Spdk/examples/idxd/perf/perf.c

1031 lines
23 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright (c) Intel Corporation.
* All rights reserved.
*/
#include "spdk/idxd.h"
#include "spdk/stdinc.h"
#include "spdk/env.h"
#include "spdk/event.h"
#include "spdk/log.h"
#include "spdk/string.h"
#include "spdk/crc32.h"
#include "spdk/util.h"
enum idxd_capability {
IDXD_COPY = 1,
IDXD_FILL,
IDXD_DUALCAST,
IDXD_COMPARE,
IDXD_CRC32C,
IDXD_DIF,
IDXD_COPY_CRC32C,
};
#define DATA_PATTERN 0x5a
#define ALIGN_4K 0x1000
static int g_xfer_size_bytes = 4096;
/* g_allocate_depth indicates how many tasks we allocate per work_chan. It will
* be at least as much as the queue depth.
*/
static int g_queue_depth = 32;
static int g_idxd_max_per_core = 1;
static char *g_core_mask = "0x1";
static bool g_idxd_kernel_mode = false;
static int g_allocate_depth = 0;
static int g_time_in_sec = 5;
static uint32_t g_crc32c_seed = 0;
static uint32_t g_crc32c_chained_count = 1;
static int g_fail_percent_goal = 0;
static uint8_t g_fill_pattern = 255;
static bool g_verify = false;
static const char *g_workload_type = NULL;
static enum idxd_capability g_workload_selection;
static struct worker_thread *g_workers = NULL;
static int g_num_workers = 0;
struct worker_thread;
struct idxd_chan_entry;
static void idxd_done(void *ref, int status);
struct idxd_device {
struct spdk_idxd_device *idxd;
TAILQ_ENTRY(idxd_device) tailq;
};
static uint32_t g_num_devices = 0;
static TAILQ_HEAD(, idxd_device) g_idxd_devices = TAILQ_HEAD_INITIALIZER(g_idxd_devices);
static struct idxd_device *g_next_device;
struct idxd_task {
void *src;
struct iovec *iovs;
uint32_t iov_cnt;
void *dst;
void *dst2;
uint32_t crc_dst;
struct idxd_chan_entry *worker_chan;
int status;
int expected_status; /* used for the compare operation */
TAILQ_ENTRY(idxd_task) link;
};
struct idxd_chan_entry {
int idxd_chan_id;
struct spdk_idxd_io_channel *ch;
uint64_t xfer_completed;
uint64_t xfer_failed;
uint64_t injected_miscompares;
uint64_t current_queue_depth;
TAILQ_HEAD(, idxd_task) tasks_pool_head;
TAILQ_HEAD(, idxd_task) resubmits;
unsigned core;
bool is_draining;
void *task_base;
struct idxd_chan_entry *next;
};
struct worker_thread {
struct idxd_chan_entry *ctx;
struct worker_thread *next;
int chan_num;
unsigned core;
};
static void
dump_user_config(void)
{
printf("SPDK Configuration:\n");
printf("Core mask: %s\n\n", g_core_mask);
printf("Idxd Perf Configuration:\n");
printf("Workload Type: %s\n", g_workload_type);
if (g_workload_selection == IDXD_CRC32C || g_workload_selection == IDXD_COPY_CRC32C) {
printf("CRC-32C seed: %u\n", g_crc32c_seed);
printf("vector count %u\n", g_crc32c_chained_count);
} else if (g_workload_selection == IDXD_FILL) {
printf("Fill pattern: 0x%x\n", g_fill_pattern);
} else if ((g_workload_selection == IDXD_COMPARE) && g_fail_percent_goal > 0) {
printf("Failure inject: %u percent\n", g_fail_percent_goal);
}
if (g_workload_selection == IDXD_COPY_CRC32C) {
printf("Vector size: %u bytes\n", g_xfer_size_bytes);
printf("Transfer size: %u bytes\n", g_xfer_size_bytes * g_crc32c_chained_count);
} else {
printf("Transfer size: %u bytes\n", g_xfer_size_bytes);
