Spdk/module/accel/dpdk_cryptodev/accel_dpdk_cryptodev.c

1618 lines
54 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright (C) 2018 Intel Corporation.
* Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES.
* All rights reserved.
*/
#include "accel_dpdk_cryptodev.h"
#include "spdk/accel.h"
#include "spdk_internal/accel_module.h"
#include "spdk/env.h"
#include "spdk/likely.h"
#include "spdk/thread.h"
#include "spdk/util.h"
#include "spdk/log.h"
#include "spdk/json.h"
#include "spdk_internal/sgl.h"
#include <rte_bus_vdev.h>
#include <rte_crypto.h>
#include <rte_cryptodev.h>
#include <rte_mbuf_dyn.h>
#include <rte_version.h>
/* The VF spread is the number of queue pairs between virtual functions, we use this to
* load balance the QAT device.
*/
#define ACCEL_DPDK_CRYPTODEV_QAT_VF_SPREAD 32
/* This controls how many ops will be dequeued from the crypto driver in one run
* of the poller. It is mainly a performance knob as it effectively determines how
* much work the poller has to do. However even that can vary between crypto drivers
* as the ACCEL_DPDK_CRYPTODEV_AESNI_MB driver for example does all the crypto work on dequeue whereas the
* QAT driver just dequeues what has been completed already.
*/
#define ACCEL_DPDK_CRYPTODEV_MAX_DEQUEUE_BURST_SIZE 64
#define ACCEL_DPDK_CRYPTODEV_MAX_ENQUEUE_ARRAY_SIZE (128)
/* The number of MBUFS we need must be a power of two and to support other small IOs
* in addition to the limits mentioned above, we go to the next power of two. It is
* big number because it is one mempool for source and destination mbufs. It may
* need to be bigger to support multiple crypto drivers at once.
*/
#define ACCEL_DPDK_CRYPTODEV_NUM_MBUFS 32768
#define ACCEL_DPDK_CRYPTODEV_POOL_CACHE_SIZE 256
#define ACCEL_DPDK_CRYPTODEV_MAX_CRYPTO_VOLUMES 128
#define ACCEL_DPDK_CRYPTODEV_NUM_SESSIONS (2 * ACCEL_DPDK_CRYPTODEV_MAX_CRYPTO_VOLUMES)
#define ACCEL_DPDK_CRYPTODEV_SESS_MEMPOOL_CACHE_SIZE 0
/* This is the max number of IOs we can supply to any crypto device QP at one time.
* It can vary between drivers.
*/
#define ACCEL_DPDK_CRYPTODEV_QP_DESCRIPTORS 2048
/* At this moment DPDK descriptors allocation for mlx5 has some issues. We use 512
* as a compromise value between performance and the time spent for initialization. */
#define ACCEL_DPDK_CRYPTODEV_QP_DESCRIPTORS_MLX5 512
#define ACCEL_DPDK_CRYPTODEV_AESNI_MB_NUM_QP 64
/* Common for suported devices. */
#define ACCEL_DPDK_CRYPTODEV_DEFAULT_NUM_XFORMS 2
#define ACCEL_DPDK_CRYPTODEV_IV_OFFSET (sizeof(struct rte_crypto_op) + \
sizeof(struct rte_crypto_sym_op) + \
(ACCEL_DPDK_CRYPTODEV_DEFAULT_NUM_XFORMS * \
sizeof(struct rte_crypto_sym_xform)))
#define ACCEL_DPDK_CRYPTODEV_IV_LENGTH 16
#define ACCEL_DPDK_CRYPTODEV_QUEUED_OP_OFFSET (ACCEL_DPDK_CRYPTODEV_IV_OFFSET + ACCEL_DPDK_CRYPTODEV_IV_LENGTH)
/* Driver names */
#define ACCEL_DPDK_CRYPTODEV_AESNI_MB "crypto_aesni_mb"
#define ACCEL_DPDK_CRYPTODEV_QAT "crypto_qat"
#define ACCEL_DPDK_CRYPTODEV_QAT_ASYM "crypto_qat_asym"
#define ACCEL_DPDK_CRYPTODEV_MLX5 "mlx5_pci"
/* Supported ciphers */
#define ACCEL_DPDK_CRYPTODEV_AES_CBC "AES_CBC" /* QAT and ACCEL_DPDK_CRYPTODEV_AESNI_MB */
#define ACCEL_DPDK_CRYPTODEV_AES_XTS "AES_XTS" /* QAT and MLX5 */
/* Specific to AES_CBC. */
#define ACCEL_DPDK_CRYPTODEV_AES_CBC_KEY_LENGTH 16
#define ACCEL_DPDK_CRYPTODEV_AES_XTS_128_BLOCK_KEY_LENGTH 16 /* AES-XTS-128 block key size. */
#define ACCEL_DPDK_CRYPTODEV_AES_XTS_256_BLOCK_KEY_LENGTH 32 /* AES-XTS-256 block key size. */
#define ACCEL_DPDK_CRYPTODEV_AES_XTS_512_BLOCK_KEY_LENGTH 64 /* AES-XTS-512 block key size. */
#define ACCEL_DPDK_CRYPTODEV_AES_XTS_TWEAK_KEY_LENGTH 16 /* XTS part key size is always 128 bit. */
/* Limit of the max memory len attached to mbuf - rte_pktmbuf_attach_extbuf has uint16_t `buf_len`
* parameter, we use closes aligned value 32768 for better performance */
#define ACCEL_DPDK_CRYPTODEV_MAX_MBUF_LEN 32768
/* Used to store IO context in mbuf */
static const struct rte_mbuf_dynfield rte_mbuf_dynfield_io_context = {
.name = "context_accel_dpdk_cryptodev",
.size = sizeof(uint64_t),
.align = __alignof__(uint64_t),
.flags = 0,
};
struct accel_dpdk_cryptodev_device;
enum accel_dpdk_cryptodev_driver_type {
ACCEL_DPDK_CRYPTODEV_DRIVER_AESNI_MB = 0,
ACCEL_DPDK_CRYPTODEV_DRIVER_QAT,
ACCEL_DPDK_CRYPTODEV_DRIVER_MLX5_PCI,
ACCEL_DPDK_CRYPTODEV_DRIVER_LAST
};
enum accel_dpdk_crypto_dev_cipher_type {
ACCEL_DPDK_CRYPTODEV_CIPHER_AES_CBC,
ACCEL_DPDK_CRYPTODEV_CIPHER_AES_XTS
};
struct accel_dpdk_cryptodev_qp {
struct accel_dpdk_cryptodev_device *device; /* ptr to crypto device */
uint32_t num_enqueued_ops; /* Used to decide whether to poll the qp or not */
uint8_t qp; /* queue identifier */
bool in_use; /* whether this node is in use or not */
uint8_t index; /* used by QAT to load balance placement of qpairs */
TAILQ_ENTRY(accel_dpdk_cryptodev_qp) link;
};
struct accel_dpdk_cryptodev_device {
enum accel_dpdk_cryptodev_driver_type type;
struct rte_cryptodev_info cdev_info; /* includes DPDK device friendly name */
uint32_t qp_desc_nr; /* max number of qp descriptors to be enqueued in burst */
uint8_t cdev_id; /* identifier for the device */
TAILQ_HEAD(, accel_dpdk_cryptodev_qp) qpairs;
TAILQ_ENTRY(accel_dpdk_cryptodev_device) link;
};
struct accel_dpdk_cryptodev_key_handle {
struct accel_dpdk_cryptodev_device *device;
TAILQ_ENTRY(accel_dpdk_cryptodev_key_handle) link;
void *session_encrypt; /* encryption session for this key */
void *session_decrypt; /* decryption session for this key */
struct rte_crypto_sym_xform cipher_xform; /* crypto control struct for this key */
};
struct accel_dpdk_cryptodev_key_priv {
enum accel_dpdk_cryptodev_driver_type driver;
enum accel_dpdk_crypto_dev_cipher_type cipher;
char *xts_key;
TAILQ_HEAD(, accel_dpdk_cryptodev_key_handle) dev_keys;
};
/* For queueing up crypto operations that we can't submit for some reason */
struct accel_dpdk_cryptodev_queued_op {
struct accel_dpdk_cryptodev_qp *qp;
struct rte_crypto_op *crypto_op;
struct accel_dpdk_cryptodev_task *task;
TAILQ_ENTRY(accel_dpdk_cryptodev_queued_op) link;
};
#define ACCEL_DPDK_CRYPTODEV_QUEUED_OP_LENGTH (sizeof(struct accel_dpdk_cryptodev_queued_op))
/* The crypto channel struct. It is allocated and freed on my behalf by the io channel code.
* We store things in here that are needed on per thread basis like the base_channel for this thread,
* and the poller for this thread.
