test: optimize the print statements in aer test

The aer test print statements were overly complicated for multi
process mode, so a macro was created to simplify them. The macro
will prepend "[Child]" to the child process print statements to
make it easier to see which process is doing the printouts.

Signed-off-by: Curt Bruns <curt.e.bruns@gmail.com>
Change-Id: I0ecc5e2526b156fa7f98d44c745408ba922ebeff
Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/12881
Community-CI: Broadcom CI <spdk-ci.pdl@broadcom.com>
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
Reviewed-by: Paul Luse <paul.e.luse@intel.com>
Reviewed-by: Jim Harris <james.r.harris@intel.com>
Reviewed-by: Shuhei Matsumoto <smatsumoto@nvidia.com>
This commit is contained in:
Curt Bruns 2022-06-02 10:58:14 -07:00 committed by Tomasz Zawadzki
parent fb12887fd8
commit 8597aa5a7b

View File

@ -28,6 +28,10 @@ static int g_num_devs = 0;
#define foreach_dev(iter) \ #define foreach_dev(iter) \
for (iter = g_devs; iter - g_devs < g_num_devs; iter++) for (iter = g_devs; iter - g_devs < g_num_devs; iter++)
#define AER_PRINTF(format, ...) printf("%s" format, g_parent_process ? "" : "[Child] ", \
##__VA_ARGS__)
#define AER_FPRINTF(f, format, ...) fprintf(f, "%s" format, g_parent_process ? \
"" : "[Child] ", ##__VA_ARGS__)
static int g_outstanding_commands = 0; static int g_outstanding_commands = 0;
static int g_aer_done = 0; static int g_aer_done = 0;
@ -42,7 +46,7 @@ static int g_enable_temp_test = 0;
static uint32_t g_expected_ns_test = 0; static uint32_t g_expected_ns_test = 0;
/* For multi-process test */ /* For multi-process test */
static int g_multi_process_test = 0; static int g_multi_process_test = 0;
static bool g_parent_process; static bool g_parent_process = true;
static const char *g_sem_init_name = "/init"; static const char *g_sem_init_name = "/init";
static const char *g_sem_child_name = "/child"; static const char *g_sem_child_name = "/child";
static sem_t *g_sem_init_id; static sem_t *g_sem_init_id;
@ -56,7 +60,7 @@ set_temp_completion(void *cb_arg, const struct spdk_nvme_cpl *cpl)
g_outstanding_commands--; g_outstanding_commands--;
if (spdk_nvme_cpl_is_error(cpl)) { if (spdk_nvme_cpl_is_error(cpl)) {
printf("%s: set feature (temp threshold) failed\n", dev->name); AER_PRINTF("%s: set feature (temp threshold) failed\n", dev->name);
g_failed = 1; g_failed = 1;
return; return;
} }
@ -80,8 +84,7 @@ set_temp_threshold(struct dev *dev, uint32_t temp)
if (rc == 0) { if (rc == 0) {
g_outstanding_commands++; g_outstanding_commands++;
} else { } else {
fprintf(stderr, "Submitting Admin cmd failed with rc: %d (%s)\n", \ AER_FPRINTF(stderr, "Submitting Admin cmd failed with rc: %d\n", rc);
rc, (g_parent_process ? "Parent" : "Child"));
} }
return rc; return rc;
@ -95,14 +98,14 @@ get_temp_completion(void *cb_arg, const struct spdk_nvme_cpl *cpl)
g_outstanding_commands--; g_outstanding_commands--;
