Spdk/lib/nvme/nvme_vfio_user.c

940 lines
24 KiB
C
Raw Normal View History

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* VFIO transport extensions for spdk_nvme_ctrlr */
#include "spdk/stdinc.h"
#include "spdk/env.h"
#include "spdk/likely.h"
#include "spdk/string.h"
#include "spdk/vfio_user_pci.h"
#include "nvme_internal.h"
#include "nvme_pcie_internal.h"
#include <linux/vfio.h>
#define NVME_MAX_XFER_SIZE (131072)
#define NVME_MAX_SGES (1)
struct nvme_vfio_ctrlr {
struct nvme_pcie_ctrlr pctrlr;
volatile uint32_t *doorbell_base;
int bar0_fd;
struct vfio_device *dev;
};
static inline uint64_t
vfio_vtophys(const void *vaddr, uint64_t *size)
{
return (uint64_t)(uintptr_t)vaddr;
}
static inline struct nvme_vfio_ctrlr *
nvme_vfio_ctrlr(struct spdk_nvme_ctrlr *ctrlr)
{
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
return SPDK_CONTAINEROF(pctrlr, struct nvme_vfio_ctrlr, pctrlr);
}
static int
nvme_vfio_ctrlr_set_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t value)
{
struct nvme_vfio_ctrlr *vctrlr = nvme_vfio_ctrlr(ctrlr);
assert(offset <= sizeof(struct spdk_nvme_registers) - 4);
SPDK_DEBUGLOG(nvme_vfio, "ctrlr %s: offset 0x%x, value 0x%x\n", ctrlr->trid.traddr, offset, value);
return spdk_vfio_user_pci_bar_access(vctrlr->dev, VFIO_PCI_BAR0_REGION_INDEX,
offset, 4, &value, true);
}
static int
nvme_vfio_ctrlr_set_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t value)
{
struct nvme_vfio_ctrlr *vctrlr = nvme_vfio_ctrlr(ctrlr);
assert(offset <= sizeof(struct spdk_nvme_registers) - 8);
SPDK_DEBUGLOG(nvme_vfio, "ctrlr %s: offset 0x%x, value 0x%"PRIx64"\n", ctrlr->trid.traddr, offset,
value);
return spdk_vfio_user_pci_bar_access(vctrlr->dev, VFIO_PCI_BAR0_REGION_INDEX,
offset, 8, &value, true);
}
static int
nvme_vfio_ctrlr_get_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t *value)
{
struct nvme_vfio_ctrlr *vctrlr = nvme_vfio_ctrlr(ctrlr);
int ret;
assert(offset <= sizeof(struct spdk_nvme_registers) - 4);
ret = spdk_vfio_user_pci_bar_access(vctrlr->dev, VFIO_PCI_BAR0_REGION_INDEX,
offset, 4, value, false);
if (ret != 0) {
SPDK_ERRLOG("ctrlr %p, offset %x\n", ctrlr, offset);
return ret;
}
SPDK_DEBUGLOG(nvme_vfio, "ctrlr %s: offset 0x%x, value 0x%x\n", ctrlr->trid.traddr, offset, *value);
return 0;
}
static int
nvme_vfio_ctrlr_get_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t *value)
{
struct nvme_vfio_ctrlr *vctrlr = nvme_vfio_ctrlr(ctrlr);
int ret;
assert(offset <= sizeof(struct spdk_nvme_registers) - 8);
ret = spdk_vfio_user_pci_bar_access(vctrlr->dev, VFIO_PCI_BAR0_REGION_INDEX,
offset, 8, value, false);
if (ret != 0) {
SPDK_ERRLOG("ctrlr %p, offset %x\n", ctrlr, offset);
return ret;
}
SPDK_DEBUGLOG(nvme_vfio, "ctrlr %s: offset 0x%x, value 0x%"PRIx64"\n", ctrlr->trid.traddr, offset,
*value);
return 0;
}
static int
nvme_vfio_ctrlr_set_asq(struct spdk_nvme_ctrlr *ctrlr, uint64_t value)
{
return nvme_vfio_ctrlr_set_reg_8(ctrlr, offsetof(struct spdk_nvme_registers, asq),
value);
}
static int
nvme_vfio_ctrlr_set_acq(struct spdk_nvme_ctrlr *ctrlr, uint64_t value)
{
return nvme_vfio_ctrlr_set_reg_8(ctrlr, offsetof(struct spdk_nvme_registers, acq),
value);
}
static int
nvme_vfio_ctrlr_set_aqa(struct spdk_nvme_ctrlr *ctrlr, const union spdk_nvme_aqa_register *aqa)
{
return nvme_vfio_ctrlr_set_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, aqa.raw),
aqa->raw);
}
/* Instead of using path as the bar0 file descriptor, we can also use
* SPARSE MMAP to get the doorbell mmaped address.
