Spdk/test/nvme/simple_copy/simple_copy.c

473 lines
12 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright (c) Samsung Electronics Co., Ltd.
* All rights reserved.
*/
#include "spdk/stdinc.h"
#include "spdk/nvme.h"
#include "spdk/env.h"
#define NUM_LBAS 64
#define DEST_LBA 256
struct ns_entry {
struct spdk_nvme_ctrlr *ctrlr;
struct spdk_nvme_ns *ns;
struct ns_entry *next;
struct spdk_nvme_qpair *qpair;
};
struct simple_copy_context {
struct ns_entry *ns_entry;
char **write_bufs;
char **read_bufs;
int writes_completed;
int reads_completed;
int simple_copy_completed;
int matches_written_data;
int error;
};
static struct ns_entry *g_namespaces = NULL;
static struct spdk_nvme_transport_id g_trid;
static bool g_use_trid = false;
static void cleanup(struct simple_copy_context *context);
static void
fill_random(char *buf, size_t num_bytes)
{
size_t i;
srand((unsigned) time(NULL));
for (i = 0; i < num_bytes; i++) {
buf[i] = rand() % 0x100;
}
}
static void
register_ns(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns)
{
struct ns_entry *entry;
const struct spdk_nvme_ctrlr_data *cdata;
cdata = spdk_nvme_ctrlr_get_data(ctrlr);
if (!spdk_nvme_ns_is_active(ns)) {
printf("Controller %-20.20s (%-20.20s): Skipping inactive NS %u\n",
cdata->mn, cdata->sn,
spdk_nvme_ns_get_id(ns));
return;
}
entry = malloc(sizeof(struct ns_entry));
if (entry == NULL) {
perror("ns_entry malloc");
exit(1);
}
entry->ctrlr = ctrlr;
entry->ns = ns;
entry->next = g_namespaces;
g_namespaces = entry;
printf(" Namespace ID: %d size: %juGB\n", spdk_nvme_ns_get_id(ns),
spdk_nvme_ns_get_size(ns) / 1000000000);
}
static uint32_t
get_max_block_size(void)
{
struct ns_entry *ns;
uint32_t max_block_size, temp_block_size;
ns = g_namespaces;
max_block_size = 0;
while (ns != NULL) {
temp_block_size = spdk_nvme_ns_get_sector_size(ns->ns);
max_block_size = temp_block_size > max_block_size ? temp_block_size : max_block_size;
ns = ns->next;
}
return max_block_size;
}
static void
write_complete(void *arg, const struct spdk_nvme_cpl *cpl)
{
struct simple_copy_context *context = arg;
context->writes_completed++;
if (spdk_nvme_cpl_is_error(cpl)) {
printf("write cpl error. SC 0x%x SCT 0x%x\n", cpl->status.sc, cpl->status.sct);
context->error++;
return;
}
}
static void
read_complete(void *arg, const struct spdk_nvme_cpl *cpl)
{
struct simple_copy_context *context = arg;
struct ns_entry *ns_entry = context->ns_entry;
int rc;
if (spdk_nvme_cpl_is_error(cpl)) {
printf("read cpl error. SC 0x%x SCT 0x%x\n", cpl->status.sc, cpl->status.sct);
context->reads_completed++;
context->error++;
return;
}
rc = memcmp(context->write_bufs[context->reads_completed],
context->read_bufs[context->reads_completed], spdk_nvme_ns_get_sector_size(ns_entry->ns));
if (rc == 0) {
context->matches_written_data++;
}
context->reads_completed++;
}
static void
simple_copy_complete(void *arg, const struct spdk_nvme_cpl *cpl)
{
struct simple_copy_context *context = arg;
context->simple_copy_completed = 1;
if (spdk_nvme_cpl_is_error(cpl)) {
printf("scc cpl error. SC 0x%x SCT 0x%x\n", cpl->status.sc, cpl->status.sct);
context->error++;
return;
}
printf("Copied LBAs from 0 - %d to the Destination LBA %d\n", NUM_LBAS - 1, DEST_LBA);
context->reads_completed = 0;
context->matches_written_data = 0;
}
static void
simple_copy_test(void)
{
struct ns_entry *ns_entry;
struct spdk_nvme_ctrlr *ctrlr;
const struct spdk_nvme_ctrlr_data *data;
struct simple_copy_context context;
struct spdk_nvme_scc_source_range range = {};
uint32_t max_block_size;
int rc, i;
memset(&context, 0, sizeof(struct simple_copy_context));
max_block_size = get_max_block_size();
ns_entry = g_namespaces;
context.write_bufs = calloc(NUM_LBAS, sizeof(char *));
if (context.write_bufs == NULL) {
printf("could not allocate write buffer pointers for test\n");
cleanup(&context);
return;
}
context.read_bufs = calloc(NUM_LBAS, sizeof(char *));
if (context.read_bufs == NULL) {
printf("could not allocate read buffer pointers for test\n");
cleanup(&context);
return;
}
for (i = 0; i < NUM_LBAS; i++) {
