Spdk/test/unit/lib/nvmf/rdma.c/rdma_ut.c

1301 lines
52 KiB
C
Raw Normal View History

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation. All rights reserved.
* Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "spdk/stdinc.h"
#include "spdk_cunit.h"
#include "common/lib/test_env.c"
#include "nvmf/rdma.c"
#include "nvmf/transport.c"
uint64_t g_mr_size;
uint64_t g_mr_next_size;
struct ibv_mr g_rdma_mr;
#define RDMA_UT_UNITS_IN_MAX_IO 16
struct spdk_nvmf_transport_opts g_rdma_ut_transport_opts = {
.max_queue_depth = SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH,
.max_qpairs_per_ctrlr = SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR,
.in_capsule_data_size = SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE,
.max_io_size = (SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE * RDMA_UT_UNITS_IN_MAX_IO),
.io_unit_size = SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE,
.max_aq_depth = SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH,
.num_shared_buffers = SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS,
};
SPDK_LOG_REGISTER_COMPONENT("nvmf", SPDK_LOG_NVMF)
DEFINE_STUB(spdk_mem_map_set_translation, int, (struct spdk_mem_map *map, uint64_t vaddr,
uint64_t size, uint64_t translation), 0);
DEFINE_STUB(spdk_mem_map_clear_translation, int, (struct spdk_mem_map *map, uint64_t vaddr,
uint64_t size), 0);
DEFINE_STUB(spdk_mem_map_alloc, struct spdk_mem_map *, (uint64_t default_translation,
const struct spdk_mem_map_ops *ops, void *cb_ctx), NULL);
DEFINE_STUB(spdk_nvmf_qpair_disconnect, int, (struct spdk_nvmf_qpair *qpair,
nvmf_qpair_disconnect_cb cb_fn, void *ctx), 0);
DEFINE_STUB_V(spdk_mem_map_free, (struct spdk_mem_map **pmap));
struct spdk_trace_histories *g_trace_histories;
DEFINE_STUB_V(spdk_trace_add_register_fn, (struct spdk_trace_register_fn *reg_fn));
DEFINE_STUB_V(spdk_trace_register_object, (uint8_t type, char id_prefix));
DEFINE_STUB_V(spdk_trace_register_description, (const char *name,
uint16_t tpoint_id, uint8_t owner_type, uint8_t object_type, uint8_t new_object,
uint8_t arg1_type, const char *arg1_name));
DEFINE_STUB_V(_spdk_trace_record, (uint64_t tsc, uint16_t tpoint_id, uint16_t poller_id,
uint32_t size, uint64_t object_id, uint64_t arg1));
DEFINE_STUB_V(spdk_nvmf_ctrlr_data_init, (struct spdk_nvmf_transport_opts *opts,
struct spdk_nvmf_ctrlr_data *cdata));
DEFINE_STUB_V(spdk_nvmf_request_exec, (struct spdk_nvmf_request *req));
DEFINE_STUB(spdk_nvme_transport_id_compare, int, (const struct spdk_nvme_transport_id *trid1,
const struct spdk_nvme_transport_id *trid2), 0);
DEFINE_STUB_V(spdk_nvmf_ctrlr_abort_aer, (struct spdk_nvmf_ctrlr *ctrlr));
rdma: Add DIF support for write operation Update transaction length wrt to medata size Change buffers handling in the case of enabled DIF - add function nvmf_rdma_fill_buffer_with_md_interleave to split SGL into several parts with metadata blocks between them in order to perform RDMA operation with appropriate offsets Add DIF generation before executing bdev IO operation Add parsing of DifInsertOrStrip config parameter. Since there is a limitation on the number of entries in SG list (16), the current approach has a limitation on the max transaction size which depends on the data block size. E.g. if data block size is 512 bytes then the maximum transaction size will be 512 * 16 = 8192 bytes. In adiition, the size of IO buffer (IOUnitSize conf param) must be aligned to metadata size for better perfromance since metadata is treated as part of this buffer. E.g. if the initiator uses transaction size = 4096, data block size on nvme disk is 512 then IO buffer size should be aligned to (512 + 8) which is 4160. In other case an extra IO buffer will be consumed which will increase the number of entries in SGL and in iov. Change-Id: I7ad2270fe9dcceb114ece34675eac44e5783a0d5 Signed-off-by: Alexey Marchuk <alexeymar@mellanox.com> Signed-off-by: Sasha Kotchubievsky <sashakot@mellanox.com> Signed-off-by: Evgenii Kochetov <evgeniik@mellanox.com> Reviewed-on: https://review.gerrithub.io/c/spdk/spdk/+/465248 Tested-by: SPDK CI Jenkins <sys_sgci@intel.com> Reviewed-by: Ben Walker <benjamin.walker@intel.com> Reviewed-by: Seth Howell <seth.howell@intel.com> Reviewed-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com> Reviewed-by: Changpeng Liu <changpeng.liu@intel.com>
2019-07-29 15:30:32 +00:00
DEFINE_STUB(spdk_nvmf_request_get_dif_ctx, bool, (struct spdk_nvmf_request *req,
struct spdk_dif_ctx *dif_ctx), false);
DEFINE_STUB_V(spdk_nvme_trid_populate_transport, (struct spdk_nvme_transport_id *trid,
enum spdk_nvme_transport_type trtype));
const char *
spdk_nvme_transport_id_trtype_str(enum spdk_nvme_transport_type trtype)
{
switch (trtype) {
case SPDK_NVME_TRANSPORT_PCIE:
return "PCIe";
case SPDK_NVME_TRANSPORT_RDMA:
return "RDMA";
case SPDK_NVME_TRANSPORT_FC:
return "FC";
default:
return NULL;
}
}
int
spdk_nvme_transport_id_populate_trstring(struct spdk_nvme_transport_id *trid, const char *trstring)
{
int len, i;
if (trstring == NULL) {
return -EINVAL;
}
len = strnlen(trstring, SPDK_NVMF_TRSTRING_MAX_LEN);
if (len == SPDK_NVMF_TRSTRING_MAX_LEN) {
return -EINVAL;
}
/* cast official trstring to uppercase version of input. */
for (i = 0; i < len; i++) {
trid->trstring[i] = toupper(trstring[i]);
}
return 0;
}
uint64_t
spdk_mem_map_translate(const struct spdk_mem_map *map, uint64_t vaddr, uint64_t *size)
{
if (g_mr_size != 0) {
*(uint32_t *)size = g_mr_size;
if (g_mr_next_size != 0) {
g_mr_size = g_mr_next_size;
}
}
return (uint64_t)&g_rdma_mr;
}
static void reset_nvmf_rdma_request(struct spdk_nvmf_rdma_request *rdma_req)
{
int i;
rdma_req->req.length = 0;
rdma_req->req.data_from_pool = false;
rdma_req->req.data = NULL;
rdma_req->data.wr.num_sge = 0;
rdma_req->data.wr.wr.rdma.remote_addr = 0;
rdma_req->data.wr.wr.rdma.rkey = 0;
memset(&rdma_req->req.dif, 0, sizeof(rdma_req->req.dif));
for (i = 0; i < SPDK_NVMF_MAX_SGL_ENTRIES; i++) {
rdma_req->req.iov[i].iov_base = 0;
rdma_req->req.iov[i].iov_len = 0;
rdma_req->req.buffers[i] = 0;
rdma_req->data.wr.sg_list[i].addr = 0;
rdma_req->data.wr.sg_list[i].length = 0;
rdma_req->data.wr.sg_list[i].lkey = 0;
}
rdma_req->req.iovcnt = 0;
}
static void
test_spdk_nvmf_rdma_request_parse_sgl(void)
{
struct spdk_nvmf_rdma_transport rtransport;
struct spdk_nvmf_rdma_device device;
