module/crypto: change how we handle crypto device full condition

Previously we would sit in the submission routine and spin on the
poller and then retry in the event that we could not get CryptoDev
to take all of the ops that we had available.

The implementation was fine however a recent CryptoDev change
requires us to now check the status of attempted submissions
instead of assuming that the device was busy. If there was
another reason for the failure we don't want to retry or we'll
be stuck in an endless retry loop.

Changing the current device full handling to match what was
done in the compression vbdev makes it easier to handle the
new condition and also makes the two vbdevs more consistent
with regards to how they manage the DPDK framework API.

This patch only changes how we handle full conditions to put
the ops on a linked list and resubmit them the next tie the
poller runs naturally. A following patch will handle the
CryptoDev API change that instigated this change.

Signed-off-by: paul luse <paul.e.luse@intel.com>
Change-Id: Idcb6e06b6826045f23e59b64eca051f3eee2b850
Reviewed-on: https://review.gerrithub.io/c/spdk/spdk/+/472309
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
Reviewed-by: Jim Harris <james.r.harris@intel.com>
Reviewed-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com>
This commit is contained in:
paul luse 2019-10-25 00:30:37 +00:00 committed by Tomasz Zawadzki
parent 87dea05be4
commit c602bd81f6
2 changed files with 165 additions and 76 deletions