*/
struct accel_dpdk_cryptodev_io_channel {
/* completion poller */
struct spdk_poller *poller;
/* Array of qpairs for each available device. The specific device will be selected depending on the crypto key */
struct accel_dpdk_cryptodev_qp *device_qp[ACCEL_DPDK_CRYPTODEV_DRIVER_LAST];
/* queued for re-submission to CryptoDev. Used when for some reason crypto op was not processed by the driver */
TAILQ_HEAD(, accel_dpdk_cryptodev_queued_op) queued_cry_ops;
/* Used to queue tasks when qpair is full. No crypto operation was submitted to the driver by the task */
TAILQ_HEAD(, accel_dpdk_cryptodev_task) queued_tasks;
};
struct accel_dpdk_cryptodev_task {
struct spdk_accel_task base;
uint32_t cryop_completed; /* The number of crypto operations completed by HW */
uint32_t cryop_submitted; /* The number of crypto operations submitted to HW */
uint32_t cryop_total; /* Total number of crypto operations in this task */
bool is_failed;
bool inplace;
TAILQ_ENTRY(accel_dpdk_cryptodev_task) link;
};
/* Shared mempools between all devices on this system */
static struct rte_mempool *g_session_mp = NULL;
static struct rte_mempool *g_session_mp_priv = NULL;
static struct rte_mempool *g_mbuf_mp = NULL; /* mbuf mempool */
static int g_mbuf_offset;
static struct rte_mempool *g_crypto_op_mp = NULL; /* crypto operations, must be rte* mempool */
static struct rte_mbuf_ext_shared_info g_shinfo = {}; /* used by DPDK mbuf macro */
static uint8_t g_qat_total_qp = 0;
static uint8_t g_next_qat_index;
static const char *g_driver_names[] = {
[ACCEL_DPDK_CRYPTODEV_DRIVER_AESNI_MB] = ACCEL_DPDK_CRYPTODEV_AESNI_MB,
[ACCEL_DPDK_CRYPTODEV_DRIVER_QAT] = ACCEL_DPDK_CRYPTODEV_QAT,
[ACCEL_DPDK_CRYPTODEV_DRIVER_MLX5_PCI] = ACCEL_DPDK_CRYPTODEV_MLX5
};
static const char *g_cipher_names[] = {
[ACCEL_DPDK_CRYPTODEV_CIPHER_AES_CBC] = ACCEL_DPDK_CRYPTODEV_AES_CBC,
[ACCEL_DPDK_CRYPTODEV_CIPHER_AES_XTS] = ACCEL_DPDK_CRYPTODEV_AES_XTS,
};
static enum accel_dpdk_cryptodev_driver_type g_dpdk_cryptodev_driver =
ACCEL_DPDK_CRYPTODEV_DRIVER_AESNI_MB;
/* Global list of all crypto devices */
static TAILQ_HEAD(, accel_dpdk_cryptodev_device) g_crypto_devices = TAILQ_HEAD_INITIALIZER(
g_crypto_devices);
static pthread_mutex_t g_device_lock = PTHREAD_MUTEX_INITIALIZER;
static struct spdk_accel_module_if g_accel_dpdk_cryptodev_module;
static int accel_dpdk_cryptodev_process_task(struct accel_dpdk_cryptodev_io_channel *crypto_ch,
struct accel_dpdk_cryptodev_task *task);
void
accel_dpdk_cryptodev_enable(void)
{
spdk_accel_module_list_add(&g_accel_dpdk_cryptodev_module);
}
int
accel_dpdk_cryptodev_set_driver(const char *driver_name)
{
if (strcmp(driver_name, ACCEL_DPDK_CRYPTODEV_QAT) == 0) {
g_dpdk_cryptodev_driver = ACCEL_DPDK_CRYPTODEV_DRIVER_QAT;
} else if (strcmp(driver_name, ACCEL_DPDK_CRYPTODEV_AESNI_MB) == 0) {
g_dpdk_cryptodev_driver = ACCEL_DPDK_CRYPTODEV_DRIVER_AESNI_MB;
} else if (strcmp(driver_name, ACCEL_DPDK_CRYPTODEV_MLX5) == 0) {
g_dpdk_cryptodev_driver = ACCEL_DPDK_CRYPTODEV_DRIVER_MLX5_PCI;
} else {
SPDK_ERRLOG("Unsupported driver %s\n", driver_name);
return -EINVAL;
}
SPDK_NOTICELOG("Using driver %s\n", driver_name);
return 0;
}
const char *
accel_dpdk_cryptodev_get_driver(void)
{
return g_driver_names[g_dpdk_cryptodev_driver];
}
static void
cancel_queued_crypto_ops(struct accel_dpdk_cryptodev_io_channel *crypto_ch,
struct accel_dpdk_cryptodev_task *task)
{
struct rte_mbuf *mbufs_to_free[2 * ACCEL_DPDK_CRYPTODEV_MAX_DEQUEUE_BURST_SIZE];
struct rte_crypto_op *cancelled_ops[ACCEL_DPDK_CRYPTODEV_MAX_DEQUEUE_BURST_SIZE];
struct accel_dpdk_cryptodev_queued_op *op_to_cancel, *tmp_op;
struct rte_crypto_op *crypto_op;
int num_mbufs = 0, num_dequeued_ops = 0;
/* Remove all ops from the failed IO. Since we don't know the
* order we have to check them all. */
TAILQ_FOREACH_SAFE(op_to_cancel, &crypto_ch->queued_cry_ops, link, tmp_op) {
/* Checking if this is our op. One IO contains multiple ops. */
if (task == op_to_cancel->task) {
crypto_op = op_to_cancel->crypto_op;
TAILQ_REMOVE(&crypto_ch->queued_cry_ops, op_to_cancel, link);
/* Populating lists for freeing mbufs and ops. */
mbufs_to_free[num_mbufs++] = (void *)crypto_op->sym->m_src;
if (crypto_op->sym->m_dst) {
mbufs_to_free[num_mbufs++] = (void *)crypto_op->sym->m_dst;
}
cancelled_ops[num_dequeued_ops++] = crypto_op;
}
}
/* Now bulk free both mbufs and crypto operations. */
if (num_dequeued_ops > 0) {
rte_mempool_put_bulk(g_crypto_op_mp, (void **)cancelled_ops,
num_dequeued_ops);
assert(num_mbufs > 0);
/* This also releases chained mbufs if any. */
rte_pktmbuf_free_bulk(mbufs_to_free, num_mbufs);
}
}
static inline uint16_t
accel_dpdk_cryptodev_poll_qp(struct accel_dpdk_cryptodev_qp *qp,
struct accel_dpdk_cryptodev_io_channel *crypto_ch)
{
struct rte_crypto_op *dequeued_ops[ACCEL_DPDK_CRYPTODEV_MAX_DEQUEUE_BURST_SIZE];
struct rte_mbuf *mbufs_to_free[2 * ACCEL_DPDK_CRYPTODEV_MAX_DEQUEUE_BURST_SIZE];
struct accel_dpdk_cryptodev_task *task;
uint32_t num_mbufs = 0;
int i;
uint16_t num_dequeued_ops;
/* Each run of the poller will get just what the device has available
* at the moment we call it, we don't check again after draining the
* first batch.
*/
num_dequeued_ops = rte_cryptodev_dequeue_burst(qp->device->cdev_id, qp->qp,
dequeued_ops, ACCEL_DPDK_CRYPTODEV_MAX_DEQUEUE_BURST_SIZE);
/* Check if operation was processed successfully */
for (i = 0; i < num_dequeued_ops; i++) {
/* We don't know the order or association of the crypto ops wrt any
* particular task so need to look at each and determine if it's
* the last one for it's task or not.
*/
task = (struct accel_dpdk_cryptodev_task *)*RTE_MBUF_DYNFIELD(dequeued_ops[i]->sym->m_src,
g_mbuf_offset, uint64_t *);
assert(task != NULL);
if (dequeued_ops[i]->status != RTE_CRYPTO_OP_STATUS_SUCCESS) {
SPDK_ERRLOG("error with op %d status %u\n", i, dequeued_ops[i]->status);
/* Update the task status to error, we'll still process the
* rest of the crypto ops for this task though so they
* aren't left hanging.
*/
task->is_failed = true;
}
/* Return the associated src and dst mbufs by collecting them into
* an array that we can use the bulk API to free after the loop.