rdma: Add DIF support for write operation Update transaction length wrt to medata size Change buffers handling in the case of enabled DIF - add function nvmf_rdma_fill_buffer_with_md_interleave to split SGL into several parts with metadata blocks between them in order to perform RDMA operation with appropriate offsets Add DIF generation before executing bdev IO operation Add parsing of DifInsertOrStrip config parameter. Since there is a limitation on the number of entries in SG list (16), the current approach has a limitation on the max transaction size which depends on the data block size. E.g. if data block size is 512 bytes then the maximum transaction size will be 512 * 16 = 8192 bytes. In adiition, the size of IO buffer (IOUnitSize conf param) must be aligned to metadata size for better perfromance since metadata is treated as part of this buffer. E.g. if the initiator uses transaction size = 4096, data block size on nvme disk is 512 then IO buffer size should be aligned to (512 + 8) which is 4160. In other case an extra IO buffer will be consumed which will increase the number of entries in SGL and in iov. Change-Id: I7ad2270fe9dcceb114ece34675eac44e5783a0d5 Signed-off-by: Alexey Marchuk <alexeymar@mellanox.com> Signed-off-by: Sasha Kotchubievsky <sashakot@mellanox.com> Signed-off-by: Evgenii Kochetov <evgeniik@mellanox.com> Reviewed-on: https://review.gerrithub.io/c/spdk/spdk/+/465248 Tested-by: SPDK CI Jenkins <sys_sgci@intel.com> Reviewed-by: Ben Walker <benjamin.walker@intel.com> Reviewed-by: Seth Howell <seth.howell@intel.com> Reviewed-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com> Reviewed-by: Changpeng Liu <changpeng.liu@intel.com>
2019-07-29 15:30:32 +00:00
struct spdk_nvmf_rdma_request rdma_req = {};
struct spdk_nvmf_rdma_recv recv;
struct spdk_nvmf_rdma_poll_group group;
struct spdk_nvmf_rdma_qpair rqpair;
struct spdk_nvmf_rdma_poller poller;
union nvmf_c2h_msg cpl;
union nvmf_h2c_msg cmd;
struct spdk_nvme_sgl_descriptor *sgl;
struct spdk_nvmf_transport_pg_cache_buf bufs[4];
struct spdk_nvme_sgl_descriptor sgl_desc[SPDK_NVMF_MAX_SGL_ENTRIES] = {{0}};
struct spdk_nvmf_rdma_request_data data;
struct spdk_nvmf_transport_pg_cache_buf buffer;
struct spdk_nvmf_transport_pg_cache_buf *buffer_ptr;
int rc, i;
data.wr.sg_list = data.sgl;
STAILQ_INIT(&group.group.buf_cache);
group.group.buf_cache_size = 0;
group.group.buf_cache_count = 0;
group.group.transport = &rtransport.transport;
STAILQ_INIT(&group.retired_bufs);
poller.group = &group;
rqpair.poller = &poller;
rqpair.max_send_sge = SPDK_NVMF_MAX_SGL_ENTRIES;
sgl = &cmd.nvme_cmd.dptr.sgl1;
rdma_req.recv = &recv;
rdma_req.req.cmd = &cmd;
rdma_req.req.rsp = &cpl;
rdma_req.data.wr.sg_list = rdma_req.data.sgl;
rdma_req.req.qpair = &rqpair.qpair;
rdma_req.req.xfer = SPDK_NVME_DATA_CONTROLLER_TO_HOST;
rtransport.transport.opts = g_rdma_ut_transport_opts;
rtransport.data_wr_pool = NULL;
rtransport.transport.data_buf_pool = NULL;
device.attr.device_cap_flags = 0;
g_rdma_mr.lkey = 0xABCD;
sgl->keyed.key = 0xEEEE;
sgl->address = 0xFFFF;
rdma_req.recv->buf = (void *)0xDDDD;
/* Test 1: sgl type: keyed data block subtype: address */
sgl->generic.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
sgl->keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
/* Part 1: simple I/O, one SGL smaller than the transport io unit size */
MOCK_SET(spdk_mempool_get, (void *)0x2000);
reset_nvmf_rdma_request(&rdma_req);
sgl->keyed.length = rtransport.transport.opts.io_unit_size / 2;
device.map = (void *)0x0;
rc = spdk_nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
CU_ASSERT(rc == 0);
CU_ASSERT(rdma_req.req.data_from_pool == true);
CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size / 2);
CU_ASSERT((uint64_t)rdma_req.req.data == 0x2000);
CU_ASSERT(rdma_req.data.wr.num_sge == 1);
CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
CU_ASSERT((uint64_t)rdma_req.req.buffers[0] == 0x2000);
CU_ASSERT(rdma_req.data.wr.sg_list[0].addr == 0x2000);
CU_ASSERT(rdma_req.data.wr.sg_list[0].length == rtransport.transport.opts.io_unit_size / 2);
CU_ASSERT(rdma_req.data.wr.sg_list[0].lkey == g_rdma_mr.lkey);
/* Part 2: simple I/O, one SGL larger than the transport io unit size (equal to the max io size) */
reset_nvmf_rdma_request(&rdma_req);
sgl->keyed.length = rtransport.transport.opts.io_unit_size * RDMA_UT_UNITS_IN_MAX_IO;
rc = spdk_nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
CU_ASSERT(rc == 0);
CU_ASSERT(rdma_req.req.data_from_pool == true);
CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size * RDMA_UT_UNITS_IN_MAX_IO);
CU_ASSERT(rdma_req.data.wr.num_sge == RDMA_UT_UNITS_IN_MAX_IO);
CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
for (i = 0; i < RDMA_UT_UNITS_IN_MAX_IO; i++) {
CU_ASSERT((uint64_t)rdma_req.req.buffers[i] == 0x2000);
CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == 0x2000);
CU_ASSERT(rdma_req.data.wr.sg_list[i].length == rtransport.transport.opts.io_unit_size);
CU_ASSERT(rdma_req.data.wr.sg_list[i].lkey == g_rdma_mr.lkey);
}
/* Part 3: simple I/O one SGL larger than the transport max io size */
reset_nvmf_rdma_request(&rdma_req);
sgl->keyed.length = rtransport.transport.opts.max_io_size * 2;
rc = spdk_nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
CU_ASSERT(rc == -1);
/* Part 4: Pretend there are no buffer pools */
MOCK_SET(spdk_mempool_get, NULL);
reset_nvmf_rdma_request(&rdma_req);
sgl->keyed.length = rtransport.transport.opts.io_unit_size * RDMA_UT_UNITS_IN_MAX_IO;
rc = spdk_nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
CU_ASSERT(rc == 0);
CU_ASSERT(rdma_req.req.data_from_pool == false);
CU_ASSERT(rdma_req.req.data == NULL);
CU_ASSERT(rdma_req.data.wr.num_sge == 0);
CU_ASSERT(rdma_req.req.buffers[0] == NULL);
CU_ASSERT(rdma_req.data.wr.sg_list[0].addr == 0);
CU_ASSERT(rdma_req.data.wr.sg_list[0].length == 0);
CU_ASSERT(rdma_req.data.wr.sg_list[0].lkey == 0);
rdma_req.recv->buf = (void *)0xDDDD;
/* Test 2: sgl type: keyed data block subtype: offset (in capsule data) */
sgl->generic.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
sgl->unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET;
/* Part 1: Normal I/O smaller than in capsule data size no offset */
reset_nvmf_rdma_request(&rdma_req);
sgl->address = 0;
sgl->unkeyed.length = rtransport.transport.opts.in_capsule_data_size;
rc = spdk_nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
CU_ASSERT(rc == 0);
CU_ASSERT(rdma_req.req.data == (void *)0xDDDD);
CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.in_capsule_data_size);
CU_ASSERT(rdma_req.req.data_from_pool == false);
/* Part 2: I/O offset + length too large */
reset_nvmf_rdma_request(&rdma_req);
sgl->address = rtransport.transport.opts.in_capsule_data_size;
sgl->unkeyed.length = rtransport.transport.opts.in_capsule_data_size;
rc = spdk_nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
CU_ASSERT(rc == -1);
/* Part 3: I/O too large */
reset_nvmf_rdma_request(&rdma_req);
sgl->address = 0;
sgl->unkeyed.length = rtransport.transport.opts.in_capsule_data_size * 2;