View File

@ -121,6 +121,7 @@ static pthread_mutex_t g_device_qp_lock = PTHREAD_MUTEX_INITIALIZER;
/* Common for suported devices. */
#define IV_OFFSET (sizeof(struct rte_crypto_op) + \
sizeof(struct rte_crypto_sym_op))
#define QUEUED_OP_OFFSET (IV_OFFSET + AES_CBC_IV_LENGTH)
static void _complete_internal_io(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg);
static void _complete_internal_read(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg);
@ -165,6 +166,16 @@ static struct rte_mempool *g_session_mp_priv = NULL;
static struct spdk_mempool *g_mbuf_mp = NULL; /* mbuf mempool */
static struct rte_mempool *g_crypto_op_mp = NULL; /* crypto operations, must be rte* mempool */
/* For queueing up crypto operations that we can't submit for some reason */
struct vbdev_crypto_op {
uint8_t cdev_id;
uint8_t qp;
struct rte_crypto_op *crypto_op;
struct spdk_bdev_io *bdev_io;
TAILQ_ENTRY(vbdev_crypto_op) link;
};
#define QUEUED_OP_LENGTH (sizeof(struct vbdev_crypto_op))
/* The crypto vbdev channel struct. It is allocated and freed on my behalf by the io channel code.
* We store things in here that are needed on per thread basis like the base_channel for this thread,
* and the poller for this thread.
@ -175,6 +186,7 @@ struct crypto_io_channel {
struct device_qp *device_qp; /* unique device/qp combination for this channel */
TAILQ_HEAD(, spdk_bdev_io) pending_cry_ios; /* outstanding operations to the crypto device */
struct spdk_io_channel_iter *iter; /* used with for_each_channel in reset */
TAILQ_HEAD(, vbdev_crypto_op) queued_cry_ops; /* queued for re-submission to CryptoDev */
};
/* This is the crypto per IO context that the bdev layer allocates for us opaquely and attaches to
@ -187,7 +199,7 @@ struct crypto_bdev_io {
struct spdk_bdev_io *orig_io; /* the original IO */
struct spdk_bdev_io *read_io; /* the read IO we issued */
int8_t bdev_io_status; /* the status we'll report back on the bdev IO */
bool on_pending_list;
/* Used for the single contiguous buffer that serves as the crypto destination target for writes */
uint64_t cry_num_blocks; /* num of blocks for the contiguous buffer */
uint64_t cry_offset_blocks; /* block offset on media */
@ -390,12 +402,16 @@ vbdev_crypto_init_crypto_drivers(void)
goto error_create_mbuf;
}
/* We use per op private data to store the IV and our own struct
* for queueing ops.
*/
g_crypto_op_mp = rte_crypto_op_pool_create("op_mp",
RTE_CRYPTO_OP_TYPE_SYMMETRIC,
NUM_MBUFS,
POOL_CACHE_SIZE,
AES_CBC_IV_LENGTH,
AES_CBC_IV_LENGTH + QUEUED_OP_LENGTH,
rte_socket_id());
if (g_crypto_op_mp == NULL) {
SPDK_ERRLOG("Cannot create op pool\n");
rc = -ENOMEM;
@ -485,6 +501,9 @@ _crypto_operation_complete(struct spdk_bdev_io *bdev_io)
}
}
static int _crypto_operation(struct spdk_bdev_io *bdev_io,
enum rte_crypto_cipher_operation crypto_op);
/* This is the poller for the crypto device. It uses a single API to dequeue whatever is ready at
* the device. Then we need to decide if what we've got so far (including previous poller
* runs) totals up to one or more complete bdev_ios and if so continue with the bdev_io
@ -495,12 +514,13 @@ crypto_dev_poller(void *args)
{
struct crypto_io_channel *crypto_ch = args;
uint8_t cdev_id = crypto_ch->device_qp->device->cdev_id;
int i, num_dequeued_ops;
int i, num_dequeued_ops, num_enqueued_ops;
struct spdk_bdev_io *bdev_io = NULL;
struct crypto_bdev_io *io_ctx = NULL;
struct rte_crypto_op *dequeued_ops[MAX_DEQUEUE_BURST_SIZE];
struct rte_crypto_op *mbufs_to_free[2 * MAX_DEQUEUE_BURST_SIZE];
int num_mbufs = 0;
struct vbdev_crypto_op *op_to_resubmit;
/* Each run of the poller will get just what the device has available
* at the moment we call it, we don't check again after draining the
@ -567,6 +587,29 @@ crypto_dev_poller(void *args)
num_mbufs);
}
/* Check if there are any pending crypto ops to process */
while (!TAILQ_EMPTY(&crypto_ch->queued_cry_ops)) {