}
printf("Queue depth: %u\n", g_queue_depth);
printf("Allocated depth: %u\n", g_allocate_depth);
printf("Run time: %u seconds\n", g_time_in_sec);
printf("Verify: %s\n\n", g_verify ? "Yes" : "No");
}
static void
attach_cb(void *cb_ctx, struct spdk_idxd_device *idxd)
{
struct idxd_device *dev;
dev = calloc(1, sizeof(*dev));
if (dev == NULL) {
fprintf(stderr, "Failed to allocate device struct\n");
return;
}
dev->idxd = idxd;
TAILQ_INSERT_TAIL(&g_idxd_devices, dev, tailq);
g_num_devices++;
}
static bool
probe_cb(void *cb_ctx, struct spdk_pci_device *dev)
{
/* this tool will gladly claim all types of IDXD devices. */
return true;
}
static int
idxd_init(void)
{
spdk_idxd_set_config(g_idxd_kernel_mode);
if (spdk_idxd_probe(NULL, attach_cb, probe_cb) != 0) {
fprintf(stderr, "spdk_idxd_probe() failed\n");
return 1;
}
return 0;
}
static void
idxd_exit(void)
{
struct idxd_device *dev;
while (!TAILQ_EMPTY(&g_idxd_devices)) {
dev = TAILQ_FIRST(&g_idxd_devices);
TAILQ_REMOVE(&g_idxd_devices, dev, tailq);
if (dev->idxd) {
spdk_idxd_detach(dev->idxd);
}
free(dev);
}
}
static void
usage(void)
{
printf("idxd_perf options:\n");
printf("\t[-h help message]\n");
printf("\t[-a tasks to allocate per core (default: same value as -q)]\n");
printf("\t[-C for crc32c workload, use this value to configure the io vector size to test (default 1)\n");
printf("\t[-f for fill workload, use this BYTE value (default 255)\n");
printf("\t[-k use kernel idxd driver]\n");
printf("\t[-m core mask for distributing I/O submission/completion work]\n");
printf("\t[-o transfer size in bytes]\n");
printf("\t[-P for compare workload, percentage of operations that should miscompare (percent, default 0)\n");
printf("\t[-q queue depth per core]\n");
printf("\t[-r max idxd devices per core can drive (default 1)]\n");
printf("\t[-s for crc32c workload, use this seed value (default 0)\n");
printf("\t[-t time in seconds]\n");
printf("\t[-w workload type must be one of these: copy, fill, crc32c, copy_crc32c, compare, dualcast\n");
printf("\t[-y verify result if this switch is on]\n");
printf("\t\tCan be used to spread operations across a wider range of memory.\n");
}
static int
parse_args(int argc, char **argv)
{
int argval = 0;
int op;
while ((op = getopt(argc, argv, "a:C:f:hkm:o:P:q:r:t:yw:")) != -1) {
switch (op) {
case 'a':
case 'C':
case 'f':
case 'o':
case 'P':
case 'q':
case 'r':
case 's':
case 't':
argval = spdk_strtol(optarg, 10);
if (argval < 0) {
fprintf(stderr, "-%c option must be non-negative.\n", argc);
usage();
return 1;
}
break;
default:
break;
};
switch (op) {
case 'a':
g_allocate_depth = argval;
break;
case 'C':
g_crc32c_chained_count = argval;
break;
case 'f':
g_fill_pattern = (uint8_t)argval;
break;
case 'k':
g_idxd_kernel_mode = true;
break;
case 'm':
g_core_mask = optarg;
break;
case 'o':
g_xfer_size_bytes = argval;
break;
case 'P':
g_fail_percent_goal = argval;
break;
case 'q':
g_queue_depth = argval;
break;
case 'r':
g_idxd_max_per_core = argval;
break;
case 's':
g_crc32c_seed = argval;
break;
case 't':
g_time_in_sec = argval;
break;
case 'y':
g_verify = true;
break;
case 'w':
g_workload_type = optarg;
if (!strcmp(g_workload_type, "copy")) {