*/
*RTE_MBUF_DYNFIELD(dequeued_ops[i]->sym->m_src, g_mbuf_offset, uint64_t *) = 0;
mbufs_to_free[num_mbufs++] = (void *)dequeued_ops[i]->sym->m_src;
if (dequeued_ops[i]->sym->m_dst) {
mbufs_to_free[num_mbufs++] = (void *)dequeued_ops[i]->sym->m_dst;
}
task->cryop_completed++;
if (task->cryop_completed == task->cryop_total) {
/* Complete the IO */
spdk_accel_task_complete(&task->base, task->is_failed ? -EINVAL : 0);
} else if (task->cryop_completed == task->cryop_submitted) {
/* submit remaining crypto ops */
int rc = accel_dpdk_cryptodev_process_task(crypto_ch, task);
if (spdk_unlikely(rc)) {
if (rc == -ENOMEM) {
TAILQ_INSERT_TAIL(&crypto_ch->queued_tasks, task, link);
continue;
}
spdk_accel_task_complete(&task->base, rc);
}
}
}
/* Now bulk free both mbufs and crypto operations. */
if (num_dequeued_ops > 0) {
rte_mempool_put_bulk(g_crypto_op_mp, (void **)dequeued_ops, num_dequeued_ops);
assert(num_mbufs > 0);
/* This also releases chained mbufs if any. */
rte_pktmbuf_free_bulk(mbufs_to_free, num_mbufs);
}
assert(qp->num_enqueued_ops >= num_dequeued_ops);
qp->num_enqueued_ops -= num_dequeued_ops;
return num_dequeued_ops;
}
/* This is the poller for the crypto module. It uses a single API to dequeue whatever is ready at
* the device. Then we need to decide if what we've got so far (including previous poller
* runs) totals up to one or more complete task */
static int
accel_dpdk_cryptodev_poller(void *args)
{
struct accel_dpdk_cryptodev_io_channel *crypto_ch = args;
struct accel_dpdk_cryptodev_qp *qp;
struct accel_dpdk_cryptodev_task *task, *task_tmp;
struct accel_dpdk_cryptodev_queued_op *op_to_resubmit, *op_to_resubmit_tmp;
TAILQ_HEAD(, accel_dpdk_cryptodev_task) queued_tasks_tmp;
uint32_t num_dequeued_ops = 0, num_enqueued_ops = 0;
uint16_t enqueued;
int i, rc;
for (i = 0; i < ACCEL_DPDK_CRYPTODEV_DRIVER_LAST; i++) {
qp = crypto_ch->device_qp[i];
/* Avoid polling "idle" qps since it may affect performance */
if (qp && qp->num_enqueued_ops) {
num_dequeued_ops += accel_dpdk_cryptodev_poll_qp(qp, crypto_ch);
}
}
/* Check if there are any queued crypto ops to process */
TAILQ_FOREACH_SAFE(op_to_resubmit, &crypto_ch->queued_cry_ops, link, op_to_resubmit_tmp) {
task = op_to_resubmit->task;
qp = op_to_resubmit->qp;
if (qp->num_enqueued_ops == qp->device->qp_desc_nr) {
continue;
}
enqueued = rte_cryptodev_enqueue_burst(qp->device->cdev_id,
qp->qp,
&op_to_resubmit->crypto_op,
1);
if (enqueued == 1) {
TAILQ_REMOVE(&crypto_ch->queued_cry_ops, op_to_resubmit, link);
qp->num_enqueued_ops++;
num_enqueued_ops++;
} else {
if (op_to_resubmit->crypto_op->status == RTE_CRYPTO_OP_STATUS_NOT_PROCESSED) {
/* If we couldn't get one, just break and try again later. */
break;
} else {
/* Something is really wrong with the op. Most probably the
* mbuf is broken or the HW is not able to process the request.
* Fail the IO and remove its ops from the queued ops list. */
task->is_failed = true;
cancel_queued_crypto_ops(crypto_ch, task);
task->cryop_completed++;
/* Fail the IO if there is nothing left on device. */
if (task->cryop_completed == task->cryop_submitted) {
spdk_accel_task_complete(&task->base, -EFAULT);
}
}
}
}
if (!TAILQ_EMPTY(&crypto_ch->queued_tasks)) {
TAILQ_INIT(&queued_tasks_tmp);
TAILQ_FOREACH_SAFE(task, &crypto_ch->queued_tasks, link, task_tmp) {
TAILQ_REMOVE(&crypto_ch->queued_tasks, task, link);
rc = accel_dpdk_cryptodev_process_task(crypto_ch, task);
if (spdk_unlikely(rc)) {
if (rc == -ENOMEM) {
TAILQ_INSERT_TAIL(&queued_tasks_tmp, task, link);
/* Other queued tasks may belong to other qpairs,
* so process the whole list */
continue;
}
spdk_accel_task_complete(&task->base, rc);
} else {
num_enqueued_ops++;
}
}
TAILQ_SWAP(&crypto_ch->queued_tasks, &queued_tasks_tmp, accel_dpdk_cryptodev_task, link);
}
return !!(num_dequeued_ops + num_enqueued_ops);
}
/* Allocate the new mbuf of @remainder size with data pointed by @addr and attach
* it to the @orig_mbuf. */
static inline int
accel_dpdk_cryptodev_mbuf_chain_remainder(struct accel_dpdk_cryptodev_task *task,
struct rte_mbuf *orig_mbuf, uint8_t *addr, uint64_t *_remainder)
{
uint64_t phys_addr, phys_len, remainder = *_remainder;
struct rte_mbuf *chain_mbuf;
int rc;
phys_len = remainder;
phys_addr = spdk_vtophys((void *)addr, &phys_len);
if (spdk_unlikely(phys_addr == SPDK_VTOPHYS_ERROR)) {
return -EFAULT;
}
remainder = spdk_min(remainder, phys_len);
remainder = spdk_min(remainder, ACCEL_DPDK_CRYPTODEV_MAX_MBUF_LEN);
rc = rte_pktmbuf_alloc_bulk(g_mbuf_mp, (struct rte_mbuf **)&chain_mbuf, 1);
if (spdk_unlikely(rc)) {
return -ENOMEM;
}
/* Store context in every mbuf as we don't know anything about completion order */
*RTE_MBUF_DYNFIELD(chain_mbuf, g_mbuf_offset, uint64_t *) = (uint64_t)task;
rte_pktmbuf_attach_extbuf(chain_mbuf, addr, phys_addr, remainder, &g_shinfo);
rte_pktmbuf_append(chain_mbuf, remainder);
/* Chained buffer is released by rte_pktbuf_free_bulk() automagicaly. */
rte_pktmbuf_chain(orig_mbuf, chain_mbuf);
*_remainder = remainder;
return 0;
}
/* Attach data buffer pointed by @addr to @mbuf. Return utilized len of the
* contiguous space that was physically available. */
static inline uint64_t
accel_dpdk_cryptodev_mbuf_attach_buf(struct accel_dpdk_cryptodev_task *task, struct rte_mbuf *mbuf,
uint8_t *addr, uint32_t len)
{
uint64_t phys_addr, phys_len;
/* Store context in every mbuf as we don't know anything about completion order */
*RTE_MBUF_DYNFIELD(mbuf, g_mbuf_offset, uint64_t *) = (uint64_t)task;
phys_len = len;
phys_addr = spdk_vtophys((void *)addr, &phys_len);
if (spdk_unlikely(phys_addr == SPDK_VTOPHYS_ERROR || phys_len == 0)) {
return 0;
}
assert(phys_len <= len);
phys_len = spdk_min(phys_len, ACCEL_DPDK_CRYPTODEV_MAX_MBUF_LEN);
/* Set the mbuf elements address and length. */
rte_pktmbuf_attach_extbuf(mbuf, addr, phys_addr, phys_len, &g_shinfo);
rte_pktmbuf_append(mbuf, phys_len);
return phys_len;
}
static inline struct accel_dpdk_cryptodev_key_handle *
accel_dpdk_find_key_handle_in_channel(struct accel_dpdk_cryptodev_io_channel *crypto_ch,
struct accel_dpdk_cryptodev_key_priv *key)
{
struct accel_dpdk_cryptodev_key_handle *key_handle;
if (key->driver == ACCEL_DPDK_CRYPTODEV_DRIVER_MLX5_PCI) {
/* Crypto key is registered on all available devices while io_channel opens CQ/QP on a single device.
* We need to iterate a list of key entries to find a suitable device */
TAILQ_FOREACH(key_handle, &key->dev_keys, link) {
if (key_handle->device->cdev_id ==
crypto_ch->device_qp[ACCEL_DPDK_CRYPTODEV_DRIVER_MLX5_PCI]->device->cdev_id) {
return key_handle;
}
}
return NULL;
} else {
return TAILQ_FIRST(&key->dev_keys);
}
}
static inline int
accel_dpdk_cryptodev_task_alloc_resources(struct rte_mbuf **src_mbufs, struct rte_mbuf **dst_mbufs,
struct rte_crypto_op **crypto_ops, int count)
{
int rc;
/* Get the number of source mbufs that we need. These will always be 1:1 because we
* don't support chaining. The reason we don't is because of our decision to use
* LBA as IV, there can be no case where we'd need >1 mbuf per crypto op or the
* op would be > 1 LBA.
