static bool g_latency_tracking_enable = false; static struct rte_mempool *task_pool; static struct ctrlr_entry *g_controllers = NULL; static struct ns_entry *g_namespaces = NULL; static int g_num_namespaces = 0; static struct worker_thread *g_workers = NULL; static int g_num_workers = 0; static uint64_t g_tsc_rate; static uint32_t g_io_size_bytes; static int g_rw_percentage; static int g_is_random; static int g_queue_depth; static int g_time_in_sec; static uint32_t g_max_completions; static const char *g_core_mask; static void task_complete(struct perf_task *task); static void register_ns(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns) { struct ns_entry *entry; const struct spdk_nvme_ctrlr_data *cdata; cdata = spdk_nvme_ctrlr_get_data(ctrlr); if (!spdk_nvme_ns_is_active(ns)) { printf("Controller %-20.20s (%-20.20s): Skipping inactive NS %u\n", cdata->mn, cdata->sn, spdk_nvme_ns_get_id(ns)); return; } if (spdk_nvme_ns_get_size(ns) < g_io_size_bytes || spdk_nvme_ns_get_sector_size(ns) > g_io_size_bytes) { printf("WARNING: controller %-20.20s (%-20.20s) ns %u has invalid " "ns size %" PRIu64 " / block size %u for I/O size %u\n", cdata->mn, cdata->sn, spdk_nvme_ns_get_id(ns), spdk_nvme_ns_get_size(ns), spdk_nvme_ns_get_sector_size(ns), g_io_size_bytes); return; } entry = malloc(sizeof(struct ns_entry)); if (entry == NULL) { perror("ns_entry malloc"); exit(1); } entry->type = ENTRY_TYPE_NVME_NS; entry->nvme.ctrlr = ctrlr; entry->nvme.ns = ns; entry->size_in_ios = spdk_nvme_ns_get_size(ns) / g_io_size_bytes; entry->io_size_blocks = g_io_size_bytes / spdk_nvme_ns_get_sector_size(ns); snprintf(entry->name, 44, "%-20.20s (%-20.20s)", cdata->mn, cdata->sn); g_num_namespaces++; entry->next = g_namespaces; g_namespaces = entry; } static void enable_latency_tracking_complete(void *cb_arg, const struct spdk_nvme_cpl *cpl) { if (spdk_nvme_cpl_is_error(cpl)) { printf("enable_latency_tracking_complete failed\n"); } g_outstanding_commands--; } static void set_latency_tracking_feature(struct spdk_nvme_ctrlr *ctrlr, bool enable) { int res; union spdk_nvme_intel_feat_latency_tracking latency_tracking; if (enable) { latency_tracking.bits.enable = 0x01; } else { latency_tracking.bits.enable = 0x00; } res = spdk_nvme_ctrlr_cmd_set_feature(ctrlr, SPDK_NVME_INTEL_FEAT_LATENCY_TRACKING, latency_tracking.raw, 0, NULL, 0, enable_latency_tracking_complete, NULL); if (res) { printf("fail to allocate nvme request.\n"); return; } g_outstanding_commands++; while (g_outstanding_commands) { spdk_nvme_ctrlr_process_admin_completions(ctrlr); } } static void register_ctrlr(struct spdk_nvme_ctrlr *ctrlr) { int nsid, num_ns; struct ctrlr_entry *entry = malloc(sizeof(struct ctrlr_entry)); const struct spdk_nvme_ctrlr_data *cdata = spdk_nvme_ctrlr_get_data(ctrlr); if (entry == NULL) { perror("ctrlr_entry malloc"); exit(1); } entry->latency_page = spdk_zmalloc(sizeof(struct spdk_nvme_intel_rw_latency_page), 4096, NULL); if (entry->latency_page == NULL) { printf("Allocation error (latency page)\n"); exit(1); } snprintf(entry->name, sizeof(entry->name), "%-20.20s (%-20.20s)", cdata->mn, cdata->sn); entry->ctrlr = ctrlr; entry->next = g_controllers; entry->is_removed = false; g_controllers = entry; if (g_latency_tracking_enable && spdk_nvme_ctrlr_is_feature_supported(ctrlr, SPDK_NVME_INTEL_FEAT_LATENCY_TRACKING)) set_latency_tracking_feature(ctrlr, true); num_ns = spdk_nvme_ctrlr_get_num_ns(ctrlr); for (nsid = 1; nsid <= num_ns; nsid++) { register_ns(ctrlr, spdk_nvme_ctrlr_get_ns(ctrlr, nsid)); } } static void task_ctor(struct rte_mempool *mp, void *arg, void *__task, unsigned id) { struct perf_task *task = __task; task->buf = spdk_zmalloc(g_io_size_bytes, 0x200, NULL); if (task->buf == NULL) { fprintf(stderr, "task->buf rte_malloc failed\n"); exit(1); } memset(task->buf, id % 8, g_io_size_bytes); } static void io_complete(void *ctx, const struct spdk_nvme_cpl *completion); static __thread unsigned int seed = 0; static void submit_single_io(struct ns_worker_ctx *ns_ctx) { struct perf_task *task = NULL; uint64_t offset_in_ios; int rc; struct ns_entry *entry = ns_ctx->entry; if (rte_mempool_get(task_pool, (void **)&task) != 0) { fprintf(stderr, "task_pool rte_mempool_get failed\n"); exit(1); } task->ns_ctx = ns_ctx; if (g_is_random) { offset_in_ios = rand_r(&seed) % entry->size_in_ios; } else { offset_in_ios = ns_ctx->offset_in_ios++; if (ns_ctx->offset_in_ios == entry->size_in_ios) { ns_ctx->offset_in_ios = 0; } } if ((g_rw_percentage == 100) || (g_rw_percentage != 0 && ((rand_r(&seed) % 100) < g_rw_percentage))) { rc = spdk_nvme_ns_cmd_read(entry->nvme.ns, ns_ctx->nvme.qpair, task->buf, offset_in_ios * entry->io_size_blocks, entry->io_size_blocks, io_complete, task, 0); } else { rc = spdk_nvme_ns_cmd_write(entry->nvme.ns, ns_ctx->nvme.qpair, task->buf, offset_in_ios * entry->io_size_blocks, entry->io_size_blocks, io_complete, task, 0); } if (rc != 0) { fprintf(stderr, "starting I/O failed\n"); rte_mempool_put(task_pool, task); } else { ns_ctx->current_queue_depth++; } } static void task_complete(struct perf_task *task) { struct ns_worker_ctx *ns_ctx; ns_ctx = task->ns_ctx; ns_ctx->current_queue_depth--; ns_ctx->io_completed++; rte_mempool_put(task_pool, task); /* * is_draining indicates when time has expired for the test run * and we are just waiting for the previously submitted I/O * to complete. In this case, do not submit a new I/O to replace * the one just completed. */ if (!ns_ctx->is_draining && !ns_ctx->is_removed && !ns_ctx->worker->is_aborted) { submit_single_io(ns_ctx); } } static void io_complete(void *ctx, const struct spdk_nvme_cpl *completion) { task_complete((struct perf_task *)ctx); } static void check_io(struct ns_worker_ctx *ns_ctx) { spdk_nvme_qpair_process_completions(ns_ctx->nvme.qpair, g_max_completions); } static void submit_io(struct ns_worker_ctx *ns_ctx, int queue_depth) { while (queue_depth-- > 0) { submit_single_io(ns_ctx); } } static void drain_io(struct ns_worker_ctx *ns_ctx) { ns_ctx->is_draining = true; while (!ns_ctx->worker->is_aborted && ns_ctx->current_queue_depth > 0) { check_io(ns_ctx); } } static int init_ns_worker_ctx(struct ns_worker_ctx *ns_ctx) { /* * TODO: If a controller has multiple namespaces, they could all use the same queue. * For now, give each namespace/thread combination its own queue. */ ns_ctx->nvme.qpair = spdk_nvme_ctrlr_alloc_io_qpair(ns_ctx->entry->nvme.ctrlr, 0); if (!ns_ctx->nvme.qpair) { printf("ERROR: spdk_nvme_ctrlr_alloc_io_qpair failed\n"); return -1; } return 