Spdk/test/unit/lib/bdev/raid/raid5f.c/raid5f_ut.c

910 lines
26 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright (C) 2022 Intel Corporation.
* All rights reserved.
*/
#include "spdk/stdinc.h"
#include "spdk_cunit.h"
#include "spdk/env.h"
#include "common/lib/ut_multithread.c"
#include "bdev/raid/raid5f.c"
DEFINE_STUB_V(raid_bdev_module_list_add, (struct raid_bdev_module *raid_module));
DEFINE_STUB(spdk_bdev_get_buf_align, size_t, (const struct spdk_bdev *bdev), 0);
DEFINE_STUB_V(raid_bdev_module_stop_done, (struct raid_bdev *raid_bdev));
struct spdk_bdev_desc {
struct spdk_bdev *bdev;
};
void
raid_bdev_io_complete(struct raid_bdev_io *raid_io, enum spdk_bdev_io_status status)
{
struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(raid_io);
if (bdev_io->internal.cb) {
bdev_io->internal.cb(bdev_io, status == SPDK_BDEV_IO_STATUS_SUCCESS, bdev_io->internal.caller_ctx);
}
}
bool
raid_bdev_io_complete_part(struct raid_bdev_io *raid_io, uint64_t completed,
enum spdk_bdev_io_status status)
{
assert(raid_io->base_bdev_io_remaining >= completed);
raid_io->base_bdev_io_remaining -= completed;
if (status != SPDK_BDEV_IO_STATUS_SUCCESS) {
raid_io->base_bdev_io_status = status;
}
if (raid_io->base_bdev_io_remaining == 0) {
raid_bdev_io_complete(raid_io, raid_io->base_bdev_io_status);
return true;
} else {
return false;
}
}
struct raid5f_params {
uint8_t num_base_bdevs;
uint64_t base_bdev_blockcnt;
uint32_t base_bdev_blocklen;
uint32_t strip_size;
};
static struct raid5f_params *g_params;
static size_t g_params_count;
#define ARRAY_FOR_EACH(a, e) \
for (e = a; e < a + SPDK_COUNTOF(a); e++)
#define RAID5F_PARAMS_FOR_EACH(p) \
for (p = g_params; p < g_params + g_params_count; p++)
static int
test_setup(void)
{
uint8_t num_base_bdevs_values[] = { 3, 4, 5 };
uint64_t base_bdev_blockcnt_values[] = { 1, 1024, 1024 * 1024 };
uint32_t base_bdev_blocklen_values[] = { 512, 4096 };
uint32_t strip_size_kb_values[] = { 1, 4, 128 };
uint8_t *num_base_bdevs;
uint64_t *base_bdev_blockcnt;
uint32_t *base_bdev_blocklen;
uint32_t *strip_size_kb;
struct raid5f_params *params;
g_params_count = SPDK_COUNTOF(num_base_bdevs_values) *
SPDK_COUNTOF(base_bdev_blockcnt_values) *
SPDK_COUNTOF(base_bdev_blocklen_values) *
SPDK_COUNTOF(strip_size_kb_values);
g_params = calloc(g_params_count, sizeof(*g_params));
if (!g_params) {
return -ENOMEM;
}
params = g_params;
ARRAY_FOR_EACH(num_base_bdevs_values, num_base_bdevs) {
ARRAY_FOR_EACH(base_bdev_blockcnt_values, base_bdev_blockcnt) {
ARRAY_FOR_EACH(base_bdev_blocklen_values, base_bdev_blocklen) {
ARRAY_FOR_EACH(strip_size_kb_values, strip_size_kb) {
params->num_base_bdevs = *num_base_bdevs;
params->base_bdev_blockcnt = *base_bdev_blockcnt;
params->base_bdev_blocklen = *base_bdev_blocklen;
params->strip_size = *strip_size_kb * 1024 / *base_bdev_blocklen;
if (params->strip_size == 0 ||
params->strip_size > *base_bdev_blockcnt) {
g_params_count--;
continue;
}
params++;
}
}
}
}
return 0;
}
static int
test_cleanup(void)
{
free(g_params);
return 0;
}
static struct raid_bdev *
create_raid_bdev(struct raid5f_params *params)
{
struct raid_bdev *raid_bdev;
struct raid_base_bdev_info *base_info;