*/
rc = rte_pktmbuf_alloc_bulk(g_mbuf_mp, src_mbufs, count);
if (rc) {
SPDK_ERRLOG("Failed to get src_mbufs!\n");
return -ENOMEM;
}
/* Get the same amount to describe destination. If crypto operation is inline then we don't just skip it */
if (dst_mbufs) {
rc = rte_pktmbuf_alloc_bulk(g_mbuf_mp, dst_mbufs, count);
if (rc) {
SPDK_ERRLOG("Failed to get dst_mbufs!\n");
goto err_free_src;
}
}
#ifdef __clang_analyzer__
/* silence scan-build false positive */
SPDK_CLANG_ANALYZER_PREINIT_PTR_ARRAY(crypto_ops, ACCEL_DPDK_CRYPTODEV_MAX_ENQUEUE_ARRAY_SIZE,
0x1000);
#endif
/* Allocate crypto operations. */
SPDK_NOTICELOG("requested %u ops\n", count);
rc = rte_crypto_op_bulk_alloc(g_crypto_op_mp,
RTE_CRYPTO_OP_TYPE_SYMMETRIC,
crypto_ops, count);
if (rc < count) {
SPDK_ERRLOG("Failed to allocate crypto ops! rc %d\n", rc);
goto err_free_ops;
}
return 0;
err_free_ops:
if (rc > 0) {
rte_mempool_put_bulk(g_crypto_op_mp, (void **)crypto_ops, rc);
}
if (dst_mbufs) {
/* This also releases chained mbufs if any. */
rte_pktmbuf_free_bulk(dst_mbufs, count);
}
err_free_src:
/* This also releases chained mbufs if any. */
rte_pktmbuf_free_bulk(src_mbufs, count);
return -ENOMEM;
}
static inline int
accel_dpdk_cryptodev_mbuf_add_single_block(struct spdk_iov_sgl *sgl, struct rte_mbuf *mbuf,
struct accel_dpdk_cryptodev_task *task)
{
int rc;
uint8_t *buf_addr;
uint64_t phys_len;
uint64_t remainder;
uint64_t buf_len = spdk_min(task->base.block_size, sgl->iov->iov_len - sgl->iov_offset);
buf_addr = sgl->iov->iov_base + sgl->iov_offset;
phys_len = accel_dpdk_cryptodev_mbuf_attach_buf(task, mbuf, buf_addr, buf_len);
if (spdk_unlikely(phys_len == 0)) {
return -EFAULT;
}
buf_len = spdk_min(buf_len, phys_len);
spdk_iov_sgl_advance(sgl, buf_len);
/* Handle the case of page boundary. */
remainder = task->base.block_size - buf_len;
while (remainder) {
buf_len = spdk_min(remainder, sgl->iov->iov_len - sgl->iov_offset);
buf_addr = sgl->iov->iov_base + sgl->iov_offset;
rc = accel_dpdk_cryptodev_mbuf_chain_remainder(task, mbuf, buf_addr, &buf_len);
if (spdk_unlikely(rc)) {
return rc;
}
spdk_iov_sgl_advance(sgl, buf_len);
remainder -= buf_len;
}
return 0;
}
static inline void
accel_dpdk_cryptodev_op_set_iv(struct rte_crypto_op *crypto_op, uint64_t iv)
{
uint8_t *iv_ptr = rte_crypto_op_ctod_offset(crypto_op, uint8_t *, ACCEL_DPDK_CRYPTODEV_IV_OFFSET);
/* Set the IV - we use the LBA of the crypto_op */
memset(iv_ptr, 0, ACCEL_DPDK_CRYPTODEV_IV_LENGTH);
rte_memcpy(iv_ptr, &iv, sizeof(uint64_t));
}
static int
accel_dpdk_cryptodev_process_task(struct accel_dpdk_cryptodev_io_channel *crypto_ch,
struct accel_dpdk_cryptodev_task *task)
{
uint16_t num_enqueued_ops;
uint32_t cryop_cnt;
uint32_t crypto_len = task->base.block_size;
uint64_t dst_length, total_length;
uint32_t sgl_offset;
uint32_t qp_capacity;
uint64_t iv_start;
struct accel_dpdk_cryptodev_queued_op *op_to_queue;
uint32_t i, crypto_index;
struct rte_crypto_op *crypto_ops[ACCEL_DPDK_CRYPTODEV_MAX_ENQUEUE_ARRAY_SIZE];
struct rte_mbuf *src_mbufs[ACCEL_DPDK_CRYPTODEV_MAX_ENQUEUE_ARRAY_SIZE];
struct rte_mbuf *dst_mbufs[ACCEL_DPDK_CRYPTODEV_MAX_ENQUEUE_ARRAY_SIZE];
void *session;
struct accel_dpdk_cryptodev_key_priv *priv;
struct accel_dpdk_cryptodev_key_handle *key_handle;
struct accel_dpdk_cryptodev_qp *qp;
struct accel_dpdk_cryptodev_device *dev;
struct spdk_iov_sgl src, dst = {};
int rc;
if (spdk_unlikely(!task->base.crypto_key ||
task->base.crypto_key->module_if != &g_accel_dpdk_cryptodev_module)) {
return -EINVAL;
}
priv = task->base.crypto_key->priv;
assert(priv->driver < ACCEL_DPDK_CRYPTODEV_DRIVER_LAST);
if (task->cryop_completed) {
/* We continue to process remaining blocks */
assert(task->cryop_submitted == task->cryop_completed);
assert(task->cryop_total > task->cryop_completed);
cryop_cnt = task->cryop_total - task->cryop_completed;
sgl_offset = task->cryop_completed * crypto_len;
iv_start = task->base.iv + task->cryop_completed;
} else {
/* That is a new task */
total_length = 0;
for (i = 0; i < task->base.s.iovcnt; i++) {
total_length += task->base.s.iovs[i].iov_len;
}
dst_length = 0;
for (i = 0; i < task->base.d.iovcnt; i++) {
dst_length += task->base.d.iovs[i].iov_len;
}
if (spdk_unlikely(total_length != dst_length || !total_length)) {
return -ERANGE;
}
if (spdk_unlikely(total_length % task->base.block_size != 0)) {
return -EINVAL;
}
cryop_cnt = total_length / task->base.block_size;
task->cryop_total = cryop_cnt;
sgl_offset = 0;
iv_start = task->base.iv;
}
/* Limit the number of crypto ops that we can process once */
cryop_cnt = spdk_min(cryop_cnt, ACCEL_DPDK_CRYPTODEV_MAX_ENQUEUE_ARRAY_SIZE);
qp = crypto_ch->device_qp[priv->driver];
assert(qp);
dev = qp->device;
assert(dev);
assert(dev->qp_desc_nr >= qp->num_enqueued_ops);
qp_capacity = dev->qp_desc_nr - qp->num_enqueued_ops;
cryop_cnt = spdk_min(cryop_cnt, qp_capacity);
if (spdk_unlikely(cryop_cnt == 0)) {
/* QP is full */
return -ENOMEM;
}
key_handle = accel_dpdk_find_key_handle_in_channel(crypto_ch, priv);
if (spdk_unlikely(!key_handle)) {
SPDK_ERRLOG("Failed to find a key handle, driver %s, cipher %s\n", g_driver_names[priv->driver],
g_cipher_names[priv->cipher]);
return -EINVAL;
}
/* mlx5_pci binds keys to a specific device, we can't use a key with any device */
assert(dev == key_handle->device || priv->driver != ACCEL_DPDK_CRYPTODEV_DRIVER_MLX5_PCI);
if (task->base.op_code == ACCEL_OPC_ENCRYPT) {
session = key_handle->session_encrypt;
} else if (task->base.op_code == ACCEL_OPC_DECRYPT) {
session = key_handle->session_decrypt;
} else {
return -EINVAL;
}
rc = accel_dpdk_cryptodev_task_alloc_resources(src_mbufs, task->inplace ? NULL : dst_mbufs,
crypto_ops, cryop_cnt);
if (rc) {
return rc;
}
/* This value is used in the completion callback to determine when the accel task is complete. */
task->cryop_submitted += cryop_cnt;
/* As we don't support chaining because of a decision to use LBA as IV, construction
* of crypto operations is straightforward. We build both the op, the mbuf and the
* dst_mbuf in our local arrays by looping through the length of the accel task and
* picking off LBA sized blocks of memory from the IOVs as we walk through them. Each
* LBA sized chunk of memory will correspond 1:1 to a crypto operation and a single
* mbuf per crypto operation.
*/
spdk_iov_sgl_init(&src, task->base.s.iovs, task->base.s.iovcnt, sgl_offset);
if (!task->inplace) {
spdk_iov_sgl_init(&dst, task->base.d.iovs, task->base.d.iovcnt, sgl_offset);
}
for (crypto_index = 0; crypto_index < cryop_cnt; crypto_index++) {
rc = accel_dpdk_cryptodev_mbuf_add_single_block(&src, src_mbufs[crypto_index], task);
if (spdk_unlikely(rc)) {
goto err_free_ops;
}
accel_dpdk_cryptodev_op_set_iv(crypto_ops[crypto_index], iv_start);
iv_start++;
/* Set the data to encrypt/decrypt length */
crypto_ops[crypto_index]->sym->cipher.data.length = crypto_len;
crypto_ops[crypto_index]->sym->cipher.data.offset = 0;
rte_crypto_op_attach_sym_session(crypto_ops[crypto_index], session);
/* link the mbuf to the crypto op. */
crypto_ops[crypto_index]->sym->m_src = src_mbufs[crypto_index];
if (task->inplace) {
crypto_ops[crypto_index]->sym->m_dst = NULL;
} else {
#ifndef __clang_analyzer__
/* scan-build thinks that dst_mbufs is not initialized */
rc = accel_dpdk_cryptodev_mbuf_add_single_block(&dst, dst_mbufs[crypto_index], task);
if (spdk_unlikely(rc)) {
goto err_free_ops;
}
crypto_ops[crypto_index]->sym->m_dst = dst_mbufs[crypto_index];
#endif
}
}
/* Enqueue everything we've got but limit by the max number of descriptors we
* configured the crypto device for.