0; } static void cleanup_ns_worker_ctx(struct ns_worker_ctx *ns_ctx) { if (ns_ctx->entry->type == ENTRY_TYPE_NVME_NS) { spdk_nvme_ctrlr_free_io_qpair(ns_ctx->nvme.qpair); } } static int work_fn(void *arg) { uint64_t tsc_end; struct worker_thread *worker = (struct worker_thread *)arg; struct ns_worker_ctx *ns_ctx = NULL; printf("Starting thread %p on core %u\n", worker, worker->lcore); /* Allocate a queue pair for each namespace. */ ns_ctx = worker->ns_ctx; while (!worker->is_aborted && ns_ctx != NULL) { if (ns_ctx->is_removed == false) { if (init_ns_worker_ctx(ns_ctx) != 0) { printf("ERROR: init_ns_worker_ctx() failed\n"); return 1; } } ns_ctx = ns_ctx->next; } tsc_end = spdk_get_ticks() + g_time_in_sec * g_tsc_rate; /* Submit initial I/O for each namespace. */ ns_ctx = worker->ns_ctx; while (!worker->is_aborted && ns_ctx != NULL) { if (ns_ctx->is_removed == false) { submit_io(ns_ctx, g_queue_depth); } ns_ctx = ns_ctx->next; } while (!worker->is_aborted) { /* * Check for completed I/O for each controller. A new * I/O will be submitted in the io_complete callback * to replace each I/O that is completed. */ ns_ctx = worker->ns_ctx; while (!worker->is_aborted && ns_ctx != NULL) { if (ns_ctx->is_removed == false) { check_io(ns_ctx); } ns_ctx = ns_ctx->next; } if (spdk_get_ticks() > tsc_end) { break; } } ns_ctx = worker->ns_ctx; while (!worker->is_aborted && ns_ctx != NULL) { if (ns_ctx->is_removed == false) { drain_io(ns_ctx); } cleanup_ns_worker_ctx(ns_ctx); ns_ctx = ns_ctx->next; } printf("finish thread %p on core %u\n", worker, worker->lcore); return 0; } static void usage(char *program_name) { printf("%s options", program_name); printf("\n"); printf("\t[-q io depth]\n"); printf("\t[-s io size in bytes]\n"); printf("\t[-w io pattern type, must be one of\n"); printf("\t\t(read, write, randread, randwrite, rw, randrw)]\n"); printf("\t[-M rwmixread (100 for reads, 0 for writes)]\n"); printf("\t[-l enable latency tracking, default: disabled]\n"); printf("\t[-t time in seconds]\n"); printf("\t[-c core mask for I/O submission/completion.]\n"); printf("\t\t(default: 1)]\n"); printf("\t[-m max completions per poll]\n"); printf("\t\t(default: 0 - unlimited)\n"); } static void print_performance(void) { float io_per_second, mb_per_second; float total_io_per_second, total_mb_per_second; struct worker_thread *worker; struct ns_worker_ctx *ns_ctx; total_io_per_second = 0; total_mb_per_second = 0; worker = g_workers; while (worker) { ns_ctx = worker->ns_ctx; while (ns_ctx) { io_per_second = (float)ns_ctx->io_completed / g_time_in_sec; mb_per_second = io_per_second * g_io_size_bytes / (1024 * 1024); printf("%-43.43s from core %u: %10.2f IO/s %10.2f MB/s\n", ns_ctx->entry->name, worker->lcore, io_per_second, mb_per_second); total_io_per_second += io_per_second; total_mb_per_second += mb_per_second; ns_ctx = ns_ctx->next; } worker = worker->next; } printf("========================================================\n"); printf("%-55s: %10.2f IO/s %10.2f MB/s\n", "Total", total_io_per_second, total_mb_per_second); printf("\n"); } static void print_latency_page(struct ctrlr_entry *entry) { int i; printf("\n"); printf("%s\n", entry->name); printf("--------------------------------------------------------\n"); for (i = 0; i < 32; i++) { if (entry->latency_page->buckets_32us[i]) printf("Bucket %dus - %dus: %d\n", i * 32, (i + 1) * 32, entry->latency_page->buckets_32us[i]); } for (i = 0; i < 31; i++) { if (entry->latency_page->buckets_1ms[i]) printf("Bucket %dms - %dms: %d\n", i + 1, i + 2, entry->latency_page->buckets_1ms[i]); } for (i = 0; i < 31; i++) { if (entry->latency_page->buckets_32ms[i]) printf("Bucket %dms - %dms: %d\n", (i + 1) * 32, (i + 2) * 32, entry->latency_page->buckets_32ms[i]); } } static void print_latency_statistics(const char *op_name, enum spdk_nvme_intel_log_page log_page) { struct ctrlr_entry *ctrlr; printf("%s Latency Statistics:\n", op_name); printf("========================================================\n"); g_outstanding_commands = 0; ctrlr = g_controllers; while (ctrlr && !ctrlr->is_removed) { if (spdk_nvme_ctrlr_is_log_page_supported(ctrlr->ctrlr, log_page)) { if (spdk_nvme_ctrlr_cmd_get_log_page(ctrlr->ctrlr, log_page, SPDK_NVME_GLOBAL_NS_TAG, ctrlr->latency_page, sizeof(struct spdk_nvme_intel_rw_latency_page), enable_latency_tracking_complete, NULL)) { printf("nvme_ctrlr_cmd_get_log_page() failed\n"); exit(1); } g_outstanding_commands++; } else { printf("Controller %s: %s latency statistics not supported\n", ctrlr->name, op_name); } ctrlr = ctrlr->next; } while (g_outstanding_commands) { ctrlr = g_controllers; while (ctrlr) { spdk_nvme_ctrlr_process_admin_completions(ctrlr->ctrlr); ctrlr = ctrlr->next; } } ctrlr = g_controllers; while (ctrlr && !ctrlr->is_removed) { if (spdk_nvme_ctrlr_is_log_page_supported(ctrlr->ctrlr, log_page)) { print_latency_page(ctrlr); } ctrlr = ctrlr->next; } printf("\n"); } static void print_stats(void) { print_performance(); if (g_latency_tracking_enable) { if (g_rw_percentage != 0) { print_latency_statistics("Read", SPDK_NVME_INTEL_LOG_READ_CMD_LATENCY); } if (g_rw_percentage != 100) { print_latency_statistics("Write", SPDK_NVME_INTEL_LOG_WRITE_CMD_LATENCY); } } } static int parse_args(int argc, char **argv) { const char *workload_type; int op; bool mix_specified = false; /* default value*/ g_queue_depth = 0; g_io_size_bytes = 0; workload_type = NULL; g_time_in_sec = 0; g_rw_percentage = -1; g_core_mask = NULL; g_max_completions = 0; while ((op = getopt(argc, argv, "c:lm:q:s:t:w:M:")) != -1) { switch (op) { case 'c': g_core_mask = optarg; break; case 'l': g_latency_tracking_enable = true; break; case 'm': g_max_completions = atoi(optarg); break; case 'q': g_queue_depth = atoi(optarg); break; case 's': g_io_size_bytes = atoi(optarg); break; case 't': g_time_in_sec = atoi(optarg); break; case 'w': workload_type = optarg; break; case 'M': g_rw_percentage = atoi(optarg); mix_specified = true; break; default: usage(argv[0]); return 1; } } if (!g_queue_depth) { usage(argv[0]); return 1; } if (!g_io_size_bytes) { usage(argv[0]); return 1; } if (!workload_type) { usage(argv[0]); return 1; } if (!g_time_in_sec) { usage(argv[0]); return 1; } if (strcmp(workload_type, "read") && strcmp(workload_type, "write") && strcmp(workload_type, "randread") && strcmp(workload_type, "randwrite") && strcmp(workload_type, "rw") && strcmp(workload_type, "randrw")) { fprintf(stderr, "io pattern type must be one of\n" "(read, write, randread, randwrite, rw, randrw)\n"); return 1; } if (!strcmp(workload_type, "read") || !strcmp(workload_type, "randread")) { g_rw_percentage = 100; } if (!strcmp(workload_type, "write") || !strcmp(workload_type, "randwrite")) { g_rw_percentage = 0; } if (!strcmp(workload_type, "read") || !strcmp(workload_type, "randread") || !strcmp(workload_type, "write") || !strcmp(workload_type, "randwrite")) { if (mix_specified) { fprintf(stderr, "Ignoring -M option... Please use -M option" " only when using rw or randrw.