op_to_resubmit = TAILQ_FIRST(&crypto_ch->queued_cry_ops);
io_ctx = (struct crypto_bdev_io *)op_to_resubmit->bdev_io->driver_ctx;
num_enqueued_ops = rte_cryptodev_enqueue_burst(op_to_resubmit->cdev_id,
op_to_resubmit->qp,
&op_to_resubmit->crypto_op,
1);
if (num_enqueued_ops == 1) {
/* Make sure we don't put this on twice as one bdev_io is made up
* of many crypto ops.
*/
if (io_ctx->on_pending_list == false) {
TAILQ_INSERT_TAIL(&crypto_ch->pending_cry_ios, op_to_resubmit->bdev_io, module_link);
io_ctx->on_pending_list = true;
}
TAILQ_REMOVE(&crypto_ch->queued_cry_ops, op_to_resubmit, link);
} else {
/* if we couldn't get one, just break and try again later. */
break;
}
}
/* If the channel iter is not NULL, we need to continue to poll
* until the pending list is empty, then we can move on to the
* next channel.
@ -592,19 +635,18 @@ _crypto_operation(struct spdk_bdev_io *bdev_io, enum rte_crypto_cipher_operation
uint32_t crypto_len = io_ctx->crypto_bdev->crypto_bdev.blocklen;
uint64_t total_length = bdev_io->u.bdev.num_blocks * crypto_len;
int rc;
uint32_t enqueued = 0;
uint32_t iov_index = 0;
uint32_t allocated = 0;
uint8_t *current_iov = NULL;
uint64_t total_remaining = 0;
uint64_t updated_length, current_iov_remaining = 0;
int completed = 0;
int crypto_index = 0;
uint32_t crypto_index = 0;
uint32_t en_offset = 0;
struct rte_crypto_op *crypto_ops[MAX_ENQUEUE_ARRAY_SIZE];
struct rte_mbuf *src_mbufs[MAX_ENQUEUE_ARRAY_SIZE];
struct rte_mbuf *dst_mbufs[MAX_ENQUEUE_ARRAY_SIZE];
int burst;
struct vbdev_crypto_op *op_to_queue;
assert((bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen) <= CRYPTO_MAX_IO);
@ -771,30 +813,33 @@ _crypto_operation(struct spdk_bdev_io *bdev_io, enum rte_crypto_cipher_operation
/* Enqueue everything we've got but limit by the max number of descriptors we
* configured the crypto device for.
*/
do {
burst = spdk_min((cryop_cnt - enqueued), CRYPTO_QP_DESCRIPTORS);
num_enqueued_ops = rte_cryptodev_enqueue_burst(cdev_id, crypto_ch->device_qp->qp,
&crypto_ops[enqueued],
burst);
enqueued += num_enqueued_ops;
burst = spdk_min(cryop_cnt, CRYPTO_QP_DESCRIPTORS);
num_enqueued_ops = rte_cryptodev_enqueue_burst(cdev_id, crypto_ch->device_qp->qp,
&crypto_ops[0],
burst);
/* Dequeue all inline if the device is full. We don't defer anything simply
* because of the complexity involved as we're building 1 or more crypto
* ops per IO. Dequeue will free up space for more enqueue.
*/
if (enqueued < cryop_cnt) {
/* Dequeue everything, this may include ops that were already
* in the device before this submission....
*/
do {
completed = crypto_dev_poller(crypto_ch);
} while (completed > 0);
/* If any didn't get submitted, queue them for the poller to de-queue later. */
if (num_enqueued_ops < cryop_cnt) {
for (crypto_index = num_enqueued_ops; crypto_index < cryop_cnt; crypto_index++) {
op_to_queue = (struct vbdev_crypto_op *)rte_crypto_op_ctod_offset(crypto_ops[crypto_index],
uint8_t *,
QUEUED_OP_OFFSET);
op_to_queue->cdev_id = cdev_id;
op_to_queue->qp = crypto_ch->device_qp->qp;
op_to_queue->crypto_op = crypto_ops[crypto_index];
op_to_queue->bdev_io = bdev_io;
TAILQ_INSERT_TAIL(&crypto_ch->queued_cry_ops,
op_to_queue,
link);
}
} while (enqueued < cryop_cnt);
/* Add this bdev_io to our outstanding list. */
TAILQ_INSERT_TAIL(&crypto_ch->pending_cry_ios, bdev_io, module_link);
}
/* Add this bdev_io to our outstanding list if any of its crypto ops made it. */
if (num_enqueued_ops > 0) {
TAILQ_INSERT_TAIL(&crypto_ch->pending_cry_ios, bdev_io, module_link);
io_ctx->on_pending_list = true;
}
return rc;
@ -1188,6 +1233,9 @@ crypto_bdev_ch_create_cb(void *io_device, void *ctx_buf)
/* We use this queue to track outstanding IO in our layer. */
TAILQ_INIT(&crypto_ch->pending_cry_ios);
/* We use this to queue up crypto ops when the device is busy. */
TAILQ_INIT(&crypto_ch->queued_cry_ops);
return 0;
}