context.write_bufs[i] = spdk_zmalloc(0x1000, max_block_size, NULL, SPDK_ENV_LCORE_ID_ANY,
SPDK_MALLOC_DMA);
if (context.write_bufs[i] == NULL) {
printf("could not allocate write buffer %d for test\n", i);
cleanup(&context);
return;
}
fill_random(context.write_bufs[i], 0x1000);
context.read_bufs[i] = spdk_zmalloc(0x1000, max_block_size, NULL, SPDK_ENV_LCORE_ID_ANY,
SPDK_MALLOC_DMA);
if (context.read_bufs[i] == NULL) {
printf("could not allocate read buffer %d for test\n", i);
cleanup(&context);
return;
}
}
while (ns_entry != NULL) {
ns_entry->qpair = spdk_nvme_ctrlr_alloc_io_qpair(ns_entry->ctrlr, NULL, 0);
if (ns_entry->qpair == NULL) {
printf("ERROR: spdk_nvme_ctrlr_alloc_io_qpair() failed\n");
cleanup(&context);
return;
}
ctrlr = spdk_nvme_ns_get_ctrlr(ns_entry->ns);
data = spdk_nvme_ctrlr_get_data(ctrlr);
printf("\nController %-20.20s (%-20.20s)\n", data->mn, data->sn);
printf("Controller PCI vendor:%u PCI subsystem vendor:%u\n", data->vid, data->ssvid);
printf("Namespace Block Size:%u\n", spdk_nvme_ns_get_sector_size(ns_entry->ns));
printf("Writing LBAs 0 to %d with Random Data\n", NUM_LBAS - 1);
context.ns_entry = ns_entry;
for (i = 0; i < NUM_LBAS; i++) {
rc = spdk_nvme_ns_cmd_write(ns_entry->ns, ns_entry->qpair, context.write_bufs[i],
i,
1,
write_complete, &context, 0);
if (rc) {
printf("submission of write I/O failed\n");
}
}
while (context.writes_completed < NUM_LBAS) {
rc = spdk_nvme_qpair_process_completions(ns_entry->qpair, 0);
if (rc < 0) {
printf("Error processing write completions, rc: %d\n", rc);
break;
}
}
if (context.error) {
printf("Error : %d Write completions failed\n",
context.error);
spdk_nvme_ctrlr_free_io_qpair(ns_entry->qpair);
cleanup(&context);
exit(1);
}
range.nlb = NUM_LBAS - 1;
range.slba = 0;
rc = spdk_nvme_ns_cmd_copy(ns_entry->ns, ns_entry->qpair,
&range, 1, DEST_LBA, simple_copy_complete, &context);
if (rc) {
printf("submission of copy I/O failed\n");
}
while (!context.simple_copy_completed) {
rc = spdk_nvme_qpair_process_completions(ns_entry->qpair, 0);
if (rc < 0) {
printf("Error processing copy completions, rc: %d\n", rc);
break;
}
}
if (context.error) {
printf("Error : Copy completion failed\n");
spdk_nvme_ctrlr_free_io_qpair(ns_entry->qpair);
cleanup(&context);
exit(1);
}
for (i = 0; i < NUM_LBAS; i++) {
rc = spdk_nvme_ns_cmd_read(ns_entry->ns, ns_entry->qpair, context.read_bufs[i],
DEST_LBA + i, /* LBA start */
1, /* number of LBAs */
read_complete, &context, 0);
if (rc) {
printf("submission of read I/O failed\n");
}
/* block after each read command so that we can match the block to the write buffer. */
while (context.reads_completed <= i) {
rc = spdk_nvme_qpair_process_completions(ns_entry->qpair, 0);
if (rc < 0) {
printf("Error processing read completions, rc: %d\n", rc);
break;
}
}
}
if (context.error) {
printf("Error : %d Read completions failed\n",
context.error);
spdk_nvme_ctrlr_free_io_qpair(ns_entry->qpair);
cleanup(&context);
exit(1);
}
printf("LBAs matching Written Data: %d\n", context.matches_written_data);
if (context.matches_written_data != NUM_LBAS) {
printf("Error : %d LBAs are copied correctly out of %d LBAs\n",
context.matches_written_data, NUM_LBAS);
spdk_nvme_ctrlr_free_io_qpair(ns_entry->qpair);
cleanup(&context);
exit(1);
}
/* reset counters in between each namespace. */
context.matches_written_data = 0;
context.writes_completed = 0;
context.reads_completed = 0;
context.simple_copy_completed = 0;
spdk_nvme_ctrlr_free_io_qpair(ns_entry->qpair);
ns_entry = ns_entry->next;
}
cleanup(&context);
}
static bool
probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
struct spdk_nvme_ctrlr_opts *opts)
{
printf("Attaching to %s\n", trid->traddr);
return true;
}
static void
attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
{
int num_ns;
struct spdk_nvme_ns *ns;
const struct spdk_nvme_ctrlr_data *cdata;
cdata = spdk_nvme_ctrlr_get_data(ctrlr);
if (cdata->oncs.copy) {
printf("Controller supports SCC. Attached to %s\n", trid->traddr);
/*
* Use only the first namespace from each controller since we are testing controller level functionality.