raid_bdev = calloc(1, sizeof(*raid_bdev));
SPDK_CU_ASSERT_FATAL(raid_bdev != NULL);
raid_bdev->module = &g_raid5f_module;
raid_bdev->num_base_bdevs = params->num_base_bdevs;
raid_bdev->base_bdev_info = calloc(raid_bdev->num_base_bdevs,
sizeof(struct raid_base_bdev_info));
SPDK_CU_ASSERT_FATAL(raid_bdev->base_bdev_info != NULL);
RAID_FOR_EACH_BASE_BDEV(raid_bdev, base_info) {
struct spdk_bdev *bdev;
struct spdk_bdev_desc *desc;
bdev = calloc(1, sizeof(*bdev));
SPDK_CU_ASSERT_FATAL(bdev != NULL);
bdev->blockcnt = params->base_bdev_blockcnt;
bdev->blocklen = params->base_bdev_blocklen;
desc = calloc(1, sizeof(*desc));
SPDK_CU_ASSERT_FATAL(desc != NULL);
desc->bdev = bdev;
base_info->bdev = bdev;
base_info->desc = desc;
}
raid_bdev->strip_size = params->strip_size;
raid_bdev->strip_size_kb = params->strip_size * params->base_bdev_blocklen / 1024;
raid_bdev->strip_size_shift = spdk_u32log2(raid_bdev->strip_size);
raid_bdev->blocklen_shift = spdk_u32log2(params->base_bdev_blocklen);
raid_bdev->bdev.blocklen = params->base_bdev_blocklen;
return raid_bdev;
}
static void
delete_raid_bdev(struct raid_bdev *raid_bdev)
{
struct raid_base_bdev_info *base_info;
RAID_FOR_EACH_BASE_BDEV(raid_bdev, base_info) {
free(base_info->bdev);
free(base_info->desc);
}
free(raid_bdev->base_bdev_info);
free(raid_bdev);
}
static struct raid5f_info *
create_raid5f(struct raid5f_params *params)
{
struct raid_bdev *raid_bdev = create_raid_bdev(params);
SPDK_CU_ASSERT_FATAL(raid5f_start(raid_bdev) == 0);
return raid_bdev->module_private;
}
static void
delete_raid5f(struct raid5f_info *r5f_info)
{
struct raid_bdev *raid_bdev = r5f_info->raid_bdev;
raid5f_stop(raid_bdev);
delete_raid_bdev(raid_bdev);
}
static void
test_raid5f_start(void)
{
struct raid5f_params *params;
RAID5F_PARAMS_FOR_EACH(params) {
struct raid5f_info *r5f_info;
r5f_info = create_raid5f(params);
CU_ASSERT_EQUAL(r5f_info->stripe_blocks, params->strip_size * (params->num_base_bdevs - 1));
CU_ASSERT_EQUAL(r5f_info->total_stripes, params->base_bdev_blockcnt / params->strip_size);
CU_ASSERT_EQUAL(r5f_info->raid_bdev->bdev.blockcnt,
(params->base_bdev_blockcnt - params->base_bdev_blockcnt % params->strip_size) *
(params->num_base_bdevs - 1));
CU_ASSERT_EQUAL(r5f_info->raid_bdev->bdev.optimal_io_boundary, params->strip_size);
CU_ASSERT_TRUE(r5f_info->raid_bdev->bdev.split_on_optimal_io_boundary);
CU_ASSERT_EQUAL(r5f_info->raid_bdev->bdev.write_unit_size, r5f_info->stripe_blocks);
delete_raid5f(r5f_info);
}
}
enum test_bdev_error_type {
TEST_BDEV_ERROR_NONE,
TEST_BDEV_ERROR_SUBMIT,
TEST_BDEV_ERROR_COMPLETE,
TEST_BDEV_ERROR_NOMEM,
};
struct raid_io_info {
struct raid5f_info *r5f_info;
struct raid_bdev_io_channel *raid_ch;
enum spdk_bdev_io_type io_type;
uint64_t offset_blocks;
uint64_t num_blocks;
void *src_buf;
void *dest_buf;
size_t buf_size;
void *parity_buf;
void *reference_parity;
size_t parity_buf_size;
enum spdk_bdev_io_status status;
bool failed;
int remaining;
TAILQ_HEAD(, spdk_bdev_io) bdev_io_queue;
TAILQ_HEAD(, spdk_bdev_io_wait_entry) bdev_io_wait_queue;
struct {
enum test_bdev_error_type type;
struct spdk_bdev *bdev;
void (*on_enomem_cb)(struct raid_io_info *io_info, void *ctx);