*/
static int
nvme_vfio_setup_bar0(struct nvme_vfio_ctrlr *vctrlr, const char *path)
{
volatile uint32_t *doorbell;
int fd;
fd = open(path, O_RDWR);
if (fd < 0) {
SPDK_ERRLOG("Failed to open file %s\n", path);
return fd;
}
doorbell = mmap(NULL, 0x1000, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0x1000);
if (doorbell == MAP_FAILED) {
SPDK_ERRLOG("Failed to mmap file %s\n", path);
close(fd);
return -EFAULT;
}
vctrlr->bar0_fd = fd;
vctrlr->doorbell_base = doorbell;
return 0;
}
static void
nvme_vfio_bar0_destruct(struct nvme_vfio_ctrlr *vctrlr)
{
if (vctrlr->doorbell_base) {
munmap((void *)vctrlr->doorbell_base, 0x1000);
}
close(vctrlr->bar0_fd);
}
static struct spdk_nvme_ctrlr *
nvme_vfio_ctrlr_construct(const struct spdk_nvme_transport_id *trid,
const struct spdk_nvme_ctrlr_opts *opts,
void *devhandle)
{
struct nvme_vfio_ctrlr *vctrlr;
struct nvme_pcie_ctrlr *pctrlr;
uint16_t cmd_reg;
union spdk_nvme_cap_register cap;
union spdk_nvme_vs_register vs;
int ret;
char ctrlr_path[PATH_MAX];
char ctrlr_bar0[PATH_MAX];
snprintf(ctrlr_path, sizeof(ctrlr_path), "%s/cntrl", trid->traddr);
snprintf(ctrlr_bar0, sizeof(ctrlr_bar0), "%s/bar0", trid->traddr);
ret = access(ctrlr_path, F_OK);
if (ret != 0) {
SPDK_ERRLOG("Access path %s failed\n", ctrlr_path);
return NULL;
}
ret = access(ctrlr_bar0, F_OK);
if (ret != 0) {
SPDK_ERRLOG("Access path %s failed\n", ctrlr_bar0);
return NULL;
}
vctrlr = calloc(1, sizeof(*vctrlr));
if (!vctrlr) {
return NULL;
}
ret = nvme_vfio_setup_bar0(vctrlr, ctrlr_bar0);
if (ret != 0) {
free(vctrlr);
return NULL;
}
vctrlr->dev = spdk_vfio_user_setup(ctrlr_path);
if (!vctrlr->dev) {
SPDK_ERRLOG("Error to setup vfio device\n");
nvme_vfio_bar0_destruct(vctrlr);
free(vctrlr);
return NULL;
}
pctrlr = &vctrlr->pctrlr;
pctrlr->doorbell_base = vctrlr->doorbell_base;
pctrlr->ctrlr.is_removed = false;
pctrlr->ctrlr.opts = *opts;
pctrlr->ctrlr.trid = *trid;
pctrlr->ctrlr.opts.use_cmb_sqs = false;
ret = nvme_ctrlr_construct(&pctrlr->ctrlr);
if (ret != 0) {
goto exit;
}
/* Enable PCI busmaster and disable INTx */
ret = spdk_vfio_user_pci_bar_access(vctrlr->dev, VFIO_PCI_CONFIG_REGION_INDEX, 4, 2,
&cmd_reg, false);
if (ret != 0) {
SPDK_ERRLOG("Read PCI CMD REG failed\n");
goto exit;
}
cmd_reg |= 0x404;
ret = spdk_vfio_user_pci_bar_access(vctrlr->dev, VFIO_PCI_CONFIG_REGION_INDEX, 4, 2,
&cmd_reg, true);
if (ret != 0) {
SPDK_ERRLOG("Write PCI CMD REG failed\n");
goto exit;
}
if (nvme_ctrlr_get_cap(&pctrlr->ctrlr, &cap)) {