if (spdk_nvme_cpl_is_error(cpl)) { if (spdk_nvme_cpl_is_error(cpl)) {
printf("%s: get feature (temp threshold) failed\n", dev->name); AER_PRINTF("%s: get feature (temp threshold) failed\n", dev->name);
g_failed = 1; g_failed = 1;
return; return;
} }
dev->orig_temp_threshold = cpl->cdw0; dev->orig_temp_threshold = cpl->cdw0;
printf("%s: original temperature threshold: %u Kelvin (%d Celsius)\n", AER_PRINTF("%s: original temperature threshold: %u Kelvin (%d Celsius)\n",
dev->name, dev->orig_temp_threshold, dev->orig_temp_threshold - 273); dev->name, dev->orig_temp_threshold, dev->orig_temp_threshold - 273);
g_temperature_done++; g_temperature_done++;
} }
@ -127,8 +130,8 @@ get_temp_threshold(struct dev *dev)
static void static void
print_health_page(struct dev *dev, struct spdk_nvme_health_information_page *hip) print_health_page(struct dev *dev, struct spdk_nvme_health_information_page *hip)
{ {
printf("%s: Current Temperature: %u Kelvin (%d Celsius)\n", AER_PRINTF("%s: Current Temperature: %u Kelvin (%d Celsius)\n",
dev->name, hip->temperature, hip->temperature - 273); dev->name, hip->temperature, hip->temperature - 273);
} }
static void static void
@ -139,7 +142,7 @@ get_health_log_page_completion(void *cb_arg, const struct spdk_nvme_cpl *cpl)
g_outstanding_commands--; g_outstanding_commands--;
if (spdk_nvme_cpl_is_error(cpl)) { if (spdk_nvme_cpl_is_error(cpl)) {
printf("%s: get log page failed\n", dev->name); AER_PRINTF("%s: get log page failed\n", dev->name);
g_failed = 1; g_failed = 1;
return; return;
} }
@ -154,7 +157,8 @@ get_health_log_page(struct dev *dev)
int rc; int rc;
rc = spdk_nvme_ctrlr_cmd_get_log_page(dev->ctrlr, SPDK_NVME_LOG_HEALTH_INFORMATION, rc = spdk_nvme_ctrlr_cmd_get_log_page(dev->ctrlr, SPDK_NVME_LOG_HEALTH_INFORMATION,
SPDK_NVME_GLOBAL_NS_TAG, dev->health_page, sizeof(*dev->health_page), 0, SPDK_NVME_GLOBAL_NS_TAG, dev->health_page,
sizeof(*dev->health_page), 0,
get_health_log_page_completion, dev); get_health_log_page_completion, dev);
if (rc == 0) { if (rc == 0) {
@ -202,14 +206,13 @@ aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
log_page_id = aen_cpl.bits.log_page_identifier; log_page_id = aen_cpl.bits.log_page_identifier;
if (spdk_nvme_cpl_is_error(cpl)) { if (spdk_nvme_cpl_is_error(cpl)) {
fprintf(stderr, "%s: AER failed\n", dev->name); AER_FPRINTF(stderr, "%s: AER failed\n", dev->name);
g_failed = 1; g_failed = 1;
return; return;
} }
printf("%s: aer_cb for log page %d, aen_event_type: 0x%02x, aen_event_info: 0x%02x (%s)\n", \ AER_PRINTF("%s: aer_cb for log page %d, aen_event_type: 0x%02x, aen_event_info: 0x%02x\n",
dev->name, log_page_id, aen_event_type, aen_event_info, \ dev->name, log_page_id, aen_event_type, aen_event_info);
(g_parent_process ? "Parent" : "Child"));
/* Temp Test: Verify proper EventType, Event Info and Log Page. /* Temp Test: Verify proper EventType, Event Info and Log Page.