rc = spdk_nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
CU_ASSERT(rc == -1);
/* Test 3: Multi SGL */
sgl->generic.type = SPDK_NVME_SGL_TYPE_LAST_SEGMENT;
sgl->unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET;
sgl->address = 0;
rdma_req.recv->buf = (void *)&sgl_desc;
MOCK_SET(spdk_mempool_get, &data);
/* part 1: 2 segments each with 1 wr. */
reset_nvmf_rdma_request(&rdma_req);
sgl->unkeyed.length = 2 * sizeof(struct spdk_nvme_sgl_descriptor);
for (i = 0; i < 2; i++) {
sgl_desc[i].keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
sgl_desc[i].keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
sgl_desc[i].keyed.length = rtransport.transport.opts.io_unit_size;
sgl_desc[i].address = 0x4000 + i * rtransport.transport.opts.io_unit_size;
sgl_desc[i].keyed.key = 0x44;
}
rc = spdk_nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
CU_ASSERT(rc == 0);
CU_ASSERT(rdma_req.req.data_from_pool == true);
CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size * 2);
CU_ASSERT(rdma_req.data.wr.num_sge == 1);
CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0x44);
CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0x4000);
CU_ASSERT(rdma_req.data.wr.next == &data.wr);
CU_ASSERT(data.wr.wr.rdma.rkey == 0x44);
CU_ASSERT(data.wr.wr.rdma.remote_addr == 0x4000 + rtransport.transport.opts.io_unit_size);
CU_ASSERT(data.wr.num_sge == 1);
CU_ASSERT(data.wr.next == &rdma_req.rsp.wr);
/* part 2: 2 segments, each with 1 wr containing 8 sge_elements */
reset_nvmf_rdma_request(&rdma_req);
sgl->unkeyed.length = 2 * sizeof(struct spdk_nvme_sgl_descriptor);
for (i = 0; i < 2; i++) {
sgl_desc[i].keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
sgl_desc[i].keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
sgl_desc[i].keyed.length = rtransport.transport.opts.io_unit_size * 8;
sgl_desc[i].address = 0x4000 + i * 8 * rtransport.transport.opts.io_unit_size;
sgl_desc[i].keyed.key = 0x44;
}
rc = spdk_nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
CU_ASSERT(rc == 0);
CU_ASSERT(rdma_req.req.data_from_pool == true);
CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size * 16);
CU_ASSERT(rdma_req.req.iovcnt == 16);
CU_ASSERT(rdma_req.data.wr.num_sge == 8);
CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0x44);
CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0x4000);
CU_ASSERT(rdma_req.data.wr.next == &data.wr);
CU_ASSERT(data.wr.wr.rdma.rkey == 0x44);
CU_ASSERT(data.wr.wr.rdma.remote_addr == 0x4000 + rtransport.transport.opts.io_unit_size * 8);
CU_ASSERT(data.wr.num_sge == 8);
CU_ASSERT(data.wr.next == &rdma_req.rsp.wr);
/* part 3: 2 segments, one very large, one very small */
reset_nvmf_rdma_request(&rdma_req);
for (i = 0; i < 2; i++) {
sgl_desc[i].keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
sgl_desc[i].keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
sgl_desc[i].keyed.key = 0x44;
}
sgl_desc[0].keyed.length = rtransport.transport.opts.io_unit_size * 15 +
rtransport.transport.opts.io_unit_size / 2;
sgl_desc[0].address = 0x4000;
sgl_desc[1].keyed.length = rtransport.transport.opts.io_unit_size / 2;
sgl_desc[1].address = 0x4000 + rtransport.transport.opts.io_unit_size * 15 +
rtransport.transport.opts.io_unit_size / 2;
rc = spdk_nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
CU_ASSERT(rc == 0);
CU_ASSERT(rdma_req.req.data_from_pool == true);
CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size * 16);
CU_ASSERT(rdma_req.req.iovcnt == 17);
CU_ASSERT(rdma_req.data.wr.num_sge == 16);
for (i = 0; i < 15; i++) {
CU_ASSERT(rdma_req.data.sgl[i].length == rtransport.transport.opts.io_unit_size);
}
CU_ASSERT(rdma_req.data.sgl[15].length == rtransport.transport.opts.io_unit_size / 2);
CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0x44);
CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0x4000);
CU_ASSERT(rdma_req.data.wr.next == &data.wr);
CU_ASSERT(data.wr.wr.rdma.rkey == 0x44);
CU_ASSERT(data.wr.wr.rdma.remote_addr == 0x4000 + rtransport.transport.opts.io_unit_size * 15 +
rtransport.transport.opts.io_unit_size / 2);
CU_ASSERT(data.sgl[0].length == rtransport.transport.opts.io_unit_size / 2);
CU_ASSERT(data.wr.num_sge == 1);
CU_ASSERT(data.wr.next == &rdma_req.rsp.wr);
/* Test 4: use PG buffer cache */
sgl->generic.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
sgl->keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
sgl->address = 0xFFFF;
rdma_req.recv->buf = (void *)0xDDDD;
g_rdma_mr.lkey = 0xABCD;
sgl->keyed.key = 0xEEEE;
for (i = 0; i < 4; i++) {
STAILQ_INSERT_TAIL(&group.group.buf_cache, &bufs[i], link);
}
/* part 1: use the four buffers from the pg cache */
group.group.buf_cache_size = 4;
group.group.buf_cache_count = 4;
MOCK_SET(spdk_mempool_get, (void *)0x2000);
reset_nvmf_rdma_request(&rdma_req);
sgl->keyed.length = rtransport.transport.opts.io_unit_size * 4;
rc = spdk_nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
SPDK_CU_ASSERT_FATAL(rc == 0);
CU_ASSERT(rdma_req.req.data_from_pool == true);
CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size * 4);
CU_ASSERT((uint64_t)rdma_req.req.data == (((uint64_t)&bufs[0] + NVMF_DATA_BUFFER_MASK) &
~NVMF_DATA_BUFFER_MASK));
CU_ASSERT(rdma_req.data.wr.num_sge == 4);
CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
CU_ASSERT(group.group.buf_cache_count == 0);
CU_ASSERT(STAILQ_EMPTY(&group.group.buf_cache));
for (i = 0; i < 4; i++) {
CU_ASSERT((uint64_t)rdma_req.req.buffers[i] == (uint64_t)&bufs[i]);
CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == (((uint64_t)&bufs[i] + NVMF_DATA_BUFFER_MASK) &
~NVMF_DATA_BUFFER_MASK));
CU_ASSERT(rdma_req.data.wr.sg_list[i].length == rtransport.transport.opts.io_unit_size);
}
/* part 2: now that we have used the buffers from the cache, try again. We should get mempool buffers. */
reset_nvmf_rdma_request(&rdma_req);
rc = spdk_nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
SPDK_CU_ASSERT_FATAL(rc == 0);
CU_ASSERT(rdma_req.req.data_from_pool == true);
CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size * 4);
CU_ASSERT((uint64_t)rdma_req.req.data == 0x2000);
CU_ASSERT(rdma_req.data.wr.num_sge == 4);
CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
CU_ASSERT(group.group.buf_cache_count == 0);
CU_ASSERT(STAILQ_EMPTY(&group.group.buf_cache));
for (i = 0; i < 4; i++) {
CU_ASSERT((uint64_t)rdma_req.req.buffers[i] == 0x2000);
CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == 0x2000);
CU_ASSERT(rdma_req.data.wr.sg_list[i].length == rtransport.transport.opts.io_unit_size);
CU_ASSERT(group.group.buf_cache_count == 0);
}
/* part 3: half and half */
group.group.buf_cache_count = 2;
for (i = 0; i < 2; i++) {
STAILQ_INSERT_TAIL(&group.group.buf_cache, &bufs[i], link);