g_workload_selection = IDXD_COPY;
} else if (!strcmp(g_workload_type, "fill")) {
g_workload_selection = IDXD_FILL;
} else if (!strcmp(g_workload_type, "crc32c")) {
g_workload_selection = IDXD_CRC32C;
} else if (!strcmp(g_workload_type, "copy_crc32c")) {
g_workload_selection = IDXD_COPY_CRC32C;
} else if (!strcmp(g_workload_type, "compare")) {
g_workload_selection = IDXD_COMPARE;
} else if (!strcmp(g_workload_type, "dualcast")) {
g_workload_selection = IDXD_DUALCAST;
}
break;
case 'h':
usage();
exit(0);
default:
usage();
return 1;
}
}
return 0;
}
static int
register_workers(void)
{
uint32_t i;
struct worker_thread *worker;
g_workers = NULL;
g_num_workers = 0;
SPDK_ENV_FOREACH_CORE(i) {
worker = calloc(1, sizeof(*worker));
if (worker == NULL) {
fprintf(stderr, "Unable to allocate worker\n");
return 1;
}
worker->core = i;
worker->next = g_workers;
g_workers = worker;
g_num_workers++;
}
return 0;
}
static void
_free_task_buffers(struct idxd_task *task)
{
uint32_t i;
if (g_workload_selection == IDXD_CRC32C) {
if (task->iovs) {
for (i = 0; i < task->iov_cnt; i++) {
if (task->iovs[i].iov_base) {
spdk_dma_free(task->iovs[i].iov_base);
}
}
free(task->iovs);
}
} else {
spdk_dma_free(task->src);
}
spdk_dma_free(task->dst);
if (g_workload_selection == IDXD_DUALCAST) {
spdk_dma_free(task->dst2);
}
}
static inline void
_free_task_buffers_in_pool(struct idxd_chan_entry *t)
{
struct idxd_task *task;
assert(t);
while ((task = TAILQ_FIRST(&t->tasks_pool_head))) {
TAILQ_REMOVE(&t->tasks_pool_head, task, link);
_free_task_buffers(task);
}
}
static void
free_idxd_chan_entry_resource(struct idxd_chan_entry *entry)
{
assert(entry != NULL);
if (entry->ch) {
spdk_idxd_put_channel(entry->ch);
}
_free_task_buffers_in_pool(entry);
free(entry->task_base);
free(entry);
}
static void
unregister_workers(void)
{
struct worker_thread *worker = g_workers, *next_worker;
struct idxd_chan_entry *entry, *entry1;
/* Free worker thread */
while (worker) {
next_worker = worker->next;
entry = worker->ctx;
while (entry) {
entry1 = entry->next;
free_idxd_chan_entry_resource(entry);
entry = entry1;
}
free(worker);
worker = next_worker;
g_num_workers--;
}
assert(g_num_workers == 0);
}
static int
_get_task_data_bufs(struct idxd_task *task)
{
uint32_t align = 0;
uint32_t i = 0;
int dst_buff_len = g_xfer_size_bytes;
/* For dualcast, the DSA HW requires 4K alignment on destination addresses but
* we do this for all engines to keep it simple.
*/
if (g_workload_selection == IDXD_DUALCAST) {
align = ALIGN_4K;
}
if (g_workload_selection == IDXD_CRC32C || g_workload_selection == IDXD_COPY_CRC32C) {
assert(g_crc32c_chained_count > 0);
task->iov_cnt = g_crc32c_chained_count;
task->iovs = calloc(task->iov_cnt, sizeof(struct iovec));
if (!task->iovs) {
fprintf(stderr, "cannot allocated task->iovs fot task=%p\n", task);
return -ENOMEM;
}
if (g_workload_selection == IDXD_COPY_CRC32C) {
dst_buff_len = g_xfer_size_bytes * g_crc32c_chained_count;
}
for (i = 0; i < task->iov_cnt; i++) {
task->iovs[i].iov_base = spdk_dma_zmalloc(g_xfer_size_bytes, 0, NULL);
if (task->iovs[i].iov_base == NULL) {
return -ENOMEM;
}
memset(task->iovs[i].iov_base, DATA_PATTERN, g_xfer_size_bytes);