void *on_enomem_cb_ctx;
} error;
};
struct test_raid_bdev_io {
char bdev_io_buf[sizeof(struct spdk_bdev_io) + sizeof(struct raid_bdev_io)];
struct raid_io_info *io_info;
void *buf;
};
void
raid_bdev_queue_io_wait(struct raid_bdev_io *raid_io, struct spdk_bdev *bdev,
struct spdk_io_channel *ch, spdk_bdev_io_wait_cb cb_fn)
{
struct raid_io_info *io_info;
io_info = ((struct test_raid_bdev_io *)spdk_bdev_io_from_ctx(raid_io))->io_info;
raid_io->waitq_entry.bdev = bdev;
raid_io->waitq_entry.cb_fn = cb_fn;
raid_io->waitq_entry.cb_arg = raid_io;
TAILQ_INSERT_TAIL(&io_info->bdev_io_wait_queue, &raid_io->waitq_entry, link);
}
static void
raid_bdev_io_completion_cb(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
{
struct raid_io_info *io_info = cb_arg;
spdk_bdev_free_io(bdev_io);
if (!success) {
io_info->failed = true;
}
if (--io_info->remaining == 0) {
if (io_info->failed) {
io_info->status = SPDK_BDEV_IO_STATUS_FAILED;
} else {
io_info->status = SPDK_BDEV_IO_STATUS_SUCCESS;
}
}
}
static struct raid_bdev_io *
get_raid_io(struct raid_io_info *io_info, uint64_t offset_blocks_split, uint64_t num_blocks)
{
struct spdk_bdev_io *bdev_io;
struct raid_bdev_io *raid_io;
struct raid_bdev *raid_bdev = io_info->r5f_info->raid_bdev;
uint32_t blocklen = raid_bdev->bdev.blocklen;
struct test_raid_bdev_io *test_raid_bdev_io;
void *src_buf = io_info->src_buf + offset_blocks_split * blocklen;
void *dest_buf = io_info->dest_buf + offset_blocks_split * blocklen;
test_raid_bdev_io = calloc(1, sizeof(*test_raid_bdev_io));
SPDK_CU_ASSERT_FATAL(test_raid_bdev_io != NULL);
SPDK_CU_ASSERT_FATAL(test_raid_bdev_io->bdev_io_buf == (char *)test_raid_bdev_io);
bdev_io = (struct spdk_bdev_io *)test_raid_bdev_io->bdev_io_buf;
bdev_io->bdev = &raid_bdev->bdev;
bdev_io->type = io_info->io_type;
bdev_io->u.bdev.offset_blocks = io_info->offset_blocks + offset_blocks_split;
bdev_io->u.bdev.num_blocks = num_blocks;
bdev_io->internal.cb = raid_bdev_io_completion_cb;
bdev_io->internal.caller_ctx = io_info;
raid_io = (void *)bdev_io->driver_ctx;
raid_io->raid_bdev = raid_bdev;
raid_io->raid_ch = io_info->raid_ch;
raid_io->base_bdev_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
test_raid_bdev_io->io_info = io_info;
if (io_info->io_type == SPDK_BDEV_IO_TYPE_READ) {
test_raid_bdev_io->buf = src_buf;
bdev_io->iov.iov_base = dest_buf;
} else {
test_raid_bdev_io->buf = dest_buf;
bdev_io->iov.iov_base = src_buf;
}
bdev_io->u.bdev.iovs = &bdev_io->iov;
bdev_io->u.bdev.iovcnt = 1;
bdev_io->iov.iov_len = num_blocks * blocklen;
io_info->remaining++;
return raid_io;
}
void
spdk_bdev_free_io(struct spdk_bdev_io *bdev_io)
{
free(bdev_io);
}
static int
submit_io(struct raid_io_info *io_info, struct spdk_bdev_desc *desc,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
struct spdk_bdev *bdev = desc->bdev;
struct spdk_bdev_io *bdev_io;
if (bdev == io_info->error.bdev) {
if (io_info->error.type == TEST_BDEV_ERROR_SUBMIT) {
return -EINVAL;
} else if (io_info->error.type == TEST_BDEV_ERROR_NOMEM) {
return -ENOMEM;
}
}
bdev_io = calloc(1, sizeof(*bdev_io));
SPDK_CU_ASSERT_FATAL(bdev_io != NULL);
bdev_io->bdev = bdev;
bdev_io->internal.cb = cb;
bdev_io->internal.caller_ctx = cb_arg;