SPDK_ERRLOG("get_cap() failed\n");
goto exit;
}
if (nvme_ctrlr_get_vs(&pctrlr->ctrlr, &vs)) {
SPDK_ERRLOG("get_vs() failed\n");
goto exit;
}
nvme_ctrlr_init_cap(&pctrlr->ctrlr, &cap, &vs);
/* Doorbell stride is 2 ^ (dstrd + 2),
* but we want multiples of 4, so drop the + 2 */
pctrlr->doorbell_stride_u32 = 1 << cap.bits.dstrd;
ret = nvme_pcie_ctrlr_construct_admin_qpair(&pctrlr->ctrlr, pctrlr->ctrlr.opts.admin_queue_size);
if (ret != 0) {
nvme_ctrlr_destruct(&pctrlr->ctrlr);
goto exit;
}
/* Construct the primary process properties */
ret = nvme_ctrlr_add_process(&pctrlr->ctrlr, 0);
if (ret != 0) {
nvme_ctrlr_destruct(&pctrlr->ctrlr);
goto exit;
}
return &pctrlr->ctrlr;
exit:
nvme_vfio_bar0_destruct(vctrlr);
spdk_vfio_user_release(vctrlr->dev);
free(vctrlr);
return NULL;
}
static int
nvme_vfio_ctrlr_scan(struct spdk_nvme_probe_ctx *probe_ctx,
bool direct_connect)
{
int ret;
if (probe_ctx->trid.trtype != SPDK_NVME_TRANSPORT_VFIOUSER) {
SPDK_ERRLOG("Can only use SPDK_NVME_TRANSPORT_VFIOUSER");
return -EINVAL;
}
ret = access(probe_ctx->trid.traddr, F_OK);
if (ret != 0) {
SPDK_ERRLOG("Error to access file %s\n", probe_ctx->trid.traddr);
return ret;
}
SPDK_NOTICELOG("Scan controller : %s\n", probe_ctx->trid.traddr);
return nvme_ctrlr_probe(&probe_ctx->trid, probe_ctx, NULL);
}
static int
nvme_vfio_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr)
{
struct nvme_pcie_qpair *vadminq = nvme_pcie_qpair(ctrlr->adminq);
union spdk_nvme_aqa_register aqa;
if (nvme_vfio_ctrlr_set_asq(ctrlr, vadminq->cmd_bus_addr)) {
SPDK_ERRLOG("set_asq() failed\n");
return -EIO;
}
if (nvme_vfio_ctrlr_set_acq(ctrlr, vadminq->cpl_bus_addr)) {
SPDK_ERRLOG("set_acq() failed\n");
return -EIO;
}
aqa.raw = 0;
/* acqs and asqs are 0-based. */
aqa.bits.acqs = nvme_pcie_qpair(ctrlr->adminq)->num_entries - 1;
aqa.bits.asqs = nvme_pcie_qpair(ctrlr->adminq)->num_entries - 1;
if (nvme_vfio_ctrlr_set_aqa(ctrlr, &aqa)) {
SPDK_ERRLOG("set_aqa() failed\n");
return -EIO;
}
return 0;
}
static int
nvme_vfio_qpair_destroy(struct spdk_nvme_qpair *qpair);
static int
nvme_vfio_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr)
{
struct nvme_vfio_ctrlr *vctrlr = nvme_vfio_ctrlr(ctrlr);
if (ctrlr->adminq) {
nvme_vfio_qpair_destroy(ctrlr->adminq);
}
nvme_ctrlr_destruct_finish(ctrlr);
nvme_ctrlr_free_processes(ctrlr);
nvme_vfio_bar0_destruct(vctrlr);
spdk_vfio_user_release(vctrlr->dev);
free(vctrlr);
return 0;
}
static uint32_t
nvme_vfio_ctrlr_get_max_xfer_size(struct spdk_nvme_ctrlr *ctrlr)
{