*/
num_enqueued_ops = rte_cryptodev_enqueue_burst(dev->cdev_id, qp->qp, crypto_ops, cryop_cnt);
qp->num_enqueued_ops += num_enqueued_ops;
/* We were unable to enqueue everything but did get some, so need to decide what
* to do based on the status of the last op.
*/
if (num_enqueued_ops < cryop_cnt) {
switch (crypto_ops[num_enqueued_ops]->status) {
case RTE_CRYPTO_OP_STATUS_NOT_PROCESSED:
/* Queue them up on a linked list to be resubmitted via the poller. */
for (crypto_index = num_enqueued_ops; crypto_index < cryop_cnt; crypto_index++) {
op_to_queue = (struct accel_dpdk_cryptodev_queued_op *)rte_crypto_op_ctod_offset(
crypto_ops[crypto_index],
uint8_t *, ACCEL_DPDK_CRYPTODEV_QUEUED_OP_OFFSET);
op_to_queue->qp = qp;
op_to_queue->crypto_op = crypto_ops[crypto_index];
op_to_queue->task = task;
TAILQ_INSERT_TAIL(&crypto_ch->queued_cry_ops, op_to_queue, link);
}
break;
default:
/* For all other statuses, mark task as failed so that the poller will pick
* the failure up for the overall task status.
*/
task->is_failed = true;
if (num_enqueued_ops == 0) {
/* If nothing was enqueued, but the last one wasn't because of
* busy, fail it now as the poller won't know anything about it.
*/
rc = -EINVAL;
goto err_free_ops;
}
break;
}
}
return 0;
/* Error cleanup paths. */
err_free_ops:
if (!task->inplace) {
/* This also releases chained mbufs if any. */
rte_pktmbuf_free_bulk(dst_mbufs, cryop_cnt);
}
rte_mempool_put_bulk(g_crypto_op_mp, (void **)crypto_ops, cryop_cnt);
/* This also releases chained mbufs if any. */
rte_pktmbuf_free_bulk(src_mbufs, cryop_cnt);
return rc;
}
static inline struct accel_dpdk_cryptodev_qp *
accel_dpdk_cryptodev_get_next_device_qpair(enum accel_dpdk_cryptodev_driver_type type)
{
struct accel_dpdk_cryptodev_device *device, *device_tmp;
struct accel_dpdk_cryptodev_qp *qpair;
TAILQ_FOREACH_SAFE(device, &g_crypto_devices, link, device_tmp) {
if (device->type != type) {
continue;
}
TAILQ_FOREACH(qpair, &device->qpairs, link) {
if (!qpair->in_use) {
qpair->in_use = true;
return qpair;
}
}
}
return NULL;
}
/* Helper function for the channel creation callback.
* Returns the number of drivers assigned to the channel */
static uint32_t
accel_dpdk_cryptodev_assign_device_qps(struct accel_dpdk_cryptodev_io_channel *crypto_ch)
{
struct accel_dpdk_cryptodev_device *device;
struct accel_dpdk_cryptodev_qp *device_qp;
uint32_t num_drivers = 0;
bool qat_found = false;
pthread_mutex_lock(&g_device_lock);
TAILQ_FOREACH(device, &g_crypto_devices, link) {
if (device->type == ACCEL_DPDK_CRYPTODEV_DRIVER_QAT && !qat_found) {
/* For some QAT devices, the optimal qp to use is every 32nd as this spreads the
* workload out over the multiple virtual functions in the device. For the devices
* where this isn't the case, it doesn't hurt.
*/
TAILQ_FOREACH(device_qp, &device->qpairs, link) {
if (device_qp->index != g_next_qat_index) {
continue;
}
if (device_qp->in_use == false) {
assert(crypto_ch->device_qp[ACCEL_DPDK_CRYPTODEV_DRIVER_QAT] == NULL);
crypto_ch->device_qp[ACCEL_DPDK_CRYPTODEV_DRIVER_QAT] = device_qp;
device_qp->in_use = true;
g_next_qat_index = (g_next_qat_index + ACCEL_DPDK_CRYPTODEV_QAT_VF_SPREAD) % g_qat_total_qp;
qat_found = true;
num_drivers++;
break;
} else {
/* if the preferred index is used, skip to the next one in this set. */
g_next_qat_index = (g_next_qat_index + 1) % g_qat_total_qp;
}
}
}
}
/* For ACCEL_DPDK_CRYPTODEV_AESNI_MB and MLX5_PCI select devices in round-robin manner */
device_qp = accel_dpdk_cryptodev_get_next_device_qpair(ACCEL_DPDK_CRYPTODEV_DRIVER_AESNI_MB);
if (device_qp) {
assert(crypto_ch->device_qp[ACCEL_DPDK_CRYPTODEV_DRIVER_AESNI_MB] == NULL);
crypto_ch->device_qp[ACCEL_DPDK_CRYPTODEV_DRIVER_AESNI_MB] = device_qp;
num_drivers++;
}
device_qp = accel_dpdk_cryptodev_get_next_device_qpair(ACCEL_DPDK_CRYPTODEV_DRIVER_MLX5_PCI);
if (device_qp) {
assert(crypto_ch->device_qp[ACCEL_DPDK_CRYPTODEV_DRIVER_MLX5_PCI] == NULL);
crypto_ch->device_qp[ACCEL_DPDK_CRYPTODEV_DRIVER_MLX5_PCI] = device_qp;
num_drivers++;
}
pthread_mutex_unlock(&g_device_lock);
return num_drivers;
}
static void
_accel_dpdk_cryptodev_destroy_cb(void *io_device, void *ctx_buf)
{
struct accel_dpdk_cryptodev_io_channel *crypto_ch = (struct accel_dpdk_cryptodev_io_channel *)
ctx_buf;
int i;
pthread_mutex_lock(&g_device_lock);
for (i = 0; i < ACCEL_DPDK_CRYPTODEV_DRIVER_LAST; i++) {
if (crypto_ch->device_qp[i]) {
crypto_ch->device_qp[i]->in_use = false;
}
}
pthread_mutex_unlock(&g_device_lock);
spdk_poller_unregister(&crypto_ch->poller);
}
static int
_accel_dpdk_cryptodev_create_cb(void *io_device, void *ctx_buf)
{
struct accel_dpdk_cryptodev_io_channel *crypto_ch = (struct accel_dpdk_cryptodev_io_channel *)
ctx_buf;
crypto_ch->poller = SPDK_POLLER_REGISTER(accel_dpdk_cryptodev_poller, crypto_ch, 0);
if (!accel_dpdk_cryptodev_assign_device_qps(crypto_ch)) {
SPDK_ERRLOG("No crypto drivers assigned\n");
spdk_poller_unregister(&crypto_ch->poller);
return -EINVAL;
}
/* We use this to queue up crypto ops when the device is busy. */
TAILQ_INIT(&crypto_ch->queued_cry_ops);
/* We use this to queue tasks when qpair is full or no resources in pools */
TAILQ_INIT(&crypto_ch->queued_tasks);
return 0;
}
static struct spdk_io_channel *
accel_dpdk_cryptodev_get_io_channel(void)
{
return spdk_get_io_channel(&g_accel_dpdk_cryptodev_module);
}
static size_t
accel_dpdk_cryptodev_ctx_size(void)
{
return sizeof(struct accel_dpdk_cryptodev_task);
}
static bool
accel_dpdk_cryptodev_supports_opcode(enum accel_opcode opc)
{
switch (opc) {
case ACCEL_OPC_ENCRYPT:
case ACCEL_OPC_DECRYPT:
return true;
default:
return false;
}
}
static int
accel_dpdk_cryptodev_submit_tasks(struct spdk_io_channel *_ch, struct spdk_accel_task *_task)
{
struct accel_dpdk_cryptodev_task *task = SPDK_CONTAINEROF(_task, struct accel_dpdk_cryptodev_task,
base);
struct accel_dpdk_cryptodev_io_channel *ch = spdk_io_channel_get_ctx(_ch);
int rc;
task->cryop_completed = 0;
task->cryop_submitted = 0;
task->cryop_total = 0;
task->inplace = true;
task->is_failed = false;
/* Check if crypto operation is inplace: no destination or source == destination */
if (task->base.s.iovcnt == task->base.d.iovcnt) {
if (memcmp(task->base.s.iovs, task->base.d.iovs, sizeof(struct iovec) * task->base.s.iovcnt) != 0) {
task->inplace = false;
}
} else if (task->base.d.iovcnt != 0) {
task->inplace = false;