}
reset_nvmf_rdma_request(&rdma_req);
rc = spdk_nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
SPDK_CU_ASSERT_FATAL(rc == 0);
CU_ASSERT(rdma_req.req.data_from_pool == true);
CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size * 4);
CU_ASSERT((uint64_t)rdma_req.req.data == (((uint64_t)&bufs[0] + NVMF_DATA_BUFFER_MASK) &
~NVMF_DATA_BUFFER_MASK));
CU_ASSERT(rdma_req.data.wr.num_sge == 4);
CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
CU_ASSERT(group.group.buf_cache_count == 0);
for (i = 0; i < 2; i++) {
CU_ASSERT((uint64_t)rdma_req.req.buffers[i] == (uint64_t)&bufs[i]);
CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == (((uint64_t)&bufs[i] + NVMF_DATA_BUFFER_MASK) &
~NVMF_DATA_BUFFER_MASK));
CU_ASSERT(rdma_req.data.wr.sg_list[i].length == rtransport.transport.opts.io_unit_size);
}
for (i = 2; i < 4; i++) {
CU_ASSERT((uint64_t)rdma_req.req.buffers[i] == 0x2000);
CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == 0x2000);
CU_ASSERT(rdma_req.data.wr.sg_list[i].length == rtransport.transport.opts.io_unit_size);
}
reset_nvmf_rdma_request(&rdma_req);
/* Test 5 dealing with a buffer split over two Memory Regions */
MOCK_SET(spdk_mempool_get, (void *)&buffer);
sgl->generic.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
sgl->keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
sgl->keyed.length = rtransport.transport.opts.io_unit_size / 2;
g_mr_size = rtransport.transport.opts.io_unit_size / 4;
g_mr_next_size = rtransport.transport.opts.io_unit_size / 2;
rc = spdk_nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
SPDK_CU_ASSERT_FATAL(rc == 0);
CU_ASSERT(rdma_req.req.data_from_pool == true);
CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size / 2);
CU_ASSERT((uint64_t)rdma_req.req.data == (((uint64_t)&buffer + NVMF_DATA_BUFFER_MASK) &
~NVMF_DATA_BUFFER_MASK));
CU_ASSERT(rdma_req.data.wr.num_sge == 1);
CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
CU_ASSERT(rdma_req.req.buffers[0] == &buffer);
CU_ASSERT(rdma_req.data.wr.sg_list[0].addr == (((uint64_t)&buffer + NVMF_DATA_BUFFER_MASK) &
~NVMF_DATA_BUFFER_MASK));
CU_ASSERT(rdma_req.data.wr.sg_list[0].length == rtransport.transport.opts.io_unit_size / 2);
CU_ASSERT(rdma_req.data.wr.sg_list[0].lkey == g_rdma_mr.lkey);
buffer_ptr = STAILQ_FIRST(&group.retired_bufs);
CU_ASSERT(buffer_ptr == &buffer);
STAILQ_REMOVE(&group.retired_bufs, buffer_ptr, spdk_nvmf_transport_pg_cache_buf, link);
CU_ASSERT(STAILQ_EMPTY(&group.retired_bufs));
g_mr_size = 0;
g_mr_next_size = 0;
reset_nvmf_rdma_request(&rdma_req);
}
static struct spdk_nvmf_rdma_recv *
create_recv(struct spdk_nvmf_rdma_qpair *rqpair, enum spdk_nvme_nvm_opcode opc)
{
struct spdk_nvmf_rdma_recv *rdma_recv;
union nvmf_h2c_msg *cmd;
struct spdk_nvme_sgl_descriptor *sgl;
rdma_recv = calloc(1, sizeof(*rdma_recv));
rdma_recv->qpair = rqpair;
cmd = calloc(1, sizeof(*cmd));
rdma_recv->sgl[0].addr = (uintptr_t)cmd;
cmd->nvme_cmd.opc = opc;
sgl = &cmd->nvme_cmd.dptr.sgl1;
sgl->keyed.key = 0xEEEE;
sgl->address = 0xFFFF;
sgl->keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
sgl->keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
sgl->keyed.length = 1;
return rdma_recv;
}
static void
free_recv(struct spdk_nvmf_rdma_recv *rdma_recv)
{
free((void *)rdma_recv->sgl[0].addr);
free(rdma_recv);
}
static struct spdk_nvmf_rdma_request *
create_req(struct spdk_nvmf_rdma_qpair *rqpair,
struct spdk_nvmf_rdma_recv *rdma_recv)
{
struct spdk_nvmf_rdma_request *rdma_req;
union nvmf_c2h_msg *cpl;
rdma_req = calloc(1, sizeof(*rdma_req));
rdma_req->recv = rdma_recv;
rdma_req->req.qpair = &rqpair->qpair;
rdma_req->state = RDMA_REQUEST_STATE_NEW;
rdma_req->data.wr.wr_id = (uintptr_t)&rdma_req->data.rdma_wr;
rdma_req->data.wr.sg_list = rdma_req->data.sgl;
cpl = calloc(1, sizeof(*cpl));
rdma_req->rsp.sgl[0].addr = (uintptr_t)cpl;
rdma_req->req.rsp = cpl;
return rdma_req;
}
static void
free_req(struct spdk_nvmf_rdma_request *rdma_req)
{
free((void *)rdma_req->rsp.sgl[0].addr);
free(rdma_req);
}
static void
qpair_reset(struct spdk_nvmf_rdma_qpair *rqpair,
struct spdk_nvmf_rdma_poller *poller,
struct spdk_nvmf_rdma_device *device,
struct spdk_nvmf_rdma_resources *resources)
{
memset(rqpair, 0, sizeof(*rqpair));
STAILQ_INIT(&rqpair->pending_rdma_write_queue);
STAILQ_INIT(&rqpair->pending_rdma_read_queue);
rqpair->poller = poller;
rqpair->device = device;
rqpair->resources = resources;
rqpair->qpair.qid = 1;
rqpair->ibv_state = IBV_QPS_RTS;
rqpair->qpair.state = SPDK_NVMF_QPAIR_ACTIVE;
rqpair->max_send_sge = SPDK_NVMF_MAX_SGL_ENTRIES;
rqpair->max_send_depth = 16;
rqpair->max_read_depth = 16;
resources->recvs_to_post.first = resources->recvs_to_post.last = NULL;
}
static void
poller_reset(struct spdk_nvmf_rdma_poller *poller,
struct spdk_nvmf_rdma_poll_group *group)
{
memset(poller, 0, sizeof(*poller));
STAILQ_INIT(&poller->qpairs_pending_recv);
STAILQ_INIT(&poller->qpairs_pending_send);
poller->group = group;
}
static void
test_spdk_nvmf_rdma_request_process(void)
{
struct spdk_nvmf_rdma_transport rtransport = {};
struct spdk_nvmf_rdma_poll_group group = {};
struct spdk_nvmf_rdma_poller poller = {};
struct spdk_nvmf_rdma_device device = {};
struct spdk_nvmf_rdma_resources resources = {};
struct spdk_nvmf_rdma_qpair rqpair = {};
struct spdk_nvmf_rdma_recv *rdma_recv;
struct spdk_nvmf_rdma_request *rdma_req;
bool progress;
STAILQ_INIT(&group.group.buf_cache);
STAILQ_INIT(&group.group.pending_buf_queue);
group.group.buf_cache_size = 0;
group.group.buf_cache_count = 0;
poller_reset(&poller, &group);
qpair_reset(&rqpair, &poller, &device, &resources);
rtransport.transport.opts = g_rdma_ut_transport_opts;
rtransport.transport.data_buf_pool = spdk_mempool_create("test_data_pool", 16, 128, 0, 0);
rtransport.data_wr_pool = spdk_mempool_create("test_wr_pool", 128,
sizeof(struct spdk_nvmf_rdma_request_data),
0, 0);
MOCK_CLEAR(spdk_mempool_get);
device.attr.device_cap_flags = 0;
device.map = (void *)0x0;
g_rdma_mr.lkey = 0xABCD;
/* Test 1: single SGL READ request */
rdma_recv = create_recv(&rqpair, SPDK_NVME_OPC_READ);
rdma_req = create_req(&rqpair, rdma_recv);
rqpair.current_recv_depth = 1;
/* NEW -> EXECUTING */
progress = spdk_nvmf_rdma_request_process(&rtransport, rdma_req);
CU_ASSERT(progress == true);
CU_ASSERT(rdma_req->state == RDMA_REQUEST_STATE_EXECUTING);
CU_ASSERT(rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST);
/* EXECUTED -> TRANSFERRING_C2H */
rdma_req->state = RDMA_REQUEST_STATE_EXECUTED;
progress = spdk_nvmf_rdma_request_process(&rtransport, rdma_req);
CU_ASSERT(progress == true);
CU_ASSERT(rdma_req->state == RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST);
CU_ASSERT(rdma_req->recv == NULL);