* NOTE: QEMU NVMe controllers return Spare Below Threshold Status event info * NOTE: QEMU NVMe controllers return Spare Below Threshold Status event info
* instead of Temperate Threshold even info which is why it's used in the check * instead of Temperate Threshold even info which is why it's used in the check
@ -220,46 +223,43 @@ aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
((aen_event_info == SPDK_NVME_ASYNC_EVENT_TEMPERATURE_THRESHOLD) || \ ((aen_event_info == SPDK_NVME_ASYNC_EVENT_TEMPERATURE_THRESHOLD) || \
(aen_event_info == SPDK_NVME_ASYNC_EVENT_SPARE_BELOW_THRESHOLD))) { (aen_event_info == SPDK_NVME_ASYNC_EVENT_SPARE_BELOW_THRESHOLD))) {
/* Set the temperature threshold back to the original value to stop triggering */ /* Set the temperature threshold back to the original value to stop triggering */
printf("aer_cb - Resetting Temp Threshold for device: %s (%s)\n", \ AER_PRINTF("aer_cb - Resetting Temp Threshold for device: %s\n", dev->name);
dev->name, (g_parent_process ? "Parent" : "Child"));
set_temp_threshold(dev, dev->orig_temp_threshold); set_temp_threshold(dev, dev->orig_temp_threshold);
get_health_log_page(dev); get_health_log_page(dev);
} else if (log_page_id == SPDK_NVME_LOG_CHANGED_NS_LIST) { } else if (log_page_id == SPDK_NVME_LOG_CHANGED_NS_LIST) {
printf("aer_cb - Changed Namespace (%s)\n", \ AER_PRINTF("aer_cb - Changed Namespace\n");
(g_parent_process ? "Parent" : "Child"));
get_ns_state_test(dev, g_expected_ns_test); get_ns_state_test(dev, g_expected_ns_test);
g_aer_done++; g_aer_done++;
} else { } else {
printf("aer_cb - Unknown Log Page (%s)\n", \ AER_PRINTF("aer_cb - Unknown Log Page\n");
(g_parent_process ? "Parent" : "Child"));
} }
} }
static void static void
usage(const char *program_name) usage(const char *program_name)
{ {
printf("%s [options]", program_name); AER_PRINTF("%s [options]", program_name);
printf("\n"); AER_PRINTF("\n");
printf("options:\n"); AER_PRINTF("options:\n");
printf(" -g use single file descriptor for DPDK memory segments]\n"); AER_PRINTF(" -g use single file descriptor for DPDK memory segments]\n");
printf(" -T enable temperature tests\n"); AER_PRINTF(" -T enable temperature tests\n");
printf(" -n expected Namespace attribute notice ID\n"); AER_PRINTF(" -n expected Namespace attribute notice ID\n");
printf(" -t <file> touch specified file when ready to receive AER\n"); AER_PRINTF(" -t <file> touch specified file when ready to receive AER\n");
printf(" -r trid remote NVMe over Fabrics target address\n"); AER_PRINTF(" -r trid remote NVMe over Fabrics target address\n");
printf(" Format: 'key:value [key:value] ...'\n"); AER_PRINTF(" Format: 'key:value [key:value] ...'\n");
printf(" Keys:\n"); AER_PRINTF(" Keys:\n");
printf(" trtype Transport type (e.g. RDMA)\n"); AER_PRINTF(" trtype Transport type (e.g. RDMA)\n");
printf(" adrfam Address family (e.g. IPv4, IPv6)\n"); AER_PRINTF(" adrfam Address family (e.g. IPv4, IPv6)\n");
printf(" traddr Transport address (e.g. 192.168.100.8)\n"); AER_PRINTF(" traddr Transport address (e.g. 192.168.100.8)\n");
printf(" trsvcid Transport service identifier (e.g. 4420)\n"); AER_PRINTF(" trsvcid Transport service identifier (e.g. 4420)\n");
printf(" subnqn Subsystem NQN (default: %s)\n", SPDK_NVMF_DISCOVERY_NQN); AER_PRINTF(" subnqn Subsystem NQN (default: %s)\n", SPDK_NVMF_DISCOVERY_NQN);