}
rc = accel_dpdk_cryptodev_process_task(ch, task);
if (spdk_unlikely(rc == -ENOMEM)) {
TAILQ_INSERT_TAIL(&ch->queued_tasks, task, link);
rc = 0;
}
return rc;
}
/* Dummy function used by DPDK to free ext attached buffers to mbufs, we free them ourselves but
* this callback has to be here. */
static void
shinfo_free_cb(void *arg1, void *arg2)
{
}
static int
accel_dpdk_cryptodev_create(uint8_t index, uint16_t num_lcores)
{
struct rte_cryptodev_qp_conf qp_conf = {
.mp_session = g_session_mp,
#if RTE_VERSION < RTE_VERSION_NUM(22, 11, 0, 0)
.mp_session_private = g_session_mp_priv
#endif
};
/* Setup queue pairs. */
struct rte_cryptodev_config conf = { .socket_id = SPDK_ENV_SOCKET_ID_ANY };
struct accel_dpdk_cryptodev_device *device;
uint8_t j, cdev_id, cdrv_id;
struct accel_dpdk_cryptodev_qp *dev_qp;
int rc;
device = calloc(1, sizeof(*device));
if (!device) {
return -ENOMEM;
}
/* Get details about this device. */
rte_cryptodev_info_get(index, &device->cdev_info);
cdrv_id = device->cdev_info.driver_id;
cdev_id = device->cdev_id = index;
if (strcmp(device->cdev_info.driver_name, ACCEL_DPDK_CRYPTODEV_QAT) == 0) {
device->qp_desc_nr = ACCEL_DPDK_CRYPTODEV_QP_DESCRIPTORS;
device->type = ACCEL_DPDK_CRYPTODEV_DRIVER_QAT;
} else if (strcmp(device->cdev_info.driver_name, ACCEL_DPDK_CRYPTODEV_AESNI_MB) == 0) {
device->qp_desc_nr = ACCEL_DPDK_CRYPTODEV_QP_DESCRIPTORS;
device->type = ACCEL_DPDK_CRYPTODEV_DRIVER_AESNI_MB;
} else if (strcmp(device->cdev_info.driver_name, ACCEL_DPDK_CRYPTODEV_MLX5) == 0) {
device->qp_desc_nr = ACCEL_DPDK_CRYPTODEV_QP_DESCRIPTORS_MLX5;
device->type = ACCEL_DPDK_CRYPTODEV_DRIVER_MLX5_PCI;
} else if (strcmp(device->cdev_info.driver_name, ACCEL_DPDK_CRYPTODEV_QAT_ASYM) == 0) {
/* ACCEL_DPDK_CRYPTODEV_QAT_ASYM devices are not supported at this time. */
rc = 0;
goto err;
} else {
SPDK_ERRLOG("Failed to start device %u. Invalid driver name \"%s\"\n",
cdev_id, device->cdev_info.driver_name);
rc = -EINVAL;
goto err;
}
/* Before going any further, make sure we have enough resources for this
* device type to function. We need a unique queue pair per core accross each
* device type to remain lockless....
*/
if ((rte_cryptodev_device_count_by_driver(cdrv_id) *
device->cdev_info.max_nb_queue_pairs) < num_lcores) {
SPDK_ERRLOG("Insufficient unique queue pairs available for %s\n",
device->cdev_info.driver_name);
SPDK_ERRLOG("Either add more crypto devices or decrease core count\n");
rc = -EINVAL;
goto err;
}
conf.nb_queue_pairs = device->cdev_info.max_nb_queue_pairs;
rc = rte_cryptodev_configure(cdev_id, &conf);
if (rc < 0) {
SPDK_ERRLOG("Failed to configure cryptodev %u: error %d\n",
cdev_id, rc);
rc = -EINVAL;
goto err;
}
/* Pre-setup all potential qpairs now and assign them in the channel
* callback. If we were to create them there, we'd have to stop the
* entire device affecting all other threads that might be using it
* even on other queue pairs.
*/
qp_conf.nb_descriptors = device->qp_desc_nr;
for (j = 0; j < device->cdev_info.max_nb_queue_pairs; j++) {
rc = rte_cryptodev_queue_pair_setup(cdev_id, j, &qp_conf, SOCKET_ID_ANY);
if (rc < 0) {
SPDK_ERRLOG("Failed to setup queue pair %u on "
"cryptodev %u: error %d\n", j, cdev_id, rc);
rc = -EINVAL;
goto err_qp_setup;
}
}
rc = rte_cryptodev_start(cdev_id);
if (rc < 0) {
SPDK_ERRLOG("Failed to start device %u: error %d\n", cdev_id, rc);
rc = -EINVAL;
goto err_dev_start;
}
TAILQ_INIT(&device->qpairs);
/* Build up lists of device/qp combinations per PMD */
for (j = 0; j < device->cdev_info.max_nb_queue_pairs; j++) {
dev_qp = calloc(1, sizeof(*dev_qp));
if (!dev_qp) {
rc = -ENOMEM;
goto err_qp_alloc;
}
dev_qp->device = device;
dev_qp->qp = j;
dev_qp->in_use = false;
TAILQ_INSERT_TAIL(&device->qpairs, dev_qp, link);
if (device->type == ACCEL_DPDK_CRYPTODEV_DRIVER_QAT) {
dev_qp->index = g_qat_total_qp++;
}
}
/* Add to our list of available crypto devices. */
TAILQ_INSERT_TAIL(&g_crypto_devices, device, link);
return 0;
err_qp_alloc:
TAILQ_FOREACH(dev_qp, &device->qpairs, link) {
if (dev_qp->device->cdev_id != device->cdev_id) {
continue;
}
free(dev_qp);
if (device->type == ACCEL_DPDK_CRYPTODEV_DRIVER_QAT) {
assert(g_qat_total_qp);
g_qat_total_qp--;
}
}
rte_cryptodev_stop(cdev_id);
err_dev_start:
err_qp_setup:
rte_cryptodev_close(cdev_id);
err:
free(device);
return rc;
}
static void
accel_dpdk_cryptodev_release(struct accel_dpdk_cryptodev_device *device)
{
struct accel_dpdk_cryptodev_qp *dev_qp, *tmp;
assert(device);
TAILQ_FOREACH_SAFE(dev_qp, &device->qpairs, link, tmp) {
free(dev_qp);
}
if (device->type == ACCEL_DPDK_CRYPTODEV_DRIVER_QAT) {
assert(g_qat_total_qp >= device->cdev_info.max_nb_queue_pairs);
g_qat_total_qp -= device->cdev_info.max_nb_queue_pairs;
}
rte_cryptodev_stop(device->cdev_id);
rte_cryptodev_close(device->cdev_id);
free(device);
}
static int
accel_dpdk_cryptodev_init(void)
{
uint8_t cdev_count;
uint8_t cdev_id;
int i, rc;
struct accel_dpdk_cryptodev_device *device, *tmp_dev;
unsigned int max_sess_size = 0, sess_size;
uint16_t num_lcores = rte_lcore_count();
char aesni_args[32];
/* Only the first call via module init should init the crypto drivers. */
if (g_session_mp != NULL) {
return 0;
}
/* We always init ACCEL_DPDK_CRYPTODEV_AESNI_MB */
snprintf(aesni_args, sizeof(aesni_args), "max_nb_queue_pairs=%d",
ACCEL_DPDK_CRYPTODEV_AESNI_MB_NUM_QP);
rc = rte_vdev_init(ACCEL_DPDK_CRYPTODEV_AESNI_MB, aesni_args);
if (rc) {
SPDK_NOTICELOG("Failed to create virtual PMD %s: error %d. "
"Possibly %s is not supported by DPDK library. "
"Keep going...\n", ACCEL_DPDK_CRYPTODEV_AESNI_MB, rc, ACCEL_DPDK_CRYPTODEV_AESNI_MB);
}
/* If we have no crypto devices, there's no reason to continue. */
cdev_count = rte_cryptodev_count();
SPDK_NOTICELOG("Found crypto devices: %d\n", (int)cdev_count);
if (cdev_count == 0) {
return 0;
}
g_mbuf_offset = rte_mbuf_dynfield_register(&rte_mbuf_dynfield_io_context);
if (g_mbuf_offset < 0) {
SPDK_ERRLOG("error registering dynamic field with DPDK\n");
return -EINVAL;
}
/* Create global mempools, shared by all devices regardless of type */
/* First determine max session size, most pools are shared by all the devices,
* so we need to find the global max sessions size. */
for (cdev_id = 0; cdev_id < cdev_count; cdev_id++) {
sess_size = rte_cryptodev_sym_get_private_session_size(cdev_id);
if (sess_size > max_sess_size) {