return NVME_MAX_XFER_SIZE;
}
static uint16_t
nvme_vfio_ctrlr_get_max_sges(struct spdk_nvme_ctrlr *ctrlr)
{
return NVME_MAX_SGES;
}
static struct spdk_nvme_qpair *
nvme_vfio_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid,
const struct spdk_nvme_io_qpair_opts *opts)
{
struct nvme_pcie_qpair *vqpair;
struct spdk_nvme_qpair *qpair;
int rc;
assert(ctrlr != NULL);
vqpair = spdk_zmalloc(sizeof(*vqpair), 64, NULL,
SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
if (vqpair == NULL) {
return NULL;
}
vqpair->num_entries = opts->io_queue_size;
vqpair->flags.delay_cmd_submit = opts->delay_cmd_submit;
qpair = &vqpair->qpair;
rc = nvme_qpair_init(qpair, qid, ctrlr, opts->qprio, opts->io_queue_requests);
if (rc != 0) {
nvme_vfio_qpair_destroy(qpair);
return NULL;
}
rc = nvme_pcie_qpair_construct(qpair, opts);
if (rc != 0) {
nvme_vfio_qpair_destroy(qpair);
return NULL;
}
return qpair;
}
static void
nvme_vfio_qpair_abort_trackers(struct spdk_nvme_qpair *qpair, uint32_t dnr);
static int
nvme_vfio_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
{
struct nvme_completion_poll_status *status;
int rc;
assert(ctrlr != NULL);
if (ctrlr->is_removed) {
goto free;
}
status = calloc(1, sizeof(*status));
if (!status) {
SPDK_ERRLOG("Failed to allocate status tracker\n");
return -ENOMEM;
}
/* Delete the I/O submission queue */
rc = nvme_pcie_ctrlr_cmd_delete_io_sq(ctrlr, qpair, nvme_completion_poll_cb, status);
if (rc != 0) {
SPDK_ERRLOG("Failed to send request to delete_io_sq with rc=%d\n", rc);
free(status);
return rc;
}
if (nvme_wait_for_completion(ctrlr->adminq, status)) {
if (!status->timed_out) {
free(status);
}
return -1;
}
memset(status, 0, sizeof(*status));
/* Delete the completion queue */
rc = nvme_pcie_ctrlr_cmd_delete_io_cq(ctrlr, qpair, nvme_completion_poll_cb, status);
if (rc != 0) {
SPDK_ERRLOG("Failed to send request to delete_io_cq with rc=%d\n", rc);
free(status);
return rc;
}
if (nvme_wait_for_completion(ctrlr->adminq, status)) {
if (!status->timed_out) {
free(status);
}
return -1;
}
free(status);
free:
if (qpair->no_deletion_notification_needed == 0) {
/* Abort the rest of the I/O */
nvme_vfio_qpair_abort_trackers(qpair, 1);
}
nvme_vfio_qpair_destroy(qpair);
return 0;
}
static inline void
nvme_vfio_qpair_ring_sq_doorbell(struct spdk_nvme_qpair *qpair)
{
struct nvme_pcie_qpair *vqpair = nvme_pcie_qpair(qpair);
if (qpair->first_fused_submitted) {
/* This is first cmd of two fused commands - don't ring doorbell */
qpair->first_fused_submitted = 0;