TAILQ_INSERT_TAIL(&io_info->bdev_io_queue, bdev_io, internal.link);
return 0;
}
static void
process_io_completions(struct raid_io_info *io_info)
{
struct spdk_bdev_io *bdev_io;
bool success;
while ((bdev_io = TAILQ_FIRST(&io_info->bdev_io_queue))) {
TAILQ_REMOVE(&io_info->bdev_io_queue, bdev_io, internal.link);
if (io_info->error.type == TEST_BDEV_ERROR_COMPLETE &&
io_info->error.bdev == bdev_io->bdev) {
success = false;
} else {
success = true;
}
bdev_io->internal.cb(bdev_io, success, bdev_io->internal.caller_ctx);
}
if (io_info->error.type == TEST_BDEV_ERROR_NOMEM) {
struct spdk_bdev_io_wait_entry *waitq_entry, *tmp;
struct spdk_bdev *enomem_bdev = io_info->error.bdev;
io_info->error.type = TEST_BDEV_ERROR_NONE;
if (io_info->error.on_enomem_cb != NULL) {
io_info->error.on_enomem_cb(io_info, io_info->error.on_enomem_cb_ctx);
}
TAILQ_FOREACH_SAFE(waitq_entry, &io_info->bdev_io_wait_queue, link, tmp) {
TAILQ_REMOVE(&io_info->bdev_io_wait_queue, waitq_entry, link);
CU_ASSERT(waitq_entry->bdev == enomem_bdev);
waitq_entry->cb_fn(waitq_entry->cb_arg);
}
process_io_completions(io_info);
} else {
CU_ASSERT(TAILQ_EMPTY(&io_info->bdev_io_wait_queue));
}
}
int
spdk_bdev_writev_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
struct iovec *iov, int iovcnt,
uint64_t offset_blocks, uint64_t num_blocks,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
struct chunk *chunk = cb_arg;
struct stripe_request *stripe_req;
struct test_raid_bdev_io *test_raid_bdev_io;
struct raid_io_info *io_info;
struct raid_bdev *raid_bdev;
uint64_t stripe_idx_off;
uint8_t data_chunk_idx;
void *dest_buf;
SPDK_CU_ASSERT_FATAL(cb == raid5f_chunk_write_complete_bdev_io);
SPDK_CU_ASSERT_FATAL(iovcnt == 1);
stripe_req = raid5f_chunk_stripe_req(chunk);
test_raid_bdev_io = (struct test_raid_bdev_io *)spdk_bdev_io_from_ctx(stripe_req->raid_io);
io_info = test_raid_bdev_io->io_info;
raid_bdev = io_info->r5f_info->raid_bdev;
stripe_idx_off = offset_blocks / raid_bdev->strip_size -
io_info->offset_blocks / io_info->r5f_info->stripe_blocks;
if (chunk == stripe_req->parity_chunk) {
if (io_info->parity_buf == NULL) {
goto submit;
}
dest_buf = io_info->parity_buf + stripe_idx_off * raid_bdev->strip_size_kb * 1024;
} else {
data_chunk_idx = chunk < stripe_req->parity_chunk ? chunk->index : chunk->index - 1;
dest_buf = test_raid_bdev_io->buf +
(stripe_idx_off * io_info->r5f_info->stripe_blocks +
data_chunk_idx * raid_bdev->strip_size) *
raid_bdev->bdev.blocklen;
}
memcpy(dest_buf, iov->iov_base, iov->iov_len);
submit:
return submit_io(io_info, desc, cb, cb_arg);
}
int
spdk_bdev_readv_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
struct iovec *iov, int iovcnt,
uint64_t offset_blocks, uint64_t num_blocks,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
struct raid_bdev_io *raid_io = cb_arg;
struct test_raid_bdev_io *test_raid_bdev_io;
SPDK_CU_ASSERT_FATAL(cb == raid5f_chunk_read_complete);
SPDK_CU_ASSERT_FATAL(iovcnt == 1);
test_raid_bdev_io = (struct test_raid_bdev_io *)spdk_bdev_io_from_ctx(raid_io);
memcpy(iov->iov_base, test_raid_bdev_io->buf, iov->iov_len);
return submit_io(test_raid_bdev_io->io_info, desc, cb, cb_arg);