\n"); } } if (!strcmp(workload_type, "rw") || !strcmp(workload_type, "randrw")) { if (g_rw_percentage < 0 || g_rw_percentage > 100) { fprintf(stderr, "-M must be specified to value from 0 to 100 " "for rw or randrw.\n"); return 1; } } if (!strcmp(workload_type, "read") || !strcmp(workload_type, "write") || !strcmp(workload_type, "rw")) { g_is_random = 0; } else { g_is_random = 1; } optind = 1; return 0; } static int register_workers(void) { unsigned lcore; struct worker_thread *worker = NULL; g_num_workers = 0; RTE_LCORE_FOREACH_SLAVE(lcore) { worker = malloc(sizeof(struct worker_thread)); if (worker == NULL) { perror("worker_thread malloc"); return -1; } memset(worker, 0, sizeof(struct worker_thread)); worker->lcore = lcore; worker->is_aborted = false; if (g_workers == NULL) { g_workers = worker; } else { worker->next = g_workers; g_workers = worker; } g_num_workers++; } return 0; } static bool probe_cb(void *cb_ctx, const struct spdk_nvme_probe_info *probe_info, struct spdk_nvme_ctrlr_opts *opts) { printf("Attaching to %04x:%02x:%02x.%02x\n", probe_info->pci_addr.domain, probe_info->pci_addr.bus, probe_info->pci_addr.dev, probe_info->pci_addr.func); return true; } static void attach_cb(void *cb_ctx, const struct spdk_nvme_probe_info *probe_info, struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts) { printf("Attached to %04x:%02x:%02x.%02x\n", probe_info->pci_addr.domain, probe_info->pci_addr.bus, probe_info->pci_addr.dev, probe_info->pci_addr.func); register_ctrlr(ctrlr); } static void remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr) { struct worker_thread *worker = g_workers; struct ctrlr_entry *entry = g_controllers; bool all_abort = true; struct spdk_nvme_ctrlr *target_ctrlr; struct ns_worker_ctx *ns_ctx; while (entry) { if (entry->ctrlr == ctrlr) { entry->is_removed = true; break; } entry = entry->next; } while (worker != NULL) { if (!worker->ns_ctx) { worker = worker->next; continue; } all_abort = true; ns_ctx = worker->ns_ctx; while (ns_ctx) { target_ctrlr = worker->ns_ctx->entry->nvme.ctrlr; if (ctrlr == target_ctrlr) { ns_ctx->is_removed = true; } else if (!ns_ctx->is_removed) { all_abort = false; } ns_ctx = ns_ctx->next; } if (all_abort == true) { worker->is_aborted = true; } worker = worker->next; } sleep(2); } static int register_controllers(void) { printf("Initializing NVMe Controllers\n"); if (spdk_nvme_probe(NULL, probe_cb, attach_cb, remove_cb) != 0) { fprintf(stderr, "spdk_nvme_probe() failed\n"); return 1; } return 0; } static void unregister_controllers(void) { struct ctrlr_entry *entry = g_controllers; while (entry) { struct ctrlr_entry *next = entry->next; spdk_free(entry->latency_page); if (!entry->is_removed) { if (g_latency_tracking_enable && spdk_nvme_ctrlr_is_feature_supported(entry->ctrlr, SPDK_NVME_INTEL_FEAT_LATENCY_TRACKING)) set_latency_tracking_feature(entry->ctrlr, false); spdk_nvme_detach(entry->ctrlr); } free(entry); entry = next; } } static void unregister_namespaces(void) { struct ns_entry *entry = g_namespaces; while (entry) { struct ns_entry *next = entry->next; free(entry); entry = next; } } static void unregister_workers(void) { struct worker_thread *worker = g_workers; /* Free namespace context and worker thread */ while (worker) { struct worker_thread *next_worker = worker->next; struct ns_worker_ctx *ns_ctx = worker->ns_ctx; while (ns_ctx) { struct ns_worker_ctx *next_ns_ctx = ns_ctx->next; free(ns_ctx); ns_ctx = next_ns_ctx; } free(worker); worker = next_worker; } } static int associate_workers_with_ns(void) { struct ns_entry *entry = g_namespaces; struct worker_thread *worker = g_workers; struct ns_worker_ctx *ns_ctx; int i, count; count = g_num_namespaces > g_num_workers ? g_num_namespaces : g_num_workers; for (i = 0; i < count; i++) { ns_ctx = malloc(sizeof(struct ns_worker_ctx)); if (!ns_ctx) { return -1; } memset(ns_ctx, 0, sizeof(*ns_ctx)); printf("Associating %s with lcore %d\n", entry->name, worker->lcore); ns_ctx->is_removed = false; ns_ctx->entry = entry; ns_ctx->next = worker->ns_ctx; ns_ctx->worker = worker; worker->ns_ctx = ns_ctx; worker = worker->next; if (worker == NULL) { worker = g_workers; } entry = entry->next; if (entry == NULL) { entry = g_namespaces; } } return 0; } static char *ealargs[] = { "perf", "-c 0x3", "-n 4", }; static void detect_hotplug(void) { uint64_t tsc_end; tsc_end = spdk_get_ticks() + g_time_in_sec * g_tsc_rate; while (1) { if ((rte_eal_process_type() == RTE_PROC_PRIMARY)) { if (spdk_nvme_probe(NULL, probe_cb, attach_cb, remove_cb) != 0) { fprintf(stderr, "spdk_nvme_probe() failed\n"); return; } usleep(1000); } if (spdk_get_ticks() > tsc_end) { break; } } } int main(int argc, char **argv) { int rc; struct worker_thread *worker; struct rlimit core_limits; core_limits.rlim_cur = core_limits.rlim_max = RLIM_INFINITY; setrlimit(RLIMIT_CORE, &core_limits); rc = parse_args(argc, argv); if (rc != 0) { return rc; } ealargs[1] = spdk_sprintf_alloc("-c %s", g_core_mask ? g_core_mask : "0x3"); if (ealargs[1] == NULL) { perror("ealargs spdk_sprintf_alloc"); return 1; } rc = rte_eal_init(sizeof(ealargs) / sizeof(ealargs[0]), ealargs); free(ealargs[1]); if (rc < 0) { fprintf(stderr, "could not initialize dpdk\n"); return 1; } task_pool = rte_mempool_create("task_pool", 8192, sizeof(struct perf_task), 64, 0, NULL, NULL, task_ctor, NULL, SOCKET_ID_ANY, 0); g_tsc_rate = spdk_get_ticks_hz(); if (register_workers() != 0) { return 1; } if (register_controllers() != 0) { return 1; } if (associate_workers_with_ns() != 0) { return 1; } printf("Initialization complete. Launching workers.\n"); /* Launch all of the slave workers */ worker = g_workers; while (worker != NULL) { rte_eal_remote_launch(work_fn, worker, worker->lcore); worker = worker->next; } detect_hotplug(); rc = 0; worker = g_workers; while (worker != NULL) { if (rte_eal_wait_lcore(worker->lcore) < 0) { rc = -1; } printf("worker %p finished\n", worker); worker = worker->next; } print_stats(); unregister_namespaces(); unregister_controllers(); unregister_workers(); return rc; }