return;
}
spdk_wmb();
spdk_mmio_write_4(vqpair->sq_tdbl, vqpair->sq_tail);
}
static inline void
nvme_vfio_qpair_ring_cq_doorbell(struct spdk_nvme_qpair *qpair)
{
struct nvme_pcie_qpair *vqpair = nvme_pcie_qpair(qpair);
spdk_mmio_write_4(vqpair->cq_hdbl, vqpair->cq_head);
}
static void
nvme_vfio_qpair_submit_tracker(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr)
{
struct nvme_request *req;
struct nvme_pcie_qpair *vqpair = nvme_pcie_qpair(qpair);
req = tr->req;
assert(req != NULL);
if (req->cmd.fuse == SPDK_NVME_IO_FLAGS_FUSE_FIRST) {
/* This is first cmd of two fused commands - don't ring doorbell */
qpair->first_fused_submitted = 1;
}
vqpair->cmd[vqpair->sq_tail] = req->cmd;
if (spdk_unlikely(++vqpair->sq_tail == vqpair->num_entries)) {
vqpair->sq_tail = 0;
}
if (spdk_unlikely(vqpair->sq_tail == vqpair->sq_head)) {
SPDK_ERRLOG("sq_tail is passing sq_head!\n");
}
nvme_vfio_qpair_ring_sq_doorbell(qpair);
}
static void
nvme_vfio_qpair_complete_tracker(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr,
struct spdk_nvme_cpl *cpl, bool print_on_error)
{
struct nvme_pcie_qpair *vqpair = nvme_pcie_qpair(qpair);
struct nvme_request *req;
bool retry, error;
bool req_from_current_proc = true;
req = tr->req;
assert(req != NULL);
error = spdk_nvme_cpl_is_error(cpl);
retry = error && nvme_completion_is_retry(cpl) &&
req->retries < vqpair->retry_count;
if (error && print_on_error && !qpair->ctrlr->opts.disable_error_logging) {
spdk_nvme_qpair_print_command(qpair, &req->cmd);
spdk_nvme_qpair_print_completion(qpair, cpl);
}
assert(cpl->cid == req->cmd.cid);
if (retry) {
req->retries++;
nvme_vfio_qpair_submit_tracker(qpair, tr);
} else {
/* Only check admin requests from different processes. */
if (nvme_qpair_is_admin_queue(qpair) && req->pid != getpid()) {
req_from_current_proc = false;
nvme_pcie_qpair_insert_pending_admin_request(qpair, req, cpl);
} else {
nvme_complete_request(tr->cb_fn, tr->cb_arg, qpair, req, cpl);
}
if (req_from_current_proc == true) {
nvme_qpair_free_request(qpair, req);
}
tr->req = NULL;
TAILQ_REMOVE(&vqpair->outstanding_tr, tr, tq_list);
TAILQ_INSERT_HEAD(&vqpair->free_tr, tr, tq_list);
}
}
static void
nvme_vfio_qpair_manual_complete_tracker(struct spdk_nvme_qpair *qpair,
struct nvme_tracker *tr, uint32_t sct, uint32_t sc, uint32_t dnr,
bool print_on_error)
{
struct spdk_nvme_cpl cpl;
memset(&cpl, 0, sizeof(cpl));
cpl.sqid = qpair->id;
cpl.cid = tr->cid;
cpl.status.sct = sct;
cpl.status.sc = sc;
cpl.status.dnr = dnr;