}
static void
xor_block(uint8_t *a, uint8_t *b, size_t size)
{
while (size-- > 0) {
a[size] ^= b[size];
}
}
static void
test_raid5f_write_request(struct raid_io_info *io_info)
{
struct raid_bdev_io *raid_io;
SPDK_CU_ASSERT_FATAL(io_info->num_blocks / io_info->r5f_info->stripe_blocks == 1);
raid_io = get_raid_io(io_info, 0, io_info->num_blocks);
raid5f_submit_rw_request(raid_io);
process_io_completions(io_info);
if (io_info->status == SPDK_BDEV_IO_STATUS_SUCCESS && io_info->parity_buf) {
CU_ASSERT(memcmp(io_info->parity_buf, io_info->reference_parity,
io_info->parity_buf_size) == 0);
}
}
static void
test_raid5f_read_request(struct raid_io_info *io_info)
{
uint32_t strip_size = io_info->r5f_info->raid_bdev->strip_size;
uint64_t num_blocks = io_info->num_blocks;
uint64_t offset_blocks_split = 0;
while (num_blocks) {
uint64_t chunk_offset = offset_blocks_split % strip_size;
uint64_t num_blocks_split = spdk_min(num_blocks, strip_size - chunk_offset);
struct raid_bdev_io *raid_io;
raid_io = get_raid_io(io_info, offset_blocks_split, num_blocks_split);
raid5f_submit_rw_request(raid_io);
num_blocks -= num_blocks_split;
offset_blocks_split += num_blocks_split;
}
process_io_completions(io_info);
}
static void
deinit_io_info(struct raid_io_info *io_info)
{
free(io_info->src_buf);
free(io_info->dest_buf);
free(io_info->parity_buf);
free(io_info->reference_parity);
}
static void
init_io_info(struct raid_io_info *io_info, struct raid5f_info *r5f_info,
struct raid_bdev_io_channel *raid_ch, enum spdk_bdev_io_type io_type,
uint64_t offset_blocks, uint64_t num_blocks)
{
struct raid_bdev *raid_bdev = r5f_info->raid_bdev;
uint32_t blocklen = raid_bdev->bdev.blocklen;
void *src_buf, *dest_buf;
size_t buf_size = num_blocks * blocklen;
uint64_t block;
memset(io_info, 0, sizeof(*io_info));
src_buf = spdk_dma_malloc(buf_size, 4096, NULL);
SPDK_CU_ASSERT_FATAL(src_buf != NULL);
dest_buf = spdk_dma_malloc(buf_size, 4096, NULL);
SPDK_CU_ASSERT_FATAL(dest_buf != NULL);
memset(src_buf, 0xff, buf_size);
for (block = 0; block < num_blocks; block++) {
*((uint64_t *)(src_buf + block * blocklen)) = block;
}
io_info->r5f_info = r5f_info;
io_info->raid_ch = raid_ch;
io_info->io_type = io_type;
io_info->offset_blocks = offset_blocks;
io_info->num_blocks = num_blocks;
io_info->src_buf = src_buf;
io_info->dest_buf = dest_buf;
io_info->buf_size = buf_size;
io_info->status = SPDK_BDEV_IO_STATUS_PENDING;
TAILQ_INIT(&io_info->bdev_io_queue);
TAILQ_INIT(&io_info->bdev_io_wait_queue);
}
static void
io_info_setup_parity(struct raid_io_info *io_info)
{
struct raid5f_info *r5f_info = io_info->r5f_info;
struct raid_bdev *raid_bdev = r5f_info->raid_bdev;
uint32_t blocklen = raid_bdev->bdev.blocklen;
uint64_t num_stripes = io_info->num_blocks / r5f_info->stripe_blocks;
size_t strip_len = raid_bdev->strip_size * blocklen;
void *src = io_info->src_buf;
void *dest;
unsigned i, j;
io_info->parity_buf_size = num_stripes * strip_len;
io_info->parity_buf = calloc(1, io_info->parity_buf_size);
SPDK_CU_ASSERT_FATAL(io_info->parity_buf != NULL);
io_info->reference_parity = calloc(1, io_info->parity_buf_size);
SPDK_CU_ASSERT_FATAL(io_info->reference_parity != NULL);