printf(" Example: -r 'trtype:RDMA adrfam:IPv4 traddr:192.168.100.8 trsvcid:4420'\n"); AER_PRINTF(" Example: -r 'trtype:RDMA adrfam:IPv4 traddr:192.168.100.8 trsvcid:4420'\n");
spdk_log_usage(stdout, "-L"); spdk_log_usage(stdout, "-L");
printf(" -i <id> shared memory group ID\n"); AER_PRINTF(" -i <id> shared memory group ID\n");
printf(" -m Multi-Process AER Test (only with Temp Test)\n"); AER_PRINTF(" -m Multi-Process AER Test (only with Temp Test)\n");
printf(" -H show this usage\n"); AER_PRINTF(" -H show this usage\n");
} }
static int static int
@ -276,7 +276,7 @@ parse_args(int argc, char **argv, struct spdk_env_opts *env_opts)
case 'n': case 'n':
val = spdk_strtol(optarg, 10); val = spdk_strtol(optarg, 10);
if (val < 0) { if (val < 0) {
fprintf(stderr, "Invalid NS attribute notice ID\n"); AER_FPRINTF(stderr, "Invalid NS attribute notice ID\n");
return val; return val;
} }
g_expected_ns_test = (uint32_t)val; g_expected_ns_test = (uint32_t)val;
@ -286,7 +286,7 @@ parse_args(int argc, char **argv, struct spdk_env_opts *env_opts)
break; break;
case 'r': case 'r':
if (spdk_nvme_transport_id_parse(&g_trid, optarg) != 0) { if (spdk_nvme_transport_id_parse(&g_trid, optarg) != 0) {
fprintf(stderr, "Error parsing transport address\n"); AER_FPRINTF(stderr, "Error parsing transport address\n");
return 1; return 1;
} }
break; break;
@ -296,7 +296,7 @@ parse_args(int argc, char **argv, struct spdk_env_opts *env_opts)
case 'L': case 'L':
rc = spdk_log_set_flag(optarg); rc = spdk_log_set_flag(optarg);
if (rc < 0) { if (rc < 0) {
fprintf(stderr, "unknown flag\n"); AER_FPRINTF(stderr, "unknown flag\n");
usage(argv[0]); usage(argv[0]);
exit(EXIT_FAILURE); exit(EXIT_FAILURE);
} }
@ -313,7 +313,7 @@ parse_args(int argc, char **argv, struct spdk_env_opts *env_opts)
case 'i': case 'i':
env_opts->shm_id = spdk_strtol(optarg, 10); env_opts->shm_id = spdk_strtol(optarg, 10);
if (env_opts->shm_id < 0) { if (env_opts->shm_id < 0) {
fprintf(stderr, "Invalid shared memory ID\n"); AER_FPRINTF(stderr, "Invalid shared memory ID\n");
return env_opts->shm_id; return env_opts->shm_id;
} }
break; break;
@ -333,7 +333,7 @@ static bool
probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid, probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
struct spdk_nvme_ctrlr_opts *opts) struct spdk_nvme_ctrlr_opts *opts)
{ {
printf("Attaching to %s\n", trid->traddr); AER_PRINTF("Attaching to %s\n", trid->traddr);
return true; return true;
} }
@ -352,12 +352,12 @@ attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
snprintf(dev->name, sizeof(dev->name), "%s", snprintf(dev->name, sizeof(dev->name), "%s",
trid->traddr); trid->traddr);
printf("Attached to %s\n", dev->name); AER_PRINTF("Attached to %s\n", dev->name);
dev->health_page = spdk_zmalloc(sizeof(*dev->health_page), 4096, NULL, SPDK_ENV_LCORE_ID_ANY, dev->health_page = spdk_zmalloc(sizeof(*dev->health_page), 4096, NULL, SPDK_ENV_LCORE_ID_ANY,
SPDK_MALLOC_DMA); SPDK_MALLOC_DMA);
if (dev->health_page == NULL) { if (dev->health_page == NULL) {
printf("Allocation error (health page)\n"); AER_PRINTF("Allocation error (health page)\n");
g_failed = 1; g_failed = 1;
} }
} }
@ -370,7 +370,7 @@ get_feature_test_cb(void *cb_arg, const struct spdk_nvme_cpl *cpl)
g_outstanding_commands--; g_outstanding_commands--;