task->iovs[i].iov_len = g_xfer_size_bytes;
}
} else {
task->src = spdk_dma_zmalloc(g_xfer_size_bytes, 0, NULL);
if (task->src == NULL) {
fprintf(stderr, "Unable to alloc src buffer\n");
return -ENOMEM;
}
/* For fill, set the entire src buffer so we can check if verify is enabled. */
if (g_workload_selection == IDXD_FILL) {
memset(task->src, g_fill_pattern, g_xfer_size_bytes);
} else {
memset(task->src, DATA_PATTERN, g_xfer_size_bytes);
}
}
if (g_workload_selection != IDXD_CRC32C) {
task->dst = spdk_dma_zmalloc(dst_buff_len, align, NULL);
if (task->dst == NULL) {
fprintf(stderr, "Unable to alloc dst buffer\n");
return -ENOMEM;
}
/* For compare we want the buffers to match, otherwise not. */
if (g_workload_selection == IDXD_COMPARE) {
memset(task->dst, DATA_PATTERN, dst_buff_len);
} else {
memset(task->dst, ~DATA_PATTERN, dst_buff_len);
}
}
if (g_workload_selection == IDXD_DUALCAST) {
task->dst2 = spdk_dma_zmalloc(g_xfer_size_bytes, align, NULL);
if (task->dst2 == NULL) {
fprintf(stderr, "Unable to alloc dst buffer\n");
return -ENOMEM;
}
memset(task->dst2, ~DATA_PATTERN, g_xfer_size_bytes);
}
return 0;
}
inline static struct idxd_task *
_get_task(struct idxd_chan_entry *t)
{
struct idxd_task *task;
if (!TAILQ_EMPTY(&t->tasks_pool_head)) {
task = TAILQ_FIRST(&t->tasks_pool_head);
TAILQ_REMOVE(&t->tasks_pool_head, task, link);
} else {
fprintf(stderr, "Unable to get idxd_task\n");
return NULL;
}
return task;
}
static int idxd_chan_poll(struct idxd_chan_entry *chan);
static void
drain_io(struct idxd_chan_entry *t)
{
while (t->current_queue_depth > 0) {
idxd_chan_poll(t);
}
}
/* Submit one operation using the same idxd task that just completed. */
static void
_submit_single(struct idxd_chan_entry *t, struct idxd_task *task)
{
int random_num;
int rc = 0;
struct iovec siov = {};
struct iovec diov = {};
int flags = 0;
assert(t);
t->current_queue_depth++;
if (!TAILQ_EMPTY(&t->resubmits)) {
rc = -EBUSY;
goto queue;
}
switch (g_workload_selection) {
case IDXD_COPY:
siov.iov_base = task->src;
siov.iov_len = g_xfer_size_bytes;
diov.iov_base = task->dst;
diov.iov_len = g_xfer_size_bytes;
rc = spdk_idxd_submit_copy(t->ch, &diov, 1, &siov, 1, flags,
idxd_done, task);
break;
case IDXD_FILL:
/* For fill use the first byte of the task->dst buffer */
diov.iov_base = task->dst;
diov.iov_len = g_xfer_size_bytes;
rc = spdk_idxd_submit_fill(t->ch, &diov, 1, *(uint8_t *)task->src,
flags, idxd_done, task);
break;
case IDXD_CRC32C:
assert(task->iovs != NULL);
assert(task->iov_cnt > 0);
rc = spdk_idxd_submit_crc32c(t->ch, task->iovs, task->iov_cnt,
g_crc32c_seed, &task->crc_dst,
flags, idxd_done, task);
break;
case IDXD_COMPARE:
random_num = rand() % 100;
assert(task->dst != NULL);
if (random_num < g_fail_percent_goal) {
task->expected_status = -EILSEQ;
*(uint8_t *)task->dst = ~DATA_PATTERN;
} else {
task->expected_status = 0;
*(uint8_t *)task->dst = DATA_PATTERN;
}
siov.iov_base = task->src;
siov.iov_len = g_xfer_size_bytes;
diov.iov_base = task->dst;
diov.iov_len = g_xfer_size_bytes;
rc = spdk_idxd_submit_compare(t->ch, &siov, 1, &diov, 1, flags, idxd_done, task);
break;
case IDXD_DUALCAST:
rc = spdk_idxd_submit_dualcast(t->ch, task->dst, task->dst2,
task->src, g_xfer_size_bytes, flags, idxd_done, task);
break;
case IDXD_COPY_CRC32C:
diov.iov_base = task->dst;
diov.iov_len = g_xfer_size_bytes;
rc = spdk_idxd_submit_copy_crc32c(t->ch, &diov, 1, task->iovs, task->iov_cnt, g_crc32c_seed,
&task->crc_dst,
flags, idxd_done, task);
break;
default:
assert(false);
break;
}
queue:
if (rc) {
/* Queue the task to be resubmitted on the next poll. */
if (rc != -EBUSY && rc != -EAGAIN) {
t->xfer_failed++;
}
TAILQ_INSERT_TAIL(&t->resubmits, task, link);
}
}
static int
_vector_memcmp(void *_dst, struct iovec *src_iovs, uint32_t iovcnt)
{
uint32_t i;
uint32_t ttl_len = 0;
uint8_t *dst = (uint8_t *)_dst;
for (i = 0; i < iovcnt; i++) {
if (memcmp(dst, src_iovs[i].iov_base, src_iovs[i].iov_len)) {
return -1;
}
dst += src_iovs[i].iov_len;
ttl_len += src_iovs[i].iov_len;
}
if (ttl_len != iovcnt * g_xfer_size_bytes) {
return -1;
}
return 0;
}
static void
idxd_done(void *arg1, int status)
{
struct idxd_task *task = arg1;
struct idxd_chan_entry *chan = task->worker_chan;
uint32_t sw_crc32c;
assert(chan);
assert(chan->current_queue_depth > 0);
if (g_verify && status == 0) {
switch (g_workload_selection) {
case IDXD_COPY_CRC32C:
sw_crc32c = spdk_crc32c_iov_update(task->iovs, task->iov_cnt, ~g_crc32c_seed);
if (task->crc_dst != sw_crc32c) {
SPDK_NOTICELOG("CRC-32C miscompare\n");
chan->xfer_failed++;
}
if (_vector_memcmp(task->dst, task->iovs, task->iov_cnt)) {
SPDK_NOTICELOG("Data miscompare\n");
chan->xfer_failed++;
}
break;
case IDXD_CRC32C:
sw_crc32c = spdk_crc32c_iov_update(task->iovs, task->iov_cnt, ~g_crc32c_seed);
if (task->crc_dst != sw_crc32c) {
SPDK_NOTICELOG("CRC-32C miscompare\n");
chan->xfer_failed++;
}
break;
case IDXD_COPY:
if (memcmp(task->src, task->dst, g_xfer_size_bytes)) {
SPDK_NOTICELOG("Data miscompare\n");
chan->xfer_failed++;
}
break;
case IDXD_DUALCAST:
if (memcmp(task->src, task->dst, g_xfer_size_bytes)) {
SPDK_NOTICELOG("Data miscompare, first destination\n");
chan->xfer_failed++;
}
if (memcmp(task->src, task->dst2, g_xfer_size_bytes)) {
SPDK_NOTICELOG("Data miscompare, second destination\n");
chan->xfer_failed++;
}
break;
case IDXD_FILL:
if (memcmp(task->dst, task->src, g_xfer_size_bytes)) {
SPDK_NOTICELOG("Data miscompare\n");
chan->xfer_failed++;
}
break;
case IDXD_COMPARE:
break;
default:
assert(false);
break;
}
}
if (task->expected_status == -EILSEQ) {
assert(status != 0);
chan->injected_miscompares++;
} else if (status) {
/* Expected to pass but the idxd module reported an error (ex: COMPARE operation). */
chan->xfer_failed++;
}
chan->xfer_completed++;
chan->current_queue_depth--;
if (!chan->is_draining) {
_submit_single(chan, task);
} else {
TAILQ_INSERT_TAIL(&chan->tasks_pool_head, task, link);
}
}
static int
dump_result(void)
{
uint64_t total_completed = 0;
uint64_t total_failed = 0;
uint64_t total_miscompared = 0;
uint64_t total_xfer_per_sec, total_bw_in_MiBps;
struct worker_thread *worker = g_workers;
struct idxd_chan_entry *t;
printf("\nIDXD_ChanID Core Transfers Bandwidth Failed Miscompares\n");
printf("------------------------------------------------------------------------\n");