max_sess_size = sess_size;
}
}
#if RTE_VERSION < RTE_VERSION_NUM(22, 11, 0, 0)
g_session_mp_priv = rte_mempool_create("dpdk_crypto_ses_mp_priv",
ACCEL_DPDK_CRYPTODEV_NUM_SESSIONS, max_sess_size, ACCEL_DPDK_CRYPTODEV_SESS_MEMPOOL_CACHE_SIZE, 0,
NULL, NULL, NULL, NULL, SOCKET_ID_ANY, 0);
if (g_session_mp_priv == NULL) {
SPDK_ERRLOG("Cannot create private session pool max size 0x%x\n", max_sess_size);
return -ENOMEM;
}
/* When session private data mempool allocated, the element size for the session mempool
* should be 0. */
max_sess_size = 0;
#endif
g_session_mp = rte_cryptodev_sym_session_pool_create("dpdk_crypto_ses_mp",
ACCEL_DPDK_CRYPTODEV_NUM_SESSIONS, max_sess_size, ACCEL_DPDK_CRYPTODEV_SESS_MEMPOOL_CACHE_SIZE, 0,
SOCKET_ID_ANY);
if (g_session_mp == NULL) {
SPDK_ERRLOG("Cannot create session pool max size 0x%x\n", max_sess_size);
rc = -ENOMEM;
goto error_create_session_mp;
}
g_mbuf_mp = rte_pktmbuf_pool_create("dpdk_crypto_mbuf_mp", ACCEL_DPDK_CRYPTODEV_NUM_MBUFS,
ACCEL_DPDK_CRYPTODEV_POOL_CACHE_SIZE,
0, 0, SPDK_ENV_SOCKET_ID_ANY);
if (g_mbuf_mp == NULL) {
SPDK_ERRLOG("Cannot create mbuf pool\n");
rc = -ENOMEM;
goto error_create_mbuf;
}
/* We use per op private data as suggested by DPDK and to store the IV and
* our own struct for queueing ops. */
g_crypto_op_mp = rte_crypto_op_pool_create("dpdk_crypto_op_mp",
RTE_CRYPTO_OP_TYPE_SYMMETRIC, ACCEL_DPDK_CRYPTODEV_NUM_MBUFS, ACCEL_DPDK_CRYPTODEV_POOL_CACHE_SIZE,
(ACCEL_DPDK_CRYPTODEV_DEFAULT_NUM_XFORMS * sizeof(struct rte_crypto_sym_xform)) +
ACCEL_DPDK_CRYPTODEV_IV_LENGTH + ACCEL_DPDK_CRYPTODEV_QUEUED_OP_LENGTH, rte_socket_id());
if (g_crypto_op_mp == NULL) {
SPDK_ERRLOG("Cannot create op pool\n");
rc = -ENOMEM;
goto error_create_op;
}
/* Init all devices */
for (i = 0; i < cdev_count; i++) {
rc = accel_dpdk_cryptodev_create(i, num_lcores);
if (rc) {
goto err;
}
}
g_shinfo.free_cb = shinfo_free_cb;
spdk_io_device_register(&g_accel_dpdk_cryptodev_module, _accel_dpdk_cryptodev_create_cb,
_accel_dpdk_cryptodev_destroy_cb, sizeof(struct accel_dpdk_cryptodev_io_channel),
"accel_dpdk_cryptodev");
return 0;
/* Error cleanup paths. */
err:
TAILQ_FOREACH_SAFE(device, &g_crypto_devices, link, tmp_dev) {
TAILQ_REMOVE(&g_crypto_devices, device, link);
accel_dpdk_cryptodev_release(device);
}
rte_mempool_free(g_crypto_op_mp);
g_crypto_op_mp = NULL;
error_create_op:
rte_mempool_free(g_mbuf_mp);
g_mbuf_mp = NULL;
error_create_mbuf:
rte_mempool_free(g_session_mp);
g_session_mp = NULL;
error_create_session_mp:
if (g_session_mp_priv != NULL) {
rte_mempool_free(g_session_mp_priv);
g_session_mp_priv = NULL;
}
return rc;
}
static void
accel_dpdk_cryptodev_fini_cb(void *io_device)
{
struct accel_dpdk_cryptodev_device *device, *tmp;
TAILQ_FOREACH_SAFE(device, &g_crypto_devices, link, tmp) {
TAILQ_REMOVE(&g_crypto_devices, device, link);
accel_dpdk_cryptodev_release(device);
}
rte_vdev_uninit(ACCEL_DPDK_CRYPTODEV_AESNI_MB);
rte_mempool_free(g_crypto_op_mp);
rte_mempool_free(g_mbuf_mp);
rte_mempool_free(g_session_mp);
if (g_session_mp_priv != NULL) {
rte_mempool_free(g_session_mp_priv);
}
spdk_accel_module_finish();
}
/* Called when the entire module is being torn down. */
static void
accel_dpdk_cryptodev_fini(void *ctx)
{
if (g_crypto_op_mp) {
spdk_io_device_unregister(&g_accel_dpdk_cryptodev_module, accel_dpdk_cryptodev_fini_cb);
}
}
static void
accel_dpdk_cryptodev_key_handle_session_free(struct accel_dpdk_cryptodev_device *device,
void *session)
{
#if RTE_VERSION >= RTE_VERSION_NUM(22, 11, 0, 0)
assert(device != NULL);
rte_cryptodev_sym_session_free(device->cdev_id, session);
#else
rte_cryptodev_sym_session_free(session);
#endif
}
static void *
accel_dpdk_cryptodev_key_handle_session_create(struct accel_dpdk_cryptodev_device *device,
struct rte_crypto_sym_xform *cipher_xform)
{
void *session;
#if RTE_VERSION >= RTE_VERSION_NUM(22, 11, 0, 0)
session = rte_cryptodev_sym_session_create(device->cdev_id, cipher_xform, g_session_mp);
#else
session = rte_cryptodev_sym_session_create(g_session_mp);
if (!session) {
return NULL;
}
if (rte_cryptodev_sym_session_init(device->cdev_id, session, cipher_xform, g_session_mp_priv) < 0) {
accel_dpdk_cryptodev_key_handle_session_free(device, session);
return NULL;
}
#endif
return session;
}
static int
accel_dpdk_cryptodev_key_handle_configure(struct spdk_accel_crypto_key *key,
struct accel_dpdk_cryptodev_key_handle *key_handle)
{
struct accel_dpdk_cryptodev_key_priv *priv = key->priv;
key_handle->cipher_xform.type = RTE_CRYPTO_SYM_XFORM_CIPHER;
key_handle->cipher_xform.cipher.iv.offset = ACCEL_DPDK_CRYPTODEV_IV_OFFSET;
key_handle->cipher_xform.cipher.iv.length = ACCEL_DPDK_CRYPTODEV_IV_LENGTH;
switch (priv->cipher) {
case ACCEL_DPDK_CRYPTODEV_CIPHER_AES_CBC:
key_handle->cipher_xform.cipher.key.data = key->key;
key_handle->cipher_xform.cipher.key.length = key->key_size;
key_handle->cipher_xform.cipher.algo = RTE_CRYPTO_CIPHER_AES_CBC;
break;
case ACCEL_DPDK_CRYPTODEV_CIPHER_AES_XTS:
key_handle->cipher_xform.cipher.key.data = priv->xts_key;
key_handle->cipher_xform.cipher.key.length = key->key_size + key->key2_size;
key_handle->cipher_xform.cipher.algo = RTE_CRYPTO_CIPHER_AES_XTS;
break;
default:
SPDK_ERRLOG("Invalid cipher name %s.\n", key->param.cipher);
return -EINVAL;
}
key_handle->cipher_xform.cipher.op = RTE_CRYPTO_CIPHER_OP_ENCRYPT;
key_handle->session_encrypt = accel_dpdk_cryptodev_key_handle_session_create(key_handle->device,
&key_handle->cipher_xform);
if (!key_handle->session_encrypt) {
SPDK_ERRLOG("Failed to init encrypt session\n");
return -EINVAL;
}
key_handle->cipher_xform.cipher.op = RTE_CRYPTO_CIPHER_OP_DECRYPT;
key_handle->session_decrypt = accel_dpdk_cryptodev_key_handle_session_create(key_handle->device,
&key_handle->cipher_xform);
if (!key_handle->session_decrypt) {
SPDK_ERRLOG("Failed to init decrypt session:");
accel_dpdk_cryptodev_key_handle_session_free(key_handle->device, key_handle->session_encrypt);
return -EINVAL;
}
return 0;
}
static int
accel_dpdk_cryptodev_validate_parameters(enum accel_dpdk_cryptodev_driver_type driver,
enum accel_dpdk_crypto_dev_cipher_type cipher, struct spdk_accel_crypto_key *key)
{
/* Check that all required parameters exist */
switch (cipher) {
case ACCEL_DPDK_CRYPTODEV_CIPHER_AES_CBC:
if (!key->key || !key->key_size) {
SPDK_ERRLOG("ACCEL_DPDK_CRYPTODEV_AES_CBC requires a key\n");
return -1;
}