if (spdk_nvme_cpl_is_error(cpl)) { if (spdk_nvme_cpl_is_error(cpl)) {
printf("%s: get number of queues failed\n", dev->name); AER_PRINTF("%s: get number of queues failed\n", dev->name);
g_failed = 1; g_failed = 1;
return; return;
} }
@ -394,7 +394,7 @@ get_feature_test(struct dev *dev)
cmd.cdw10_bits.get_features.fid = SPDK_NVME_FEAT_NUMBER_OF_QUEUES; cmd.cdw10_bits.get_features.fid = SPDK_NVME_FEAT_NUMBER_OF_QUEUES;
if (spdk_nvme_ctrlr_cmd_admin_raw(dev->ctrlr, &cmd, NULL, 0, if (spdk_nvme_ctrlr_cmd_admin_raw(dev->ctrlr, &cmd, NULL, 0,
get_feature_test_cb, dev) != 0) { get_feature_test_cb, dev) != 0) {
printf("Failed to send Get Features command for dev=%p\n", dev); AER_PRINTF("Failed to send Get Features command for dev=%p\n", dev);
g_failed = 1; g_failed = 1;
return; return;
} }
@ -407,8 +407,7 @@ spdk_aer_temperature_test(void)
{ {
struct dev *dev; struct dev *dev;
printf("Getting orig temperature thresholds of all controllers (%s)\n", AER_PRINTF("Getting orig temperature thresholds of all controllers\n");
(g_parent_process ? "Parent" : "Child"));
foreach_dev(dev) { foreach_dev(dev) {
/* Get the original temperature threshold */ /* Get the original temperature threshold */
get_temp_threshold(dev); get_temp_threshold(dev);
@ -441,13 +440,13 @@ spdk_aer_temperature_test(void)
if (g_multi_process_test) { if (g_multi_process_test) {
sem_wait(g_sem_child_id); sem_wait(g_sem_child_id);
} }
printf("Setting all controllers temperature threshold low to trigger AER\n"); AER_PRINTF("Setting all controllers temperature threshold low to trigger AER\n");
foreach_dev(dev) { foreach_dev(dev) {
/* Set the temperature threshold to a low value */ /* Set the temperature threshold to a low value */
set_temp_threshold(dev, 200); set_temp_threshold(dev, 200);
} }
printf("Waiting for all controllers temperature threshold to be set lower\n"); AER_PRINTF("Waiting for all controllers temperature threshold to be set lower\n");
while (!g_failed && (g_temperature_done < g_num_devs)) { while (!g_failed && (g_temperature_done < g_num_devs)) {
foreach_dev(dev) { foreach_dev(dev) {
spdk_nvme_ctrlr_process_admin_completions(dev->ctrlr); spdk_nvme_ctrlr_process_admin_completions(dev->ctrlr);
@ -460,8 +459,7 @@ spdk_aer_temperature_test(void)
} }
} }
printf("Waiting for all controllers to trigger AER and reset threshold (%s)\n", AER_PRINTF("Waiting for all controllers to trigger AER and reset threshold\n");
(g_parent_process ? "Parent" : "Child"));
/* Let parent know init is done and it's okay to continue */ /* Let parent know init is done and it's okay to continue */
if (!g_parent_process) { if (!g_parent_process) {
sem_post(g_sem_child_id); sem_post(g_sem_child_id);
@ -487,7 +485,7 @@ spdk_aer_changed_ns_test(void)
g_aer_done = 0; g_aer_done = 0;
printf("Starting namespace attribute notice tests for all controllers...\n"); AER_PRINTF("Starting namespace attribute notice tests for all controllers...\n");
foreach_dev(dev) { foreach_dev(dev) {
get_feature_test(dev); get_feature_test(dev);
@ -520,12 +518,12 @@ setup_multi_process(void)
/* If AEN test was killed, remove named semaphore to start again */ /* If AEN test was killed, remove named semaphore to start again */
rc = sem_unlink(g_sem_init_name); rc = sem_unlink(g_sem_init_name);
if (rc < 0 && errno != ENOENT) { if (rc < 0 && errno != ENOENT) {