View File

@ -55,6 +55,7 @@ bool ut_rte_cryptodev_info_get_mocked = false;
* mock them straight away. We use defines to redirect them into
* our custom functions.
*/
static bool g_resubmit_test = false;
#define rte_cryptodev_enqueue_burst mock_rte_cryptodev_enqueue_burst
static inline uint16_t
mock_rte_cryptodev_enqueue_burst(uint8_t dev_id, uint16_t qp_id,
@ -69,38 +70,29 @@ mock_rte_cryptodev_enqueue_burst(uint8_t dev_id, uint16_t qp_id,
* enqueued operations for assertion in dev_full test.
*/
g_test_dev_full_ops[i] = *ops++;
if (g_resubmit_test == true) {
CU_ASSERT(g_test_dev_full_ops[i] == (void *)0xDEADBEEF);
}
}
return g_enqueue_mock;
}
/* This is pretty ugly but in order to complete an IO via the
* poller in the submit path, we need to first call to this func
* to return the dequeued value and also decrement it. On the subsequent
* call it needs to return 0 to indicate to the caller that there are
* no more IOs to drain.
*/
int g_test_overflow = 0;
#define rte_cryptodev_dequeue_burst mock_rte_cryptodev_dequeue_burst
static inline uint16_t
mock_rte_cryptodev_dequeue_burst(uint8_t dev_id, uint16_t qp_id,
struct rte_crypto_op **ops, uint16_t nb_ops)
{
int i;
CU_ASSERT(nb_ops > 0);
/* A crypto device can be full on enqueue, the driver is designed to drain
* the device at the time by calling the poller until it's empty, then
* submitting the remaining crypto ops.
*/
if (g_test_overflow) {
if (g_dequeue_mock == 0) {
return 0;
}
*ops = g_test_crypto_ops[g_enqueue_mock];
for (i = 0; i < g_dequeue_mock; i++) {
*ops = g_test_crypto_ops[i];
(*ops)->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
g_dequeue_mock -= 1;
}
return (g_dequeue_mock + 1);
return g_dequeue_mock;
}
/* Instead of allocating real memory, assign the allocations to our
@ -322,6 +314,7 @@ test_setup(void)
g_test_config = calloc(1, sizeof(struct rte_config));
g_test_config->lcore_count = 1;
TAILQ_INIT(&g_crypto_ch->pending_cry_ios);
TAILQ_INIT(&g_crypto_ch->queued_cry_ops);
/* Allocate a real mbuf pool so we can test error paths */
g_mbuf_mp = spdk_mempool_create("mbuf_mp", NUM_MBUFS, sizeof(struct rte_mbuf),
@ -334,12 +327,12 @@ test_setup(void)
for (i = 0; i < MAX_TEST_BLOCKS; i++) {
rc = posix_memalign((void **)&g_test_crypto_ops[i], 64,
sizeof(struct rte_crypto_op) + sizeof(struct rte_crypto_sym_op) +
AES_CBC_IV_LENGTH);
AES_CBC_IV_LENGTH + QUEUED_OP_LENGTH);
if (rc != 0) {
assert(false);
}
memset(g_test_crypto_ops[i], 0, sizeof(struct rte_crypto_op) +
sizeof(struct rte_crypto_sym_op));
sizeof(struct rte_crypto_sym_op) + QUEUED_OP_LENGTH);
}
return 0;
}
@ -544,45 +537,54 @@ test_large_rw(void)
static void
test_dev_full(void)
{
unsigned block_len = 512;
unsigned num_blocks = 2;
unsigned io_len = block_len * num_blocks;
unsigned i;
struct vbdev_crypto_op *queued_op;
struct rte_crypto_sym_op *sym_op;
g_test_overflow = 1;
/* Multi block size read, multi-element */
/* Two element block size read */
g_bdev_io->internal.status = SPDK_BDEV_IO_STATUS_SUCCESS;
g_bdev_io->u.bdev.iovcnt = 1;
g_bdev_io->u.bdev.num_blocks = num_blocks;
g_bdev_io->u.bdev.iovs[0].iov_len = io_len;
g_bdev_io->u.bdev.iovs[0].iov_base = &test_dev_full;
g_crypto_bdev.crypto_bdev.blocklen = block_len;
g_bdev_io->u.bdev.num_blocks = 2;
g_bdev_io->u.bdev.iovs[0].iov_len = 512;
g_bdev_io->u.bdev.iovs[0].iov_base = (void *)0xDEADBEEF;
g_bdev_io->u.bdev.iovs[1].iov_len = 512;
g_bdev_io->u.bdev.iovs[1].iov_base = (void *)0xFEEDBEEF;
g_crypto_bdev.crypto_bdev.blocklen = 512;
g_bdev_io->type = SPDK_BDEV_IO_TYPE_READ;
g_enqueue_mock = g_dequeue_mock = 1;
ut_rte_crypto_op_bulk_alloc = num_blocks;
ut_rte_crypto_op_bulk_alloc = 2;
CU_ASSERT(TAILQ_EMPTY(&g_crypto_ch->queued_cry_ops) == true);