if (key->key2 || key->key2_size) {
SPDK_ERRLOG("ACCEL_DPDK_CRYPTODEV_AES_CBC doesn't use key2\n");
return -1;
}
break;
case ACCEL_DPDK_CRYPTODEV_CIPHER_AES_XTS:
if (!key->key || !key->key_size || !key->key2 || !key->key2_size) {
SPDK_ERRLOG("ACCEL_DPDK_CRYPTODEV_AES_XTS requires both key and key2\n");
return -1;
}
break;
default:
return -1;
}
/* Check driver/cipher combinations and key lengths */
switch (cipher) {
case ACCEL_DPDK_CRYPTODEV_CIPHER_AES_CBC:
if (driver == ACCEL_DPDK_CRYPTODEV_DRIVER_MLX5_PCI) {
SPDK_ERRLOG("Driver %s only supports cipher %s\n",
g_driver_names[ACCEL_DPDK_CRYPTODEV_DRIVER_MLX5_PCI],
g_cipher_names[ACCEL_DPDK_CRYPTODEV_CIPHER_AES_XTS]);
return -1;
}
if (key->key_size != ACCEL_DPDK_CRYPTODEV_AES_CBC_KEY_LENGTH) {
SPDK_ERRLOG("Invalid key size %zu for cipher %s, should be %d\n", key->key_size,
g_cipher_names[ACCEL_DPDK_CRYPTODEV_CIPHER_AES_CBC], ACCEL_DPDK_CRYPTODEV_AES_CBC_KEY_LENGTH);
return -1;
}
break;
case ACCEL_DPDK_CRYPTODEV_CIPHER_AES_XTS:
switch (driver) {
case ACCEL_DPDK_CRYPTODEV_DRIVER_MLX5_PCI:
if (key->key_size != ACCEL_DPDK_CRYPTODEV_AES_XTS_256_BLOCK_KEY_LENGTH &&
key->key_size != ACCEL_DPDK_CRYPTODEV_AES_XTS_512_BLOCK_KEY_LENGTH) {
SPDK_ERRLOG("Invalid key size %zu for driver %s, cipher %s, supported %d or %d\n",
key->key_size, g_driver_names[ACCEL_DPDK_CRYPTODEV_DRIVER_MLX5_PCI],
g_cipher_names[ACCEL_DPDK_CRYPTODEV_CIPHER_AES_XTS],
ACCEL_DPDK_CRYPTODEV_AES_XTS_256_BLOCK_KEY_LENGTH,
ACCEL_DPDK_CRYPTODEV_AES_XTS_512_BLOCK_KEY_LENGTH);
return -1;
}
break;
case ACCEL_DPDK_CRYPTODEV_DRIVER_QAT:
case ACCEL_DPDK_CRYPTODEV_DRIVER_AESNI_MB:
if (key->key_size != ACCEL_DPDK_CRYPTODEV_AES_XTS_128_BLOCK_KEY_LENGTH) {
SPDK_ERRLOG("Invalid key size %zu, supported %d\n", key->key_size,
ACCEL_DPDK_CRYPTODEV_AES_XTS_128_BLOCK_KEY_LENGTH);
return -1;
}
break;
default:
SPDK_ERRLOG("Incorrect driver type %d\n", driver);
assert(0);
return -1;
}
if (key->key2_size != ACCEL_DPDK_CRYPTODEV_AES_XTS_TWEAK_KEY_LENGTH) {
SPDK_ERRLOG("Cipher %s requires key2 size %d\n",
g_cipher_names[ACCEL_DPDK_CRYPTODEV_CIPHER_AES_CBC], ACCEL_DPDK_CRYPTODEV_AES_XTS_TWEAK_KEY_LENGTH);
return -1;
}
break;
}
return 0;
}
static void
accel_dpdk_cryptodev_key_deinit(struct spdk_accel_crypto_key *key)
{
struct accel_dpdk_cryptodev_key_handle *key_handle, *key_handle_tmp;
struct accel_dpdk_cryptodev_key_priv *priv = key->priv;
TAILQ_FOREACH_SAFE(key_handle, &priv->dev_keys, link, key_handle_tmp) {
accel_dpdk_cryptodev_key_handle_session_free(key_handle->device, key_handle->session_encrypt);
accel_dpdk_cryptodev_key_handle_session_free(key_handle->device, key_handle->session_decrypt);
TAILQ_REMOVE(&priv->dev_keys, key_handle, link);
spdk_memset_s(key_handle, sizeof(*key_handle), 0, sizeof(*key_handle));
free(key_handle);
}
if (priv->xts_key) {
spdk_memset_s(priv->xts_key, key->key_size + key->key2_size, 0, key->key_size + key->key2_size);
}
free(priv->xts_key);
free(priv);
}
static int
accel_dpdk_cryptodev_key_init(struct spdk_accel_crypto_key *key)
{
struct accel_dpdk_cryptodev_device *device;
struct accel_dpdk_cryptodev_key_priv *priv;
struct accel_dpdk_cryptodev_key_handle *key_handle;
enum accel_dpdk_cryptodev_driver_type driver;
enum accel_dpdk_crypto_dev_cipher_type cipher;
int rc;
if (!key->param.cipher) {
SPDK_ERRLOG("Cipher is missing\n");
return -EINVAL;
}
if (strcmp(key->param.cipher, ACCEL_DPDK_CRYPTODEV_AES_CBC) == 0) {
cipher = ACCEL_DPDK_CRYPTODEV_CIPHER_AES_CBC;
} else if (strcmp(key->param.cipher, ACCEL_DPDK_CRYPTODEV_AES_XTS) == 0) {
cipher = ACCEL_DPDK_CRYPTODEV_CIPHER_AES_XTS;
} else {
SPDK_ERRLOG("Unsupported cipher name %s.\n", key->param.cipher);
return -EINVAL;
}
driver = g_dpdk_cryptodev_driver;
if (accel_dpdk_cryptodev_validate_parameters(driver, cipher, key)) {
return -EINVAL;
}
priv = calloc(1, sizeof(*priv));
if (!priv) {
SPDK_ERRLOG("Memory allocation failed\n");
return -ENOMEM;
}
key->priv = priv;
priv->driver = driver;
priv->cipher = cipher;
TAILQ_INIT(&priv->dev_keys);
if (cipher == ACCEL_DPDK_CRYPTODEV_CIPHER_AES_XTS) {
/* DPDK expects the keys to be concatenated together. */
priv->xts_key = calloc(key->key_size + key->key2_size + 1, sizeof(char));
if (!priv->xts_key) {
SPDK_ERRLOG("Memory allocation failed\n");
accel_dpdk_cryptodev_key_deinit(key);
return -ENOMEM;
}
memcpy(priv->xts_key, key->key, key->key_size);
memcpy(priv->xts_key + key->key_size, key->key2, key->key2_size);
}
pthread_mutex_lock(&g_device_lock);
TAILQ_FOREACH(device, &g_crypto_devices, link) {
if (device->type != driver) {
continue;
}
key_handle = calloc(1, sizeof(*key_handle));
if (!key_handle) {
pthread_mutex_unlock(&g_device_lock);
accel_dpdk_cryptodev_key_deinit(key);
return -ENOMEM;
}
key_handle->device = device;
TAILQ_INSERT_TAIL(&priv->dev_keys, key_handle, link);
rc = accel_dpdk_cryptodev_key_handle_configure(key, key_handle);
if (rc) {
pthread_mutex_unlock(&g_device_lock);
accel_dpdk_cryptodev_key_deinit(key);
return rc;
}
if (driver != ACCEL_DPDK_CRYPTODEV_DRIVER_MLX5_PCI) {
/* For MLX5_PCI we need to register a key on each device since
* the key is bound to a specific Protection Domain,
* so don't break the loop */
break;
}
}
pthread_mutex_unlock(&g_device_lock);
if (TAILQ_EMPTY(&priv->dev_keys)) {
free(priv);
return -ENODEV;
}
return 0;
}
static void
accel_dpdk_cryptodev_write_config_json(struct spdk_json_write_ctx *w)
{
spdk_json_write_object_begin(w);
spdk_json_write_named_string(w, "method", "dpdk_cryptodev_scan_accel_module");
spdk_json_write_object_end(w);
spdk_json_write_object_begin(w);
spdk_json_write_named_string(w, "method", "dpdk_cryptodev_set_driver");
spdk_json_write_named_object_begin(w, "params");
spdk_json_write_named_string(w, "driver_name", g_driver_names[g_dpdk_cryptodev_driver]);
spdk_json_write_object_end(w);
spdk_json_write_object_end(w);
}
static struct spdk_accel_module_if g_accel_dpdk_cryptodev_module = {
.module_init = accel_dpdk_cryptodev_init,
.module_fini = accel_dpdk_cryptodev_fini,
.write_config_json = accel_dpdk_cryptodev_write_config_json,
.get_ctx_size = accel_dpdk_cryptodev_ctx_size,
.name = "dpdk_cryptodev",
.supports_opcode = accel_dpdk_cryptodev_supports_opcode,
.get_io_channel = accel_dpdk_cryptodev_get_io_channel,
.submit_tasks = accel_dpdk_cryptodev_submit_tasks,
.crypto_key_init = accel_dpdk_cryptodev_key_init,
.crypto_key_deinit = accel_dpdk_cryptodev_key_deinit,
};