fprintf(stderr, "Init semaphore removal failure: %s", spdk_strerror(errno)); AER_FPRINTF(stderr, "Init semaphore removal failure: %s", spdk_strerror(errno));
return rc; return rc;
} }
rc = sem_unlink(g_sem_child_name); rc = sem_unlink(g_sem_child_name);
if (rc < 0 && errno != ENOENT) { if (rc < 0 && errno != ENOENT) {
fprintf(stderr, "Child semaphore removal failure: %s", spdk_strerror(errno)); AER_FPRINTF(stderr, "Child semaphore removal failure: %s", spdk_strerror(errno));
return rc; return rc;
} }
pid = fork(); pid = fork();
@ -533,12 +531,13 @@ setup_multi_process(void)
perror("Failed to fork\n"); perror("Failed to fork\n");
return -1; return -1;
} else if (pid == 0) { } else if (pid == 0) {
printf("Child process pid: %d\n", getpid()); AER_PRINTF("Child process pid: %d\n", getpid());
g_parent_process = false; g_parent_process = false;
g_sem_init_id = sem_open(g_sem_init_name, O_CREAT, 0600, 0); g_sem_init_id = sem_open(g_sem_init_name, O_CREAT, 0600, 0);
g_sem_child_id = sem_open(g_sem_child_name, O_CREAT, 0600, 0); g_sem_child_id = sem_open(g_sem_child_name, O_CREAT, 0600, 0);
if ((g_sem_init_id == SEM_FAILED) || (g_sem_child_id == SEM_FAILED)) { if ((g_sem_init_id == SEM_FAILED) || (g_sem_child_id == SEM_FAILED)) {
fprintf(stderr, "Sem Open failed for child: %s\n", spdk_strerror(errno)); AER_FPRINTF(stderr, "Sem Open failed for child: %s\n",
spdk_strerror(errno));
return -1; return -1;
} }
} }
@ -548,7 +547,8 @@ setup_multi_process(void)
g_sem_init_id = sem_open(g_sem_init_name, O_CREAT, 0600, 0); g_sem_init_id = sem_open(g_sem_init_name, O_CREAT, 0600, 0);
g_sem_child_id = sem_open(g_sem_child_name, O_CREAT, 0600, 0); g_sem_child_id = sem_open(g_sem_child_name, O_CREAT, 0600, 0);
if ((g_sem_init_id == SEM_FAILED) || (g_sem_child_id == SEM_FAILED)) { if ((g_sem_init_id == SEM_FAILED) || (g_sem_child_id == SEM_FAILED)) {
fprintf(stderr, "Sem Open failed for parent: %s\n", spdk_strerror(errno)); AER_FPRINTF(stderr, "Sem Open failed for parent: %s\n",
spdk_strerror(errno));
return -1; return -1;
} }
} }
@ -571,16 +571,16 @@ int main(int argc, char **argv)
if (g_multi_process_test) { if (g_multi_process_test) {
/* Multi-Process test only available with Temp Test */ /* Multi-Process test only available with Temp Test */
if (!g_enable_temp_test) { if (!g_enable_temp_test) {
fprintf(stderr, "Multi Process test only available with Temp Test (-T)\n"); AER_FPRINTF(stderr, "Multi Process only available with Temp Test (-T)\n");
return 1; return 1;
} }
if (opts.shm_id < 0) { if (opts.shm_id < 0) {
fprintf(stderr, "Multi Process requires shared memory id (-i <id>)\n"); AER_FPRINTF(stderr, "Multi Process requires shared memory id (-i <id>)\n");
return 1; return 1;
} }
rc = setup_multi_process(); rc = setup_multi_process();
if (rc != 0) { if (rc != 0) {
fprintf(stderr, "Multi Process test failed to setup\n"); AER_FPRINTF(stderr, "Multi Process test failed to setup\n");
return rc; return rc;
} }
} else { } else {
@ -600,25 +600,24 @@ int main(int argc, char **argv)
*/ */
if (!g_parent_process) { if (!g_parent_process) {
if (sem_wait(g_sem_init_id) < 0) { if (sem_wait(g_sem_init_id) < 0) {
fprintf(stderr, "sem_wait failed for child process\n"); AER_FPRINTF(stderr, "sem_wait failed for child process\n");
return (-1); return (-1);
} }