nvme_vfio_qpair_complete_tracker(qpair, tr, &cpl, print_on_error);
}
static void
nvme_vfio_qpair_abort_trackers(struct spdk_nvme_qpair *qpair, uint32_t dnr)
{
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
struct nvme_tracker *tr, *temp, *last;
last = TAILQ_LAST(&pqpair->outstanding_tr, nvme_outstanding_tr_head);
/* Abort previously submitted (outstanding) trs */
TAILQ_FOREACH_SAFE(tr, &pqpair->outstanding_tr, tq_list, temp) {
if (!qpair->ctrlr->opts.disable_error_logging) {
SPDK_ERRLOG("aborting outstanding command\n");
}
nvme_vfio_qpair_manual_complete_tracker(qpair, tr, SPDK_NVME_SCT_GENERIC,
SPDK_NVME_SC_ABORTED_BY_REQUEST, dnr, true);
if (tr == last) {
break;
}
}
}
static void
nvme_vfio_qpair_abort_reqs(struct spdk_nvme_qpair *qpair, uint32_t dnr)
{
nvme_vfio_qpair_abort_trackers(qpair, dnr);
}
static void
nvme_vfio_admin_qpair_abort_aers(struct spdk_nvme_qpair *qpair)
{
struct nvme_pcie_qpair *vqpair = nvme_pcie_qpair(qpair);
struct nvme_tracker *tr;
tr = TAILQ_FIRST(&vqpair->outstanding_tr);
while (tr != NULL) {
assert(tr->req != NULL);
if (tr->req->cmd.opc == SPDK_NVME_OPC_ASYNC_EVENT_REQUEST) {
nvme_vfio_qpair_manual_complete_tracker(qpair, tr,
SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_ABORTED_SQ_DELETION, 0,
false);
tr = TAILQ_FIRST(&vqpair->outstanding_tr);
} else {
tr = TAILQ_NEXT(tr, tq_list);
}
}
}
static void
nvme_vfio_admin_qpair_destroy(struct spdk_nvme_qpair *qpair)
{
nvme_vfio_admin_qpair_abort_aers(qpair);
}
static int
nvme_vfio_qpair_destroy(struct spdk_nvme_qpair *qpair)
{
struct nvme_pcie_qpair *vqpair = nvme_pcie_qpair(qpair);
if (nvme_qpair_is_admin_queue(qpair)) {
nvme_vfio_admin_qpair_destroy(qpair);
}
spdk_free(vqpair->cmd);
spdk_free(vqpair->cpl);
if (vqpair->tr) {
spdk_free(vqpair->tr);
}
nvme_qpair_deinit(qpair);
spdk_free(vqpair);
return 0;
}
static inline int
nvme_vfio_prp_list_append(struct nvme_tracker *tr, uint32_t *prp_index, void *virt_addr, size_t len,
uint32_t page_size)
{
struct spdk_nvme_cmd *cmd = &tr->req->cmd;
uintptr_t page_mask = page_size - 1;
uint64_t phys_addr;
uint32_t i;
SPDK_DEBUGLOG(nvme_vfio, "prp_index:%u virt_addr:%p len:%u\n",
*prp_index, virt_addr, (uint32_t)len);
if (spdk_unlikely(((uintptr_t)virt_addr & 3) != 0)) {
SPDK_ERRLOG("virt_addr %p not dword aligned\n", virt_addr);
return -EFAULT;
}
i = *prp_index;
while (len) {
uint32_t seg_len;
/*
* prp_index 0 is stored in prp1, and the rest are stored in the prp[] array,
* so prp_index == count is valid.