CU_ASSERT(rqpair.sends_to_post.first == &rdma_req->data.wr);
CU_ASSERT(rqpair.sends_to_post.last == &rdma_req->rsp.wr);
CU_ASSERT(resources.recvs_to_post.first == &rdma_recv->wr);
CU_ASSERT(resources.recvs_to_post.last == &rdma_recv->wr);
/* COMPLETED -> FREE */
rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
progress = spdk_nvmf_rdma_request_process(&rtransport, rdma_req);
CU_ASSERT(progress == true);
CU_ASSERT(rdma_req->state == RDMA_REQUEST_STATE_FREE);
free_recv(rdma_recv);
free_req(rdma_req);
poller_reset(&poller, &group);
qpair_reset(&rqpair, &poller, &device, &resources);
/* Test 2: single SGL WRITE request */
rdma_recv = create_recv(&rqpair, SPDK_NVME_OPC_WRITE);
rdma_req = create_req(&rqpair, rdma_recv);
rqpair.current_recv_depth = 1;
/* NEW -> TRANSFERRING_H2C */
progress = spdk_nvmf_rdma_request_process(&rtransport, rdma_req);
CU_ASSERT(progress == true);
CU_ASSERT(rdma_req->state == RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
CU_ASSERT(rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER);
CU_ASSERT(rqpair.sends_to_post.first == &rdma_req->data.wr);
CU_ASSERT(rqpair.sends_to_post.last == &rdma_req->data.wr);
rqpair.sends_to_post.first = rqpair.sends_to_post.last = NULL;
STAILQ_INIT(&poller.qpairs_pending_send);
/* READY_TO_EXECUTE -> EXECUTING */
rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
progress = spdk_nvmf_rdma_request_process(&rtransport, rdma_req);
CU_ASSERT(progress == true);
CU_ASSERT(rdma_req->state == RDMA_REQUEST_STATE_EXECUTING);
/* EXECUTED -> COMPLETING */
rdma_req->state = RDMA_REQUEST_STATE_EXECUTED;
progress = spdk_nvmf_rdma_request_process(&rtransport, rdma_req);
CU_ASSERT(progress == true);
CU_ASSERT(rdma_req->state == RDMA_REQUEST_STATE_COMPLETING);
CU_ASSERT(rdma_req->recv == NULL);
CU_ASSERT(rqpair.sends_to_post.first == &rdma_req->rsp.wr);
CU_ASSERT(rqpair.sends_to_post.last == &rdma_req->rsp.wr);
CU_ASSERT(resources.recvs_to_post.first == &rdma_recv->wr);
CU_ASSERT(resources.recvs_to_post.last == &rdma_recv->wr);
/* COMPLETED -> FREE */
rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
progress = spdk_nvmf_rdma_request_process(&rtransport, rdma_req);
CU_ASSERT(progress == true);
CU_ASSERT(rdma_req->state == RDMA_REQUEST_STATE_FREE);
free_recv(rdma_recv);
free_req(rdma_req);
poller_reset(&poller, &group);
qpair_reset(&rqpair, &poller, &device, &resources);
/* Test 3: WRITE+WRITE ibv_send batching */
{
struct spdk_nvmf_rdma_recv *recv1, *recv2;
struct spdk_nvmf_rdma_request *req1, *req2;
recv1 = create_recv(&rqpair, SPDK_NVME_OPC_WRITE);
req1 = create_req(&rqpair, recv1);
recv2 = create_recv(&rqpair, SPDK_NVME_OPC_WRITE);
req2 = create_req(&rqpair, recv2);
/* WRITE 1: NEW -> TRANSFERRING_H2C */
rqpair.current_recv_depth = 1;
spdk_nvmf_rdma_request_process(&rtransport, req1);
CU_ASSERT(req1->state == RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
/* WRITE 1 is the first in batching list */
CU_ASSERT(rqpair.sends_to_post.first == &req1->data.wr);
CU_ASSERT(rqpair.sends_to_post.last == &req1->data.wr);
/* WRITE 2: NEW -> TRANSFERRING_H2C */
rqpair.current_recv_depth = 2;
spdk_nvmf_rdma_request_process(&rtransport, req2);
CU_ASSERT(req2->state == RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
/* WRITE 2 is now also in the batching list */
CU_ASSERT(rqpair.sends_to_post.first->next == &req2->data.wr);
CU_ASSERT(rqpair.sends_to_post.last == &req2->data.wr);
/* Send everything */
rqpair.sends_to_post.first = rqpair.sends_to_post.last = NULL;
STAILQ_INIT(&poller.qpairs_pending_send);
/* WRITE 1 completes before WRITE 2 has finished RDMA reading */
/* WRITE 1: READY_TO_EXECUTE -> EXECUTING */
req1->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
spdk_nvmf_rdma_request_process(&rtransport, req1);
CU_ASSERT(req1->state == RDMA_REQUEST_STATE_EXECUTING);
/* WRITE 1: EXECUTED -> COMPLETING */
req1->state = RDMA_REQUEST_STATE_EXECUTED;
spdk_nvmf_rdma_request_process(&rtransport, req1);
CU_ASSERT(req1->state == RDMA_REQUEST_STATE_COMPLETING);
CU_ASSERT(rqpair.sends_to_post.first == &req1->rsp.wr);
CU_ASSERT(rqpair.sends_to_post.last == &req1->rsp.wr);
rqpair.sends_to_post.first = rqpair.sends_to_post.last = NULL;
STAILQ_INIT(&poller.qpairs_pending_send);
/* WRITE 1: COMPLETED -> FREE */
req1->state = RDMA_REQUEST_STATE_COMPLETED;
spdk_nvmf_rdma_request_process(&rtransport, req1);
CU_ASSERT(req1->state == RDMA_REQUEST_STATE_FREE);
/* Now WRITE 2 has finished reading and completes */
/* WRITE 2: COMPLETED -> FREE */
/* WRITE 2: READY_TO_EXECUTE -> EXECUTING */
req2->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
spdk_nvmf_rdma_request_process(&rtransport, req2);
CU_ASSERT(req2->state == RDMA_REQUEST_STATE_EXECUTING);
/* WRITE 1: EXECUTED -> COMPLETING */
req2->state = RDMA_REQUEST_STATE_EXECUTED;
spdk_nvmf_rdma_request_process(&rtransport, req2);
CU_ASSERT(req2->state == RDMA_REQUEST_STATE_COMPLETING);
CU_ASSERT(rqpair.sends_to_post.first == &req2->rsp.wr);
CU_ASSERT(rqpair.sends_to_post.last == &req2->rsp.wr);
rqpair.sends_to_post.first = rqpair.sends_to_post.last = NULL;
STAILQ_INIT(&poller.qpairs_pending_send);
/* WRITE 1: COMPLETED -> FREE */
req2->state = RDMA_REQUEST_STATE_COMPLETED;
spdk_nvmf_rdma_request_process(&rtransport, req2);
CU_ASSERT(req2->state == RDMA_REQUEST_STATE_FREE);
free_recv(recv1);
free_req(req1);
free_recv(recv2);
free_req(req2);
poller_reset(&poller, &group);
qpair_reset(&rqpair, &poller, &device, &resources);
}
spdk_mempool_free(rtransport.transport.data_buf_pool);
spdk_mempool_free(rtransport.data_wr_pool);
}
#define TEST_GROUPS_COUNT 5
static void
test_spdk_nvmf_rdma_get_optimal_poll_group(void)
{
struct spdk_nvmf_rdma_transport rtransport = {};
struct spdk_nvmf_transport *transport = &rtransport.transport;
struct spdk_nvmf_rdma_qpair rqpair = {};
struct spdk_nvmf_transport_poll_group *groups[TEST_GROUPS_COUNT];
struct spdk_nvmf_rdma_poll_group *rgroups[TEST_GROUPS_COUNT];
struct spdk_nvmf_transport_poll_group *result;
uint32_t i;
rqpair.qpair.transport = transport;
pthread_mutex_init(&rtransport.lock, NULL);
TAILQ_INIT(&rtransport.poll_groups);
for (i = 0; i < TEST_GROUPS_COUNT; i++) {
groups[i] = spdk_nvmf_rdma_poll_group_create(transport);
CU_ASSERT(groups[i] != NULL);
rgroups[i] = SPDK_CONTAINEROF(groups[i], struct spdk_nvmf_rdma_poll_group, group);
groups[i]->transport = transport;
}
CU_ASSERT(rtransport.conn_sched.next_admin_pg == rgroups[0]);
CU_ASSERT(rtransport.conn_sched.next_io_pg == rgroups[0]);
/* Emulate connection of %TEST_GROUPS_COUNT% initiators - each creates 1 admin and 1 io qp */
for (i = 0; i < TEST_GROUPS_COUNT; i++) {
rqpair.qpair.qid = 0;
result = spdk_nvmf_rdma_get_optimal_poll_group(&rqpair.qpair);
CU_ASSERT(result == groups[i]);