*/
num_ns = spdk_nvme_ctrlr_get_num_ns(ctrlr);
if (num_ns < 1) {
printf("No valid namespaces in controller\n");
} else {
ns = spdk_nvme_ctrlr_get_ns(ctrlr, 1);
register_ns(ctrlr, ns);
}
} else {
printf("Controller doesn't support SCC. Not Attached to %s\n", trid->traddr);
}
}
static void
cleanup(struct simple_copy_context *context)
{
struct ns_entry *ns_entry = g_namespaces;
struct spdk_nvme_detach_ctx *detach_ctx = NULL;
int i;
while (ns_entry) {
struct ns_entry *next = ns_entry->next;
spdk_nvme_detach_async(ns_entry->ctrlr, &detach_ctx);
free(ns_entry);
ns_entry = next;
}
if (detach_ctx) {
spdk_nvme_detach_poll(detach_ctx);
}
for (i = 0; i < NUM_LBAS; i++) {
if (context->write_bufs && context->write_bufs[i]) {
spdk_free(context->write_bufs[i]);
} else {
break;
}
if (context->read_bufs && context->read_bufs[i]) {
spdk_free(context->read_bufs[i]);
} else {
break;
}
}
free(context->write_bufs);
free(context->read_bufs);
}
static void
usage(const char *program_name)
{
printf("%s [options]", program_name);
printf("\n");
printf("options:\n");
printf(" -r trid remote NVMe over Fabrics target address\n");
printf(" Format: 'key:value [key:value] ...'\n");
printf(" Keys:\n");
printf(" trtype Transport type (e.g. RDMA)\n");
printf(" adrfam Address family (e.g. IPv4, IPv6)\n");
printf(" traddr Transport address (e.g. 192.168.100.8)\n");
printf(" trsvcid Transport service identifier (e.g. 4420)\n");
printf(" subnqn Subsystem NQN (default: %s)\n", SPDK_NVMF_DISCOVERY_NQN);
printf(" Example: -r 'trtype:RDMA adrfam:IPv4 traddr:192.168.100.8 trsvcid:4420'\n");
printf(" -h show this usage\n");
}
static int
parse_args(int argc, char **argv, struct spdk_env_opts *env_opts)
{
int op;
spdk_nvme_trid_populate_transport(&g_trid, SPDK_NVME_TRANSPORT_PCIE);
snprintf(g_trid.subnqn, sizeof(g_trid.subnqn), "%s", SPDK_NVMF_DISCOVERY_NQN);
while ((op = getopt(argc, argv, "r:h")) != -1) {
switch (op) {
case 'r':
if (spdk_nvme_transport_id_parse(&g_trid, optarg) != 0) {
fprintf(stderr, "Error parsing transport address\n");
return 1;
}
g_use_trid = true;
break;
case 'h':
usage(argv[0]);
exit(EXIT_SUCCESS);
default:
usage(argv[0]);
return 1;
}
}
return 0;
}
int
main(int argc, char **argv)
{
int rc;
struct spdk_env_opts opts;
spdk_env_opts_init(&opts);
rc = parse_args(argc, argv, &opts);
if (rc != 0) {
return rc;
}
opts.name = "simple_copy";
opts.shm_id = 0;
if (spdk_env_init(&opts) < 0) {
fprintf(stderr, "Unable to initialize SPDK env\n");
return 1;
}
printf("Initializing NVMe Controllers\n");
rc = spdk_nvme_probe(g_use_trid ? &g_trid : NULL, NULL, probe_cb, attach_cb, NULL);
if (rc != 0) {
fprintf(stderr, "spdk_nvme_probe() failed\n");
return 1;
}
if (g_namespaces == NULL) {
fprintf(stderr, "no NVMe controllers found\n");
return 1;
}
printf("Initialization complete.\n");
simple_copy_test();
return 0;
}