*/
if (spdk_unlikely(i > SPDK_COUNTOF(tr->u.prp))) {
SPDK_ERRLOG("out of PRP entries\n");
return -EFAULT;
}
phys_addr = vfio_vtophys(virt_addr, NULL);
if (i == 0) {
SPDK_DEBUGLOG(nvme_vfio, "prp1 = %p\n", (void *)phys_addr);
cmd->dptr.prp.prp1 = phys_addr;
seg_len = page_size - ((uintptr_t)virt_addr & page_mask);
} else {
if ((phys_addr & page_mask) != 0) {
SPDK_ERRLOG("PRP %u not page aligned (%p)\n", i, virt_addr);
return -EFAULT;
}
SPDK_DEBUGLOG(nvme_vfio, "prp[%u] = %p\n", i - 1, (void *)phys_addr);
tr->u.prp[i - 1] = phys_addr;
seg_len = page_size;
}
seg_len = spdk_min(seg_len, len);
virt_addr += seg_len;
len -= seg_len;
i++;
}
cmd->psdt = SPDK_NVME_PSDT_PRP;
if (i <= 1) {
cmd->dptr.prp.prp2 = 0;
} else if (i == 2) {
cmd->dptr.prp.prp2 = tr->u.prp[0];
SPDK_DEBUGLOG(nvme_vfio, "prp2 = %p\n", (void *)cmd->dptr.prp.prp2);
} else {
cmd->dptr.prp.prp2 = tr->prp_sgl_bus_addr;
SPDK_DEBUGLOG(nvme_vfio, "prp2 = %p (PRP list)\n", (void *)cmd->dptr.prp.prp2);
}
*prp_index = i;
return 0;
}
static int
nvme_vfio_qpair_build_contig_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req,
struct nvme_tracker *tr, bool dword_aligned)
{
uint32_t prp_index = 0;
int rc;
rc = nvme_vfio_prp_list_append(tr, &prp_index, req->payload.contig_or_cb_arg + req->payload_offset,
req->payload_size, qpair->ctrlr->page_size);
if (rc) {
nvme_vfio_qpair_manual_complete_tracker(qpair, tr, SPDK_NVME_SCT_GENERIC,
SPDK_NVME_SC_INVALID_FIELD,
1 /* do not retry */, true);
}
return rc;
}
static int
nvme_vfio_qpair_submit_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req)
{
struct nvme_tracker *tr;
int rc = 0;
struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
struct nvme_pcie_qpair *vqpair = nvme_pcie_qpair(qpair);
if (spdk_unlikely(nvme_qpair_is_admin_queue(qpair))) {
nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
}
tr = TAILQ_FIRST(&vqpair->free_tr);
if (tr == NULL) {
/* Inform the upper layer to try again later. */
rc = -EAGAIN;
goto exit;
}
TAILQ_REMOVE(&vqpair->free_tr, tr, tq_list); /* remove tr from free_tr */
TAILQ_INSERT_TAIL(&vqpair->outstanding_tr, tr, tq_list);
tr->req = req;
tr->cb_fn = req->cb_fn;
tr->cb_arg = req->cb_arg;
req->cmd.cid = tr->cid;
if (req->payload_size != 0) {
rc = nvme_vfio_qpair_build_contig_request(qpair, req, tr, true);
if (rc) {
goto exit;
}
}
nvme_vfio_qpair_submit_tracker(qpair, tr);
exit:
if (spdk_unlikely(nvme_qpair_is_admin_queue(qpair))) {
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
}
return rc;
}
static int32_t
nvme_vfio_qpair_process_completions(struct spdk_nvme_qpair *qpair, uint32_t max_completions)
{
struct nvme_pcie_qpair *vqpair = nvme_pcie_qpair(qpair);
struct nvme_tracker *tr;
struct spdk_nvme_cpl *cpl, *next_cpl;
uint32_t num_completions = 0;
struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
uint16_t next_cq_head;
uint8_t next_phase;
bool next_is_valid = false;
if (spdk_unlikely(nvme_qpair_is_admin_queue(qpair))) {
nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
}
if (max_completions == 0 || max_completions > vqpair->max_completions_cap) {
/*
* max_completions == 0 means unlimited, but complete at most
* max_completions_cap batch of I/O at a time so that the completion
* queue doorbells don't wrap around.
*/
max_completions = vqpair->max_completions_cap;
}
while (1) {
cpl = &vqpair->cpl[vqpair->cq_head];
if (!next_is_valid && cpl->status.p != vqpair->flags.phase) {
break;
}
if (spdk_likely(vqpair->cq_head + 1 != vqpair->num_entries)) {
next_cq_head = vqpair->cq_head + 1;
next_phase = vqpair->flags.phase;
} else {
next_cq_head = 0;
next_phase = !vqpair->flags.phase;
}
next_cpl = &vqpair->cpl[next_cq_head];
next_is_valid = (next_cpl->status.p == next_phase);
if (next_is_valid) {
__builtin_prefetch(&vqpair->tr[next_cpl->cid]);
}
if (spdk_unlikely(++vqpair->cq_head == vqpair->num_entries)) {
vqpair->cq_head = 0;
vqpair->flags.phase = !vqpair->flags.phase;
}
tr = &vqpair->tr[cpl->cid];
/* Prefetch the req's STAILQ_ENTRY since we'll need to access it
* as part of putting the req back on the qpair's free list.