dest = io_info->reference_parity;
for (i = 0; i < num_stripes; i++) {
for (j = 0; j < raid5f_stripe_data_chunks_num(raid_bdev); j++) {
xor_block(dest, src, strip_len);
src += strip_len;
}
dest += strip_len;
}
}
static void
test_raid5f_submit_rw_request(struct raid5f_info *r5f_info, struct raid_bdev_io_channel *raid_ch,
enum spdk_bdev_io_type io_type, uint64_t stripe_index, uint64_t stripe_offset_blocks,
uint64_t num_blocks)
{
uint64_t offset_blocks = stripe_index * r5f_info->stripe_blocks + stripe_offset_blocks;
struct raid_io_info io_info;
init_io_info(&io_info, r5f_info, raid_ch, io_type, offset_blocks, num_blocks);
switch (io_type) {
case SPDK_BDEV_IO_TYPE_READ:
test_raid5f_read_request(&io_info);
break;
case SPDK_BDEV_IO_TYPE_WRITE:
io_info_setup_parity(&io_info);
test_raid5f_write_request(&io_info);
break;
default:
CU_FAIL_FATAL("unsupported io_type");
}
CU_ASSERT(io_info.status == SPDK_BDEV_IO_STATUS_SUCCESS);
CU_ASSERT(memcmp(io_info.src_buf, io_info.dest_buf, io_info.buf_size) == 0);
deinit_io_info(&io_info);
}
static void
run_for_each_raid5f_config(void (*test_fn)(struct raid_bdev *raid_bdev,
struct raid_bdev_io_channel *raid_ch))
{
struct raid5f_params *params;
RAID5F_PARAMS_FOR_EACH(params) {
struct raid5f_info *r5f_info;
struct raid_bdev_io_channel raid_ch = { 0 };
r5f_info = create_raid5f(params);
raid_ch.num_channels = params->num_base_bdevs;
raid_ch.base_channel = calloc(params->num_base_bdevs, sizeof(struct spdk_io_channel *));
SPDK_CU_ASSERT_FATAL(raid_ch.base_channel != NULL);
raid_ch.module_channel = raid5f_get_io_channel(r5f_info->raid_bdev);
SPDK_CU_ASSERT_FATAL(raid_ch.module_channel);
test_fn(r5f_info->raid_bdev, &raid_ch);
spdk_put_io_channel(raid_ch.module_channel);
poll_threads();
free(raid_ch.base_channel);
delete_raid5f(r5f_info);
}
}
#define RAID5F_TEST_FOR_EACH_STRIPE(raid_bdev, i) \
for (i = 0; i < spdk_min(raid_bdev->num_base_bdevs, ((struct raid5f_info *)raid_bdev->module_private)->total_stripes); i++)
struct test_request_conf {
uint64_t stripe_offset_blocks;
uint64_t num_blocks;
};
static void
__test_raid5f_submit_read_request(struct raid_bdev *raid_bdev, struct raid_bdev_io_channel *raid_ch)
{
struct raid5f_info *r5f_info = raid_bdev->module_private;
uint32_t strip_size = raid_bdev->strip_size;
unsigned int i;
struct test_request_conf test_requests[] = {
{ 0, 1 },
{ 0, strip_size },
{ 0, strip_size + 1 },
{ 0, r5f_info->stripe_blocks },
{ 1, 1 },
{ 1, strip_size },
{ 1, strip_size + 1 },
{ strip_size, 1 },
{ strip_size, strip_size },
{ strip_size, strip_size + 1 },
{ strip_size - 1, 1 },
{ strip_size - 1, strip_size },
{ strip_size - 1, strip_size + 1 },
{ strip_size - 1, 2 },
};
for (i = 0; i < SPDK_COUNTOF(test_requests); i++) {
struct test_request_conf *t = &test_requests[i];
uint64_t stripe_index;
RAID5F_TEST_FOR_EACH_STRIPE(raid_bdev, stripe_index) {
test_raid5f_submit_rw_request(r5f_info, raid_ch, SPDK_BDEV_IO_TYPE_READ,
stripe_index, t->stripe_offset_blocks, t->num_blocks);
}
}
}
static void
test_raid5f_submit_read_request(void)
{
run_for_each_raid5f_config(__test_raid5f_submit_read_request);
}
static void
__test_raid5f_stripe_request_map_iovecs(struct raid_bdev *raid_bdev,
struct raid_bdev_io_channel *raid_ch)