CU_ASSERT(rtransport.conn_sched.next_admin_pg == rgroups[(i + 1) % TEST_GROUPS_COUNT]);
CU_ASSERT(rtransport.conn_sched.next_io_pg == rgroups[i]);
rqpair.qpair.qid = 1;
result = spdk_nvmf_rdma_get_optimal_poll_group(&rqpair.qpair);
CU_ASSERT(result == groups[i]);
CU_ASSERT(rtransport.conn_sched.next_admin_pg == rgroups[(i + 1) % TEST_GROUPS_COUNT]);
CU_ASSERT(rtransport.conn_sched.next_io_pg == rgroups[(i + 1) % TEST_GROUPS_COUNT]);
}
/* wrap around, admin/io pg point to the first pg
Destroy all poll groups except of the last one */
for (i = 0; i < TEST_GROUPS_COUNT - 1; i++) {
spdk_nvmf_rdma_poll_group_destroy(groups[i]);
CU_ASSERT(rtransport.conn_sched.next_admin_pg == rgroups[i + 1]);
CU_ASSERT(rtransport.conn_sched.next_io_pg == rgroups[i + 1]);
}
CU_ASSERT(rtransport.conn_sched.next_admin_pg == rgroups[TEST_GROUPS_COUNT - 1]);
CU_ASSERT(rtransport.conn_sched.next_io_pg == rgroups[TEST_GROUPS_COUNT - 1]);
/* Check that pointers to the next admin/io poll groups are not changed */
rqpair.qpair.qid = 0;
result = spdk_nvmf_rdma_get_optimal_poll_group(&rqpair.qpair);
CU_ASSERT(result == groups[TEST_GROUPS_COUNT - 1]);
CU_ASSERT(rtransport.conn_sched.next_admin_pg == rgroups[TEST_GROUPS_COUNT - 1]);
CU_ASSERT(rtransport.conn_sched.next_io_pg == rgroups[TEST_GROUPS_COUNT - 1]);
rqpair.qpair.qid = 1;
result = spdk_nvmf_rdma_get_optimal_poll_group(&rqpair.qpair);
CU_ASSERT(result == groups[TEST_GROUPS_COUNT - 1]);
CU_ASSERT(rtransport.conn_sched.next_admin_pg == rgroups[TEST_GROUPS_COUNT - 1]);
CU_ASSERT(rtransport.conn_sched.next_io_pg == rgroups[TEST_GROUPS_COUNT - 1]);
/* Remove the last poll group, check that pointers are NULL */
spdk_nvmf_rdma_poll_group_destroy(groups[TEST_GROUPS_COUNT - 1]);
CU_ASSERT(rtransport.conn_sched.next_admin_pg == NULL);
CU_ASSERT(rtransport.conn_sched.next_io_pg == NULL);
/* Request optimal poll group, result must be NULL */
rqpair.qpair.qid = 0;
result = spdk_nvmf_rdma_get_optimal_poll_group(&rqpair.qpair);
CU_ASSERT(result == NULL);
rqpair.qpair.qid = 1;
result = spdk_nvmf_rdma_get_optimal_poll_group(&rqpair.qpair);
CU_ASSERT(result == NULL);
pthread_mutex_destroy(&rtransport.lock);
}
#undef TEST_GROUPS_COUNT
static void
test_spdk_nvmf_rdma_request_parse_sgl_with_md(void)
{
struct spdk_nvmf_rdma_transport rtransport;
struct spdk_nvmf_rdma_device device;
struct spdk_nvmf_rdma_request rdma_req = {};
struct spdk_nvmf_rdma_recv recv;
struct spdk_nvmf_rdma_poll_group group;
struct spdk_nvmf_rdma_qpair rqpair;
struct spdk_nvmf_rdma_poller poller;
union nvmf_c2h_msg cpl;
union nvmf_h2c_msg cmd;
struct spdk_nvme_sgl_descriptor *sgl;
struct spdk_nvme_sgl_descriptor sgl_desc[SPDK_NVMF_MAX_SGL_ENTRIES] = {{0}};
struct spdk_nvmf_rdma_request_data data;
struct spdk_nvmf_transport_pg_cache_buf buffer;
struct spdk_nvmf_transport_pg_cache_buf *buffer_ptr;
const uint32_t data_bs = 512;
const uint32_t md_size = 8;
int rc, i;
void *aligned_buffer;
data.wr.sg_list = data.sgl;
STAILQ_INIT(&group.group.buf_cache);
group.group.buf_cache_size = 0;
group.group.buf_cache_count = 0;
group.group.transport = &rtransport.transport;
STAILQ_INIT(&group.retired_bufs);
poller.group = &group;
rqpair.poller = &poller;
rqpair.max_send_sge = SPDK_NVMF_MAX_SGL_ENTRIES;
sgl = &cmd.nvme_cmd.dptr.sgl1;
rdma_req.recv = &recv;
rdma_req.req.cmd = &cmd;
rdma_req.req.rsp = &cpl;
rdma_req.data.wr.sg_list = rdma_req.data.sgl;
rdma_req.req.qpair = &rqpair.qpair;
rdma_req.req.xfer = SPDK_NVME_DATA_CONTROLLER_TO_HOST;
rtransport.transport.opts = g_rdma_ut_transport_opts;
rtransport.data_wr_pool = NULL;
rtransport.transport.data_buf_pool = NULL;
device.attr.device_cap_flags = 0;
device.map = NULL;
g_rdma_mr.lkey = 0xABCD;
sgl->keyed.key = 0xEEEE;
sgl->address = 0xFFFF;
rdma_req.recv->buf = (void *)0xDDDD;
/* Test 1: sgl type: keyed data block subtype: address */
sgl->generic.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
sgl->keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
/* Part 1: simple I/O, one SGL smaller than the transport io unit size, block size 512 */
MOCK_SET(spdk_mempool_get, (void *)0x2000);
reset_nvmf_rdma_request(&rdma_req);
spdk_dif_ctx_init(&rdma_req.req.dif.dif_ctx, data_bs + md_size, md_size, true, false,
SPDK_DIF_TYPE1, SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK,
0, 0, 0, 0, 0);
rdma_req.req.dif.dif_insert_or_strip = true;
rtransport.transport.opts.io_unit_size = data_bs * 8;
sgl->keyed.length = data_bs * 4;
rc = spdk_nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
CU_ASSERT(rc == 0);
CU_ASSERT(rdma_req.req.data_from_pool == true);
CU_ASSERT(rdma_req.req.length == data_bs * 4);
CU_ASSERT(rdma_req.req.dif.orig_length == rdma_req.req.length);
CU_ASSERT(rdma_req.req.dif.elba_length == (data_bs + md_size) * 4);
CU_ASSERT((uint64_t)rdma_req.req.data == 0x2000);
CU_ASSERT(rdma_req.data.wr.num_sge == 4);
CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
CU_ASSERT((uint64_t)rdma_req.req.buffers[0] == 0x2000);
for (i = 0; i < 4; ++i) {
CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == 0x2000 + i * (data_bs + md_size));
CU_ASSERT(rdma_req.data.wr.sg_list[i].length == data_bs);
CU_ASSERT(rdma_req.data.wr.sg_list[i].lkey == g_rdma_mr.lkey);
}
/* Part 2: simple I/O, one SGL equal to io unit size, io_unit_size is not aligned with md_size,
block size 512 */
MOCK_SET(spdk_mempool_get, (void *)0x2000);
reset_nvmf_rdma_request(&rdma_req);
spdk_dif_ctx_init(&rdma_req.req.dif.dif_ctx, data_bs + md_size, md_size, true, false,
SPDK_DIF_TYPE1, SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK,
0, 0, 0, 0, 0);
rdma_req.req.dif.dif_insert_or_strip = true;
rtransport.transport.opts.io_unit_size = data_bs * 4;
sgl->keyed.length = data_bs * 4;
rc = spdk_nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
CU_ASSERT(rc == 0);
CU_ASSERT(rdma_req.req.data_from_pool == true);
CU_ASSERT(rdma_req.req.length == data_bs * 4);
CU_ASSERT(rdma_req.req.dif.orig_length == rdma_req.req.length);
CU_ASSERT(rdma_req.req.dif.elba_length == (data_bs + md_size) * 4);
CU_ASSERT((uint64_t)rdma_req.req.data == 0x2000);
CU_ASSERT(rdma_req.data.wr.num_sge == 5);
CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
CU_ASSERT((uint64_t)rdma_req.req.buffers[0] == 0x2000);
for (i = 0; i < 3; ++i) {
CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == 0x2000 + i * (data_bs + md_size));
CU_ASSERT(rdma_req.data.wr.sg_list[i].length == data_bs);
CU_ASSERT(rdma_req.data.wr.sg_list[i].lkey == g_rdma_mr.lkey);
}
CU_ASSERT(rdma_req.data.wr.sg_list[3].addr == 0x2000 + 3 * (data_bs + md_size));
CU_ASSERT(rdma_req.data.wr.sg_list[3].length == 488);
CU_ASSERT(rdma_req.data.wr.sg_list[3].lkey == g_rdma_mr.lkey);
/* 2nd buffer consumed */