*/
__builtin_prefetch(&tr->req->stailq);
vqpair->sq_head = cpl->sqhd;
if (tr->req) {
nvme_vfio_qpair_complete_tracker(qpair, tr, cpl, true);
} else {
SPDK_ERRLOG("cpl does not map to outstanding cmd\n");
spdk_nvme_qpair_print_completion(qpair, cpl);
assert(0);
}
if (++num_completions == max_completions) {
break;
}
}
if (num_completions > 0) {
nvme_vfio_qpair_ring_cq_doorbell(qpair);
}
if (vqpair->flags.delay_cmd_submit) {
if (vqpair->last_sq_tail != vqpair->sq_tail) {
nvme_vfio_qpair_ring_sq_doorbell(qpair);
vqpair->last_sq_tail = vqpair->sq_tail;
}
}
/* Before returning, complete any pending admin request. */
if (spdk_unlikely(nvme_qpair_is_admin_queue(qpair))) {
nvme_pcie_qpair_complete_pending_admin_request(qpair);
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
}
return num_completions;
}
const struct spdk_nvme_transport_ops vfio_ops = {
.name = "VFIOUSER",
.type = SPDK_NVME_TRANSPORT_VFIOUSER,
.ctrlr_construct = nvme_vfio_ctrlr_construct,
.ctrlr_scan = nvme_vfio_ctrlr_scan,
.ctrlr_destruct = nvme_vfio_ctrlr_destruct,
.ctrlr_enable = nvme_vfio_ctrlr_enable,
.ctrlr_set_reg_4 = nvme_vfio_ctrlr_set_reg_4,
.ctrlr_set_reg_8 = nvme_vfio_ctrlr_set_reg_8,
.ctrlr_get_reg_4 = nvme_vfio_ctrlr_get_reg_4,
.ctrlr_get_reg_8 = nvme_vfio_ctrlr_get_reg_8,
.ctrlr_get_max_xfer_size = nvme_vfio_ctrlr_get_max_xfer_size,
.ctrlr_get_max_sges = nvme_vfio_ctrlr_get_max_sges,
.ctrlr_create_io_qpair = nvme_vfio_ctrlr_create_io_qpair,
.ctrlr_delete_io_qpair = nvme_vfio_ctrlr_delete_io_qpair,
.ctrlr_connect_qpair = nvme_pcie_ctrlr_connect_qpair,
.ctrlr_disconnect_qpair = nvme_pcie_ctrlr_disconnect_qpair,
.admin_qpair_abort_aers = nvme_vfio_admin_qpair_abort_aers,
.qpair_reset = nvme_pcie_qpair_reset,
.qpair_abort_reqs = nvme_vfio_qpair_abort_reqs,
.qpair_submit_request = nvme_vfio_qpair_submit_request,
.qpair_process_completions = nvme_vfio_qpair_process_completions,
.poll_group_create = nvme_pcie_poll_group_create,
.poll_group_connect_qpair = nvme_pcie_poll_group_connect_qpair,
.poll_group_disconnect_qpair = nvme_pcie_poll_group_disconnect_qpair,
.poll_group_add = nvme_pcie_poll_group_add,
.poll_group_remove = nvme_pcie_poll_group_remove,
.poll_group_process_completions = nvme_pcie_poll_group_process_completions,
.poll_group_destroy = nvme_pcie_poll_group_destroy,
};
SPDK_NVME_TRANSPORT_REGISTER(vfio, &vfio_ops);
SPDK_LOG_REGISTER_COMPONENT(nvme_vfio)