} }
if (spdk_env_init(&opts) < 0) { if (spdk_env_init(&opts) < 0) {
fprintf(stderr, "Unable to initialize SPDK env\n"); AER_FPRINTF(stderr, "Unable to initialize SPDK env\n");
return 1; return 1;
} }
printf("Asynchronous Event Request test (%s)\n", AER_PRINTF("Asynchronous Event Request test\n");
(g_parent_process ? "Parent" : "Child"));
if (spdk_nvme_probe(&g_trid, NULL, probe_cb, attach_cb, NULL) != 0) { if (spdk_nvme_probe(&g_trid, NULL, probe_cb, attach_cb, NULL) != 0) {
fprintf(stderr, "spdk_nvme_probe() failed\n"); AER_FPRINTF(stderr, "spdk_nvme_probe() failed\n");
return 1; return 1;
} }
if (g_num_devs == 0) { if (g_num_devs == 0) {
fprintf(stderr, "No controllers found - exiting\n"); AER_FPRINTF(stderr, "No controllers found - exiting\n");
g_failed = 1; g_failed = 1;
} }
if (g_failed) { if (g_failed) {
@ -626,10 +625,10 @@ int main(int argc, char **argv)
} }
if (g_parent_process && g_enable_temp_test) { if (g_parent_process && g_enable_temp_test) {
printf("Reset controller to setup AER completions for this process\n"); AER_PRINTF("Reset controller to setup AER completions for this process\n");
foreach_dev(dev) { foreach_dev(dev) {
if (spdk_nvme_ctrlr_reset(dev->ctrlr) < 0) { if (spdk_nvme_ctrlr_reset(dev->ctrlr) < 0) {
fprintf(stderr, "nvme reset failed.\n"); AER_FPRINTF(stderr, "nvme reset failed.\n");
return -1; return -1;
} }
} }
@ -639,7 +638,7 @@ int main(int argc, char **argv)
sem_post(g_sem_init_id); sem_post(g_sem_init_id);
} }
printf("Registering asynchronous event callbacks...\n"); AER_PRINTF("Registering asynchronous event callbacks...\n");
foreach_dev(dev) { foreach_dev(dev) {
spdk_nvme_ctrlr_register_aer_callback(dev->ctrlr, aer_cb, dev); spdk_nvme_ctrlr_register_aer_callback(dev->ctrlr, aer_cb, dev);
} }
@ -649,7 +648,8 @@ int main(int argc, char **argv)
fd = open(g_touch_file, O_CREAT | O_EXCL | O_RDWR, S_IFREG); fd = open(g_touch_file, O_CREAT | O_EXCL | O_RDWR, S_IFREG);
if (fd == -1) { if (fd == -1) {
fprintf(stderr, "Could not touch %s (%s).\n", g_touch_file, strerror(errno)); AER_FPRINTF(stderr, "Could not touch %s (%s).\n", g_touch_file,
strerror(errno));
g_failed = true; g_failed = true;
goto done; goto done;
} }
@ -670,7 +670,7 @@ int main(int argc, char **argv)
} }
} }
printf("Cleaning up...(%s)\n", (g_parent_process ? "Parent" : "Child")); AER_PRINTF("Cleaning up...\n");
while (g_outstanding_commands) { while (g_outstanding_commands) {
foreach_dev(dev) { foreach_dev(dev) {
@ -704,7 +704,8 @@ int main(int argc, char **argv)
done: done:
cleanup(); cleanup();
/* Wait for child process to finish and verify it finished correctly before detaching resources */ /* Wait for child process to finish and verify it finished correctly before detaching
* resources */
if (g_multi_process_test && g_parent_process) { if (g_multi_process_test && g_parent_process) {
int status; int status;
sem_post(g_sem_init_id); sem_post(g_sem_init_id);
@ -712,7 +713,8 @@ done:
if (WIFEXITED(status)) { if (WIFEXITED(status)) {
/* Child ended normally */ /* Child ended normally */
if (WEXITSTATUS(status) != 0) { if (WEXITSTATUS(status) != 0) {
fprintf(stderr, "Child Failed with status: %d.\n", (int8_t)(WEXITSTATUS(status))); AER_FPRINTF(stderr, "Child Failed with status: %d.\n",
(int8_t)(WEXITSTATUS(status)));
g_failed = true; g_failed = true;
} }
} }