while (worker != NULL) {
t = worker->ctx;
while (t) {
uint64_t xfer_per_sec = t->xfer_completed / g_time_in_sec;
uint64_t bw_in_MiBps = (t->xfer_completed * g_xfer_size_bytes) /
(g_time_in_sec * 1024 * 1024);
total_completed += t->xfer_completed;
total_failed += t->xfer_failed;
total_miscompared += t->injected_miscompares;
if (xfer_per_sec) {
printf("%10d%5u%15" PRIu64 "/s%9" PRIu64 " MiB/s%7" PRIu64 " %11" PRIu64 "\n",
t->idxd_chan_id, worker->core, xfer_per_sec, bw_in_MiBps, t->xfer_failed,
t->injected_miscompares);
}
t = t->next;
}
worker = worker->next;
}
total_xfer_per_sec = total_completed / g_time_in_sec;
total_bw_in_MiBps = (total_completed * g_xfer_size_bytes) /
(g_time_in_sec * 1024 * 1024);
printf("=========================================================================\n");
printf("Total:%25" PRIu64 "/s%9" PRIu64 " MiB/s%6" PRIu64 " %11" PRIu64"\n\n",
total_xfer_per_sec, total_bw_in_MiBps, total_failed, total_miscompared);
return total_failed ? 1 : 0;
}
static int
submit_all(struct idxd_chan_entry *t)
{
int i;
int remaining = g_queue_depth;
struct idxd_task *task;
for (i = 0; i < remaining; i++) {
task = _get_task(t);
if (task == NULL) {
_free_task_buffers_in_pool(t);
return -1;
}
/* Submit as single task */
_submit_single(t, task);
}
return 0;
}
static int
idxd_chan_poll(struct idxd_chan_entry *chan)
{
int rc;
struct idxd_task *task, *tmp;
TAILQ_HEAD(, idxd_task) swap;
rc = spdk_idxd_process_events(chan->ch);
if (rc < 0) {
return rc;
}
if (!TAILQ_EMPTY(&chan->resubmits)) {
TAILQ_INIT(&swap);
TAILQ_SWAP(&swap, &chan->resubmits, idxd_task, link);
TAILQ_FOREACH_SAFE(task, &swap, link, tmp) {
TAILQ_REMOVE(&swap, task, link);
chan->current_queue_depth--;
if (!chan->is_draining) {
_submit_single(chan, task);
} else {
TAILQ_INSERT_TAIL(&chan->tasks_pool_head, task, link);
}
}
}
return rc;
}
static int
work_fn(void *arg)
{
uint64_t tsc_end;
struct worker_thread *worker = (struct worker_thread *)arg;
struct idxd_chan_entry *t = NULL;
printf("Starting thread on core %u\n", worker->core);
tsc_end = spdk_get_ticks() + g_time_in_sec * spdk_get_ticks_hz();
t = worker->ctx;
while (t != NULL) {
if (submit_all(t) != 0) {
return -1;
}
t = t->next;
}
while (1) {
t = worker->ctx;
while (t != NULL) {
idxd_chan_poll(t);
t = t->next;
}
if (spdk_get_ticks() > tsc_end) {
break;
}
}
t = worker->ctx;
while (t != NULL) {
/* begin to drain io */
t->is_draining = true;
drain_io(t);
t = t->next;
}
return 0;
}
static int
init_env(void)
{
struct spdk_env_opts opts;
spdk_env_opts_init(&opts);
opts.name = "idxd_perf";
opts.core_mask = g_core_mask;
if (spdk_env_init(&opts) < 0) {
return 1;
}
return 0;
}
static struct spdk_idxd_device *
get_next_idxd(void)
{
struct spdk_idxd_device *idxd;
if (g_next_device == NULL) {
return NULL;
}
idxd = g_next_device->idxd;
g_next_device = TAILQ_NEXT(g_next_device, tailq);
return idxd;
}
static int
init_idxd_chan_entry(struct idxd_chan_entry *t, struct spdk_idxd_device *idxd)
{
int num_tasks = g_allocate_depth;
struct idxd_task *task;
int i;
assert(t != NULL);
TAILQ_INIT(&t->tasks_pool_head);
TAILQ_INIT(&t->resubmits);
t->ch = spdk_idxd_get_channel(idxd);
if (t->ch == NULL) {