CU_ASSERT(rdma_req.data.wr.sg_list[4].addr == 0x2000);
CU_ASSERT(rdma_req.data.wr.sg_list[4].length == 24);
CU_ASSERT(rdma_req.data.wr.sg_list[4].lkey == g_rdma_mr.lkey);
/* Part 3: simple I/O, one SGL equal io unit size, io_unit_size is equal to block size 512 bytes */
MOCK_SET(spdk_mempool_get, (void *)0x2000);
reset_nvmf_rdma_request(&rdma_req);
spdk_dif_ctx_init(&rdma_req.req.dif.dif_ctx, data_bs + md_size, md_size, true, false,
SPDK_DIF_TYPE1, SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK,
0, 0, 0, 0, 0);
rdma_req.req.dif.dif_insert_or_strip = true;
rtransport.transport.opts.io_unit_size = data_bs;
sgl->keyed.length = data_bs;
rc = spdk_nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
CU_ASSERT(rc == 0);
CU_ASSERT(rdma_req.req.data_from_pool == true);
CU_ASSERT(rdma_req.req.length == data_bs);
CU_ASSERT(rdma_req.req.dif.orig_length == rdma_req.req.length);
CU_ASSERT(rdma_req.req.dif.elba_length == data_bs + md_size);
CU_ASSERT((uint64_t)rdma_req.req.data == 0x2000);
CU_ASSERT(rdma_req.data.wr.num_sge == 1);
CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
CU_ASSERT((uint64_t)rdma_req.req.buffers[0] == 0x2000);
CU_ASSERT(rdma_req.data.wr.sg_list[0].addr == 0x2000);
CU_ASSERT(rdma_req.data.wr.sg_list[0].length == data_bs);
CU_ASSERT(rdma_req.data.wr.sg_list[0].lkey == g_rdma_mr.lkey);
CU_ASSERT(rdma_req.req.iovcnt == 2);
CU_ASSERT(rdma_req.req.iov[0].iov_base == (void *)((unsigned long)0x2000));
CU_ASSERT(rdma_req.req.iov[0].iov_len == data_bs);
/* 2nd buffer consumed for metadata */
CU_ASSERT(rdma_req.req.iov[1].iov_base == (void *)((unsigned long)0x2000));
CU_ASSERT(rdma_req.req.iov[1].iov_len == md_size);
/* Part 4: simple I/O, one SGL equal io unit size, io_unit_size is aligned with md_size,
block size 512 */
MOCK_SET(spdk_mempool_get, (void *)0x2000);
reset_nvmf_rdma_request(&rdma_req);
spdk_dif_ctx_init(&rdma_req.req.dif.dif_ctx, data_bs + md_size, md_size, true, false,
SPDK_DIF_TYPE1, SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK,
0, 0, 0, 0, 0);
rdma_req.req.dif.dif_insert_or_strip = true;
rtransport.transport.opts.io_unit_size = (data_bs + md_size) * 4;
sgl->keyed.length = data_bs * 4;
rc = spdk_nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
CU_ASSERT(rc == 0);
CU_ASSERT(rdma_req.req.data_from_pool == true);
CU_ASSERT(rdma_req.req.length == data_bs * 4);
CU_ASSERT(rdma_req.req.dif.orig_length == rdma_req.req.length);
CU_ASSERT(rdma_req.req.dif.elba_length == (data_bs + md_size) * 4);
CU_ASSERT((uint64_t)rdma_req.req.data == 0x2000);
CU_ASSERT(rdma_req.data.wr.num_sge == 4);
CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
CU_ASSERT((uint64_t)rdma_req.req.buffers[0] == 0x2000);
for (i = 0; i < 4; ++i) {
CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == 0x2000 + i * (data_bs + md_size));
CU_ASSERT(rdma_req.data.wr.sg_list[i].length == data_bs);
CU_ASSERT(rdma_req.data.wr.sg_list[i].lkey == g_rdma_mr.lkey);
}
/* Part 5: simple I/O, one SGL equal to 2x io unit size, io_unit_size is aligned with md_size,
block size 512 */
MOCK_SET(spdk_mempool_get, (void *)0x2000);
reset_nvmf_rdma_request(&rdma_req);
spdk_dif_ctx_init(&rdma_req.req.dif.dif_ctx, data_bs + md_size, md_size, true, false,
SPDK_DIF_TYPE1, SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK,
0, 0, 0, 0, 0);
rdma_req.req.dif.dif_insert_or_strip = true;
rtransport.transport.opts.io_unit_size = (data_bs + md_size) * 2;
sgl->keyed.length = data_bs * 4;
rc = spdk_nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
CU_ASSERT(rc == 0);
CU_ASSERT(rdma_req.req.data_from_pool == true);
CU_ASSERT(rdma_req.req.length == data_bs * 4);
CU_ASSERT(rdma_req.req.dif.orig_length == rdma_req.req.length);
CU_ASSERT(rdma_req.req.dif.elba_length == (data_bs + md_size) * 4);
CU_ASSERT((uint64_t)rdma_req.req.data == 0x2000);
CU_ASSERT(rdma_req.data.wr.num_sge == 4);
CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
CU_ASSERT((uint64_t)rdma_req.req.buffers[0] == 0x2000);
for (i = 0; i < 2; ++i) {
CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == 0x2000 + i * (data_bs + md_size));
CU_ASSERT(rdma_req.data.wr.sg_list[i].length == data_bs);
}
for (i = 0; i < 2; ++i) {
CU_ASSERT(rdma_req.data.wr.sg_list[i + 2].addr == 0x2000 + i * (data_bs + md_size));
CU_ASSERT(rdma_req.data.wr.sg_list[i + 2].length == data_bs);
}
/* Part 6: simple I/O, one SGL larger than the transport io unit size, io_unit_size is not aligned to md_size,
block size 512 */
MOCK_SET(spdk_mempool_get, (void *)0x2000);
reset_nvmf_rdma_request(&rdma_req);
spdk_dif_ctx_init(&rdma_req.req.dif.dif_ctx, data_bs + md_size, md_size, true, false,
SPDK_DIF_TYPE1, SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK,
0, 0, 0, 0, 0);
rdma_req.req.dif.dif_insert_or_strip = true;
rtransport.transport.opts.io_unit_size = data_bs * 4;
sgl->keyed.length = data_bs * 6;
rc = spdk_nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
CU_ASSERT(rc == 0);
CU_ASSERT(rdma_req.req.data_from_pool == true);
CU_ASSERT(rdma_req.req.length == data_bs * 6);
CU_ASSERT(rdma_req.req.dif.orig_length == rdma_req.req.length);
CU_ASSERT(rdma_req.req.dif.elba_length == (data_bs + md_size) * 6);
CU_ASSERT((uint64_t)rdma_req.req.data == 0x2000);
CU_ASSERT(rdma_req.data.wr.num_sge == 7);
CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
CU_ASSERT((uint64_t)rdma_req.req.buffers[0] == 0x2000);
for (i = 0; i < 3; ++i) {
CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == 0x2000 + i * (data_bs + md_size));
CU_ASSERT(rdma_req.data.wr.sg_list[i].length == data_bs);
CU_ASSERT(rdma_req.data.wr.sg_list[i].lkey == g_rdma_mr.lkey);
}
CU_ASSERT(rdma_req.data.wr.sg_list[3].addr == 0x2000 + 3 * (data_bs + md_size));
CU_ASSERT(rdma_req.data.wr.sg_list[3].length == 488);
CU_ASSERT(rdma_req.data.wr.sg_list[3].lkey == g_rdma_mr.lkey);
/* 2nd IO buffer consumed */
CU_ASSERT(rdma_req.data.wr.sg_list[4].addr == 0x2000);
CU_ASSERT(rdma_req.data.wr.sg_list[4].length == 24);
CU_ASSERT(rdma_req.data.wr.sg_list[4].lkey == g_rdma_mr.lkey);
CU_ASSERT(rdma_req.data.wr.sg_list[5].addr == 0x2000 + 24 + md_size);
CU_ASSERT(rdma_req.data.wr.sg_list[5].length == 512);
CU_ASSERT(rdma_req.data.wr.sg_list[5].lkey == g_rdma_mr.lkey);
CU_ASSERT(rdma_req.data.wr.sg_list[6].addr == 0x2000 + 24 + 512 + md_size * 2);
CU_ASSERT(rdma_req.data.wr.sg_list[6].length == 512);
CU_ASSERT(rdma_req.data.wr.sg_list[6].lkey == g_rdma_mr.lkey);
/* Part 7: simple I/O, number of SGL entries exceeds the number of entries
one WR can hold. Additional WR is chained */
MOCK_SET(spdk_mempool_get, &data);
aligned_buffer = (void *)((uintptr_t)((char *)&data + NVMF_DATA_BUFFER_MASK) &
~NVMF_DATA_BUFFER_MASK);
reset_nvmf_rdma_request(&rdma_req);