vbdev_crypto_submit_request(g_io_ch, g_bdev_io);
CU_ASSERT(g_bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS);
CU_ASSERT(g_io_ctx->cryop_cnt_remaining == 2);
sym_op = g_test_crypto_ops[0]->sym;
CU_ASSERT(sym_op->m_src->buf_addr == (void *)0xDEADBEEF);
CU_ASSERT(sym_op->m_src->data_len == 512);
CU_ASSERT(sym_op->m_src->next == NULL);
CU_ASSERT(sym_op->cipher.data.length == 512);
CU_ASSERT(sym_op->cipher.data.offset == 0);
CU_ASSERT(sym_op->m_src->userdata == g_bdev_io);
CU_ASSERT(sym_op->m_dst == NULL);
/* this test only completes one of the 2 IOs (in the drain path) */
CU_ASSERT(g_io_ctx->cryop_cnt_remaining == 1);
/* make sure one got queued and confirm its values */
CU_ASSERT(TAILQ_EMPTY(&g_crypto_ch->queued_cry_ops) == false);
queued_op = TAILQ_FIRST(&g_crypto_ch->queued_cry_ops);
sym_op = queued_op->crypto_op->sym;
TAILQ_REMOVE(&g_crypto_ch->queued_cry_ops, queued_op, link);
CU_ASSERT(queued_op->bdev_io == g_bdev_io);
CU_ASSERT(queued_op->crypto_op == g_test_crypto_ops[1]);
CU_ASSERT(sym_op->m_src->buf_addr == (void *)0xFEEDBEEF);
CU_ASSERT(sym_op->m_src->data_len == 512);
CU_ASSERT(sym_op->m_src->next == NULL);
CU_ASSERT(sym_op->cipher.data.length == 512);
CU_ASSERT(sym_op->cipher.data.offset == 0);
CU_ASSERT(sym_op->m_src->userdata == g_bdev_io);
CU_ASSERT(sym_op->m_dst == NULL);
CU_ASSERT(TAILQ_EMPTY(&g_crypto_ch->queued_cry_ops) == true);
for (i = 0; i < num_blocks; i++) {
/* One of the src_mbufs was freed because of the device full condition so
* we can't assert its value here.
*/
CU_ASSERT(g_test_dev_full_ops[i]->sym->cipher.data.length == block_len);
CU_ASSERT(g_test_dev_full_ops[i]->sym->cipher.data.offset == 0);
CU_ASSERT(g_test_dev_full_ops[i]->sym->m_src == g_test_dev_full_ops[i]->sym->m_src);
CU_ASSERT(g_test_dev_full_ops[i]->sym->m_dst == NULL);
}
/* Only one of the 2 blocks in the test was freed on completion by design, so
* we need to free th other one here.
*/
spdk_mempool_put(g_mbuf_mp, g_test_crypto_ops[0]->sym->m_src);
g_test_overflow = 0;
spdk_mempool_put(g_mbuf_mp, g_test_crypto_ops[1]->sym->m_src);
}
static void
@ -886,6 +888,43 @@ test_supported_io(void)
CU_ASSERT(rc == false);
}
static void
test_poller(void)
{
int rc;
struct rte_mbuf *src_mbufs[1];
struct vbdev_crypto_op *op_to_resubmit;
/* test regular 1 op to dequeue and complete */
g_dequeue_mock = g_enqueue_mock = 1;
spdk_mempool_get_bulk(g_mbuf_mp, (void **)&src_mbufs[0], 1);
g_test_crypto_ops[0]->sym->m_src = src_mbufs[0];
g_test_crypto_ops[0]->sym->m_src->userdata = g_bdev_io;
g_test_crypto_ops[0]->sym->m_dst = NULL;
g_io_ctx->cryop_cnt_remaining = 1;
g_bdev_io->type = SPDK_BDEV_IO_TYPE_READ;
rc = crypto_dev_poller(g_crypto_ch);
CU_ASSERT(rc == 1);
/* We have nothing dequeued but have some to resubmit */
g_dequeue_mock = 0;
CU_ASSERT(TAILQ_EMPTY(&g_crypto_ch->queued_cry_ops) == true);
/* add an op to the queued list. */
g_resubmit_test = true;
op_to_resubmit = (struct vbdev_crypto_op *)((uint8_t *)g_test_crypto_ops[0] + QUEUED_OP_OFFSET);
op_to_resubmit->crypto_op = (void *)0xDEADBEEF;
op_to_resubmit->bdev_io = g_bdev_io;
TAILQ_INSERT_TAIL(&g_crypto_ch->queued_cry_ops,
op_to_resubmit,
link);
CU_ASSERT(TAILQ_EMPTY(&g_crypto_ch->queued_cry_ops) == false);
rc = crypto_dev_poller(g_crypto_ch);
g_resubmit_test = false;
CU_ASSERT(rc == 0);
CU_ASSERT(TAILQ_EMPTY(&g_crypto_ch->queued_cry_ops) == true);
}
int
main(int argc, char **argv)
{
@ -923,7 +962,9 @@ main(int argc, char **argv)
CU_add_test(suite, "test_supported_io",
test_supported_io) == NULL ||
CU_add_test(suite, "test_reset",
test_reset) == NULL
test_reset) == NULL ||
CU_add_test(suite, "test_poller",
test_poller) == NULL
) {
CU_cleanup_registry();
return CU_get_error();