fprintf(stderr, "Failed to get channel\n");
goto err;
}
t->task_base = calloc(g_allocate_depth, sizeof(struct idxd_task));
if (t->task_base == NULL) {
fprintf(stderr, "Could not allocate task base.\n");
goto err;
}
task = t->task_base;
for (i = 0; i < num_tasks; i++) {
TAILQ_INSERT_TAIL(&t->tasks_pool_head, task, link);
task->worker_chan = t;
if (_get_task_data_bufs(task)) {
fprintf(stderr, "Unable to get data bufs\n");
goto err;
}
task++;
}
return 0;
err:
free_idxd_chan_entry_resource(t);
return -1;
}
static int
associate_workers_with_idxd_device(void)
{
struct spdk_idxd_device *idxd = get_next_idxd();
struct worker_thread *worker = g_workers;
int i = 0;
struct idxd_chan_entry *t;
while (idxd != NULL) {
if (worker->chan_num >= g_idxd_max_per_core) {
fprintf(stdout, "Notice: we cannot let single worker assign idxd devices\n"
"more than %d, you need use -r while starting app to change this value\n",
g_idxd_max_per_core);
break;
}
t = calloc(1, sizeof(struct idxd_chan_entry));
if (!t) {
return -1;
}
t->idxd_chan_id = i;
if (init_idxd_chan_entry(t, idxd)) {
fprintf(stdout, "idxd device=%p is bound on core=%d\n", idxd, worker->core);
return -1;
}
fprintf(stdout, "idxd device=%p is bound on core=%d\n", idxd, worker->core);
t->next = worker->ctx;
worker->ctx = t;
worker->chan_num++;
worker = worker->next;
if (worker == NULL) {
worker = g_workers;
}
idxd = get_next_idxd();
i++;
}
return 0;
}
int
main(int argc, char **argv)
{
int rc;
struct worker_thread *worker, *main_worker;
unsigned main_core;
if (parse_args(argc, argv) != 0) {
return -1;
}
if (init_env() != 0) {
return -1;
}
if (register_workers() != 0) {
rc = -1;
goto cleanup;
}
if (idxd_init() != 0) {
rc = -1;
goto cleanup;
}
if (g_num_devices == 0) {
printf("No idxd device found\n");
rc = -1;
goto cleanup;
}
if ((g_workload_selection != IDXD_COPY) &&
(g_workload_selection != IDXD_FILL) &&
(g_workload_selection != IDXD_CRC32C) &&
(g_workload_selection != IDXD_COPY_CRC32C) &&
(g_workload_selection != IDXD_COMPARE) &&
(g_workload_selection != IDXD_DUALCAST)) {
usage();
rc = -1;
goto cleanup;
}
if (g_allocate_depth > 0 && g_queue_depth > g_allocate_depth) {
fprintf(stdout, "allocate depth must be at least as big as queue depth\n");
usage();
rc = -1;
goto cleanup;
}
if (g_allocate_depth == 0) {
g_allocate_depth = g_queue_depth;
}
if ((g_workload_selection == IDXD_CRC32C || g_workload_selection == IDXD_COPY_CRC32C) &&
g_crc32c_chained_count == 0) {
usage();
rc = -1;
goto cleanup;
}
g_next_device = TAILQ_FIRST(&g_idxd_devices);
if (associate_workers_with_idxd_device() != 0) {
rc = -1;
goto cleanup;
}
dump_user_config();
/* Launch all of the secondary workers */
main_core = spdk_env_get_current_core();
main_worker = NULL;
worker = g_workers;
while (worker != NULL) {
if (worker->core != main_core) {
spdk_env_thread_launch_pinned(worker->core, work_fn, worker);
} else {
assert(main_worker == NULL);
main_worker = worker;
}
worker = worker->next;
}
assert(main_worker != NULL);
rc = work_fn(main_worker);
if (rc != 0) {
goto cleanup;
}
spdk_env_thread_wait_all();
rc = dump_result();
cleanup:
unregister_workers();
idxd_exit();
spdk_env_fini();
return rc;
}