{
struct raid5f_io_channel *r5ch = spdk_io_channel_get_ctx(raid_ch->module_channel);
size_t strip_bytes = raid_bdev->strip_size * raid_bdev->bdev.blocklen;
struct raid_bdev_io raid_io = { .raid_bdev = raid_bdev };
struct stripe_request *stripe_req;
struct chunk *chunk;
struct iovec iovs[] = {
{ .iov_base = (void *)0x0ff0000, .iov_len = strip_bytes },
{ .iov_base = (void *)0x1ff0000, .iov_len = strip_bytes / 2 },
{ .iov_base = (void *)0x2ff0000, .iov_len = strip_bytes * 2 },
{ .iov_base = (void *)0x3ff0000, .iov_len = strip_bytes * raid_bdev->num_base_bdevs },
};
size_t iovcnt = sizeof(iovs) / sizeof(iovs[0]);
int ret;
stripe_req = raid5f_stripe_request_alloc(r5ch);
SPDK_CU_ASSERT_FATAL(stripe_req != NULL);
stripe_req->parity_chunk = &stripe_req->chunks[raid5f_stripe_data_chunks_num(raid_bdev)];
stripe_req->raid_io = &raid_io;
ret = raid5f_stripe_request_map_iovecs(stripe_req, iovs, iovcnt);
CU_ASSERT(ret == 0);
chunk = &stripe_req->chunks[0];
CU_ASSERT_EQUAL(chunk->iovcnt, 1);
CU_ASSERT_EQUAL(chunk->iovs[0].iov_base, iovs[0].iov_base);
CU_ASSERT_EQUAL(chunk->iovs[0].iov_len, iovs[0].iov_len);
chunk = &stripe_req->chunks[1];
CU_ASSERT_EQUAL(chunk->iovcnt, 2);
CU_ASSERT_EQUAL(chunk->iovs[0].iov_base, iovs[1].iov_base);
CU_ASSERT_EQUAL(chunk->iovs[0].iov_len, iovs[1].iov_len);
CU_ASSERT_EQUAL(chunk->iovs[1].iov_base, iovs[2].iov_base);
CU_ASSERT_EQUAL(chunk->iovs[1].iov_len, iovs[2].iov_len / 4);
if (raid_bdev->num_base_bdevs > 3) {
chunk = &stripe_req->chunks[2];
CU_ASSERT_EQUAL(chunk->iovcnt, 1);
CU_ASSERT_EQUAL(chunk->iovs[0].iov_base, iovs[2].iov_base + strip_bytes / 2);
CU_ASSERT_EQUAL(chunk->iovs[0].iov_len, iovs[2].iov_len / 2);
}
if (raid_bdev->num_base_bdevs > 4) {
chunk = &stripe_req->chunks[3];
CU_ASSERT_EQUAL(chunk->iovcnt, 2);
CU_ASSERT_EQUAL(chunk->iovs[0].iov_base, iovs[2].iov_base + (strip_bytes / 2) * 3);
CU_ASSERT_EQUAL(chunk->iovs[0].iov_len, iovs[2].iov_len / 4);
CU_ASSERT_EQUAL(chunk->iovs[1].iov_base, iovs[3].iov_base);
CU_ASSERT_EQUAL(chunk->iovs[1].iov_len, strip_bytes / 2);
}
raid5f_stripe_request_free(stripe_req);
}
static void
test_raid5f_stripe_request_map_iovecs(void)
{
run_for_each_raid5f_config(__test_raid5f_stripe_request_map_iovecs);
}
static void
__test_raid5f_submit_full_stripe_write_request(struct raid_bdev *raid_bdev,
struct raid_bdev_io_channel *raid_ch)
{
struct raid5f_info *r5f_info = raid_bdev->module_private;
uint64_t stripe_index;
RAID5F_TEST_FOR_EACH_STRIPE(raid_bdev, stripe_index) {
test_raid5f_submit_rw_request(r5f_info, raid_ch, SPDK_BDEV_IO_TYPE_WRITE,
stripe_index, 0, r5f_info->stripe_blocks);
}
}
static void
test_raid5f_submit_full_stripe_write_request(void)
{
run_for_each_raid5f_config(__test_raid5f_submit_full_stripe_write_request);
}
static void
__test_raid5f_chunk_write_error(struct raid_bdev *raid_bdev, struct raid_bdev_io_channel *raid_ch)
{
struct raid5f_info *r5f_info = raid_bdev->module_private;
struct raid_base_bdev_info *base_bdev_info;
uint64_t stripe_index;
struct raid_io_info io_info;
enum test_bdev_error_type error_type;
for (error_type = TEST_BDEV_ERROR_SUBMIT; error_type <= TEST_BDEV_ERROR_NOMEM; error_type++) {