spdk_dif_ctx_init(&rdma_req.req.dif.dif_ctx, data_bs + md_size, md_size, true, false,
SPDK_DIF_TYPE1, SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK,
0, 0, 0, 0, 0);
rdma_req.req.dif.dif_insert_or_strip = true;
rtransport.transport.opts.io_unit_size = data_bs * 16;
sgl->keyed.length = data_bs * 16;
rc = spdk_nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
CU_ASSERT(rc == 0);
CU_ASSERT(rdma_req.req.data_from_pool == true);
CU_ASSERT(rdma_req.req.length == data_bs * 16);
CU_ASSERT(rdma_req.req.iovcnt == 2);
CU_ASSERT(rdma_req.req.dif.orig_length == rdma_req.req.length);
CU_ASSERT(rdma_req.req.dif.elba_length == (data_bs + md_size) * 16);
CU_ASSERT(rdma_req.req.data == aligned_buffer);
CU_ASSERT(rdma_req.data.wr.num_sge == 16);
CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
/* additional wr from pool */
CU_ASSERT(rdma_req.data.wr.next == (void *)&data.wr);
CU_ASSERT(rdma_req.data.wr.next->num_sge == 1);
CU_ASSERT(rdma_req.data.wr.next->next == &rdma_req.rsp.wr);
/* Part 8: simple I/O, data with metadata do not fit to 1 io_buffer */
MOCK_SET(spdk_mempool_get, (void *)0x2000);
reset_nvmf_rdma_request(&rdma_req);
spdk_dif_ctx_init(&rdma_req.req.dif.dif_ctx, data_bs + md_size, md_size, true, false,
SPDK_DIF_TYPE1, SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK,
0, 0, 0, 0, 0);
rdma_req.req.dif.dif_insert_or_strip = true;
rtransport.transport.opts.io_unit_size = 516;
sgl->keyed.length = data_bs * 2;
rc = spdk_nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
CU_ASSERT(rc == 0);
CU_ASSERT(rdma_req.req.data_from_pool == true);
CU_ASSERT(rdma_req.req.length == data_bs * 2);
CU_ASSERT(rdma_req.req.iovcnt == 3);
CU_ASSERT(rdma_req.req.dif.orig_length == rdma_req.req.length);
CU_ASSERT(rdma_req.req.dif.elba_length == (data_bs + md_size) * 2);
CU_ASSERT(rdma_req.req.data == (void *)0x2000);
CU_ASSERT(rdma_req.data.wr.num_sge == 2);
CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
CU_ASSERT(rdma_req.data.wr.sg_list[0].addr == 0x2000);
CU_ASSERT(rdma_req.data.wr.sg_list[0].length == 512);
CU_ASSERT(rdma_req.data.wr.sg_list[0].lkey == g_rdma_mr.lkey);
/* 2nd IO buffer consumed, offset 4 bytes due to part of the metadata
is located at the beginning of that buffer */
CU_ASSERT(rdma_req.data.wr.sg_list[1].addr == 0x2000 + 4);
CU_ASSERT(rdma_req.data.wr.sg_list[1].length == 512);
CU_ASSERT(rdma_req.data.wr.sg_list[1].lkey == g_rdma_mr.lkey);
/* Test 9 dealing with a buffer split over two Memory Regions */
MOCK_SET(spdk_mempool_get, (void *)&buffer);
reset_nvmf_rdma_request(&rdma_req);
spdk_dif_ctx_init(&rdma_req.req.dif.dif_ctx, data_bs + md_size, md_size, true, false,
SPDK_DIF_TYPE1, SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK,
0, 0, 0, 0, 0);
rdma_req.req.dif.dif_insert_or_strip = true;
rtransport.transport.opts.io_unit_size = data_bs * 4;
sgl->keyed.length = data_bs * 2;
g_mr_size = data_bs;
g_mr_next_size = rtransport.transport.opts.io_unit_size;
rc = spdk_nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
SPDK_CU_ASSERT_FATAL(rc == 0);
CU_ASSERT(rdma_req.req.data_from_pool == true);
CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size / 2);
CU_ASSERT((uint64_t)rdma_req.req.data == (((uint64_t)&buffer + NVMF_DATA_BUFFER_MASK) &
~NVMF_DATA_BUFFER_MASK));
CU_ASSERT(rdma_req.data.wr.num_sge == 2);
CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
CU_ASSERT(rdma_req.req.buffers[0] == &buffer);
for (i = 0; i < 2; i++) {
CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == (uint64_t)rdma_req.req.data + i *
(data_bs + md_size));
CU_ASSERT(rdma_req.data.wr.sg_list[i].length == data_bs);
CU_ASSERT(rdma_req.data.wr.sg_list[i].lkey == g_rdma_mr.lkey);
}
buffer_ptr = STAILQ_FIRST(&group.retired_bufs);
CU_ASSERT(buffer_ptr == &buffer);
STAILQ_REMOVE(&group.retired_bufs, buffer_ptr, spdk_nvmf_transport_pg_cache_buf, link);
CU_ASSERT(STAILQ_EMPTY(&group.retired_bufs));
g_mr_size = 0;
g_mr_next_size = 0;
/* Test 2: Multi SGL */
sgl->generic.type = SPDK_NVME_SGL_TYPE_LAST_SEGMENT;
sgl->unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET;
sgl->address = 0;
rdma_req.recv->buf = (void *)&sgl_desc;
MOCK_SET(spdk_mempool_get, &data);
aligned_buffer = (void *)((uintptr_t)((char *)&data + NVMF_DATA_BUFFER_MASK) &
~NVMF_DATA_BUFFER_MASK);
/* part 1: 2 segments each with 1 wr. io_unit_size is aligned with data_bs + md_size */
reset_nvmf_rdma_request(&rdma_req);
spdk_dif_ctx_init(&rdma_req.req.dif.dif_ctx, data_bs + md_size, md_size, true, false,
SPDK_DIF_TYPE1,
SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK, 0, 0, 0, 0, 0);
rdma_req.req.dif.dif_insert_or_strip = true;
rtransport.transport.opts.io_unit_size = (data_bs + md_size) * 4;
sgl->unkeyed.length = 2 * sizeof(struct spdk_nvme_sgl_descriptor);
for (i = 0; i < 2; i++) {
sgl_desc[i].keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
sgl_desc[i].keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
sgl_desc[i].keyed.length = data_bs * 4;
sgl_desc[i].address = 0x4000 + i * data_bs * 4;
sgl_desc[i].keyed.key = 0x44;
}
rc = spdk_nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
CU_ASSERT(rc == 0);
CU_ASSERT(rdma_req.req.data_from_pool == true);
CU_ASSERT(rdma_req.req.length == data_bs * 4 * 2);
CU_ASSERT(rdma_req.req.dif.orig_length == rdma_req.req.length);
CU_ASSERT(rdma_req.req.dif.elba_length == (data_bs + md_size) * 4 * 2);
CU_ASSERT(rdma_req.data.wr.num_sge == 4);
for (i = 0; i < 4; ++i) {
CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == (uintptr_t)((unsigned char *)aligned_buffer) + i *
(data_bs + md_size));
CU_ASSERT(rdma_req.data.wr.sg_list[i].length == data_bs);
}
CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0x44);
CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0x4000);
CU_ASSERT(rdma_req.data.wr.next == &data.wr);
CU_ASSERT(data.wr.wr.rdma.rkey == 0x44);
CU_ASSERT(data.wr.wr.rdma.remote_addr == 0x4000 + data_bs * 4);
CU_ASSERT(data.wr.num_sge == 4);
for (i = 0; i < 4; ++i) {
CU_ASSERT(data.wr.sg_list[i].addr == (uintptr_t)((unsigned char *)aligned_buffer) + i *
(data_bs + md_size));
CU_ASSERT(data.wr.sg_list[i].length == data_bs);
}
CU_ASSERT(data.wr.next == &rdma_req.rsp.wr);
}
int main(int argc, char **argv)
{
CU_pSuite suite = NULL;
unsigned int num_failures;
CU_set_error_action(CUEA_ABORT);
CU_initialize_registry();
suite = CU_add_suite("nvmf", NULL, NULL);
CU_ADD_TEST(suite, test_spdk_nvmf_rdma_request_parse_sgl);
CU_ADD_TEST(suite, test_spdk_nvmf_rdma_request_process);
CU_ADD_TEST(suite, test_spdk_nvmf_rdma_get_optimal_poll_group);
CU_ADD_TEST(suite, test_spdk_nvmf_rdma_request_parse_sgl_with_md);
CU_basic_set_mode(CU_BRM_VERBOSE);
CU_basic_run_tests();
num_failures = CU_get_number_of_failures();
CU_cleanup_registry();
return num_failures;
}