RAID5F_TEST_FOR_EACH_STRIPE(raid_bdev, stripe_index) {
RAID_FOR_EACH_BASE_BDEV(raid_bdev, base_bdev_info) {
init_io_info(&io_info, r5f_info, raid_ch, SPDK_BDEV_IO_TYPE_WRITE,
stripe_index * r5f_info->stripe_blocks, r5f_info->stripe_blocks);
io_info.error.type = error_type;
io_info.error.bdev = base_bdev_info->bdev;
test_raid5f_write_request(&io_info);
if (error_type == TEST_BDEV_ERROR_NOMEM) {
CU_ASSERT(io_info.status == SPDK_BDEV_IO_STATUS_SUCCESS);
} else {
CU_ASSERT(io_info.status == SPDK_BDEV_IO_STATUS_FAILED);
}
deinit_io_info(&io_info);
}
}
}
}
static void
test_raid5f_chunk_write_error(void)
{
run_for_each_raid5f_config(__test_raid5f_chunk_write_error);
}
struct chunk_write_error_with_enomem_ctx {
enum test_bdev_error_type error_type;
struct spdk_bdev *bdev;
};
static void
chunk_write_error_with_enomem_cb(struct raid_io_info *io_info, void *_ctx)
{
struct chunk_write_error_with_enomem_ctx *ctx = _ctx;
io_info->error.type = ctx->error_type;
io_info->error.bdev = ctx->bdev;
}
static void
__test_raid5f_chunk_write_error_with_enomem(struct raid_bdev *raid_bdev,
struct raid_bdev_io_channel *raid_ch)
{
struct raid5f_info *r5f_info = raid_bdev->module_private;
struct raid_base_bdev_info *base_bdev_info;
uint64_t stripe_index;
struct raid_io_info io_info;
enum test_bdev_error_type error_type;
struct chunk_write_error_with_enomem_ctx on_enomem_cb_ctx;
for (error_type = TEST_BDEV_ERROR_SUBMIT; error_type <= TEST_BDEV_ERROR_COMPLETE; error_type++) {
RAID5F_TEST_FOR_EACH_STRIPE(raid_bdev, stripe_index) {
struct raid_base_bdev_info *base_bdev_info_last =
&raid_bdev->base_bdev_info[raid_bdev->num_base_bdevs - 1];
RAID_FOR_EACH_BASE_BDEV(raid_bdev, base_bdev_info) {
if (base_bdev_info == base_bdev_info_last) {
continue;
}
init_io_info(&io_info, r5f_info, raid_ch, SPDK_BDEV_IO_TYPE_WRITE,
stripe_index * r5f_info->stripe_blocks, r5f_info->stripe_blocks);
io_info.error.type = TEST_BDEV_ERROR_NOMEM;
io_info.error.bdev = base_bdev_info->bdev;
io_info.error.on_enomem_cb = chunk_write_error_with_enomem_cb;
io_info.error.on_enomem_cb_ctx = &on_enomem_cb_ctx;
on_enomem_cb_ctx.error_type = error_type;
on_enomem_cb_ctx.bdev = base_bdev_info_last->bdev;
test_raid5f_write_request(&io_info);
CU_ASSERT(io_info.status == SPDK_BDEV_IO_STATUS_FAILED);
deinit_io_info(&io_info);
}
}
}
}
static void
test_raid5f_chunk_write_error_with_enomem(void)
{
run_for_each_raid5f_config(__test_raid5f_chunk_write_error_with_enomem);
}
int
main(int argc, char **argv)
{
CU_pSuite suite = NULL;
unsigned int num_failures;
CU_set_error_action(CUEA_ABORT);
CU_initialize_registry();
suite = CU_add_suite("raid5f", test_setup, test_cleanup);
CU_ADD_TEST(suite, test_raid5f_start);
CU_ADD_TEST(suite, test_raid5f_submit_read_request);
CU_ADD_TEST(suite, test_raid5f_stripe_request_map_iovecs);
CU_ADD_TEST(suite, test_raid5f_submit_full_stripe_write_request);
CU_ADD_TEST(suite, test_raid5f_chunk_write_error);
CU_ADD_TEST(suite, test_raid5f_chunk_write_error_with_enomem);
allocate_threads(1);
set_thread(0);
CU_basic_set_mode(CU_BRM_VERBOSE);
CU_basic_run_tests();
num_failures = CU_get_number_of_failures();
CU_cleanup_registry();
free_threads();
return num_failures;
}