Spdk/examples/nvme/reconnect/reconnect.c

1150 lines
28 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright (C) 2019 Intel Corporation. All rights reserved.
* Copyright (c) 2020 Mellanox Technologies LTD. All rights reserved.
*
* Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
*/
#include "spdk/stdinc.h"
#include "spdk/env.h"
#include "spdk/nvme.h"
#include "spdk/queue.h"
#include "spdk/string.h"
#include "spdk/util.h"
#include "spdk/log.h"
#include "spdk/likely.h"
struct ctrlr_entry {
struct spdk_nvme_ctrlr *ctrlr;
struct spdk_nvme_transport_id failover_trid;
enum spdk_nvme_transport_type trtype;
TAILQ_ENTRY(ctrlr_entry) link;
char name[1024];
int num_resets;
};
struct ns_entry {
struct spdk_nvme_ctrlr *ctrlr;
struct spdk_nvme_ns *ns;
TAILQ_ENTRY(ns_entry) link;
uint32_t io_size_blocks;
uint32_t num_io_requests;
uint64_t size_in_ios;
uint32_t block_size;
uint32_t io_flags;
char name[1024];
};
struct ns_worker_ctx {
struct ns_entry *entry;
uint64_t io_completed;
uint64_t current_queue_depth;
uint64_t offset_in_ios;
bool is_draining;
int num_qpairs;
struct spdk_nvme_qpair **qpair;
int last_qpair;
TAILQ_ENTRY(ns_worker_ctx) link;
};
struct perf_task {
struct ns_worker_ctx *ns_ctx;
struct iovec iov;
bool is_read;
};
struct worker_thread {
TAILQ_HEAD(, ns_worker_ctx) ns_ctx;
TAILQ_ENTRY(worker_thread) link;
unsigned lcore;
};
/* For basic reset handling. */
static int g_max_ctrlr_resets = 15;
static TAILQ_HEAD(, ctrlr_entry) g_controllers = TAILQ_HEAD_INITIALIZER(g_controllers);
static TAILQ_HEAD(, ns_entry) g_namespaces = TAILQ_HEAD_INITIALIZER(g_namespaces);
static int g_num_namespaces = 0;
static TAILQ_HEAD(, worker_thread) g_workers = TAILQ_HEAD_INITIALIZER(g_workers);
static int g_num_workers = 0;
static uint64_t g_tsc_rate;
static uint32_t g_io_align = 0x200;
static uint32_t g_io_size_bytes;
static uint32_t g_max_io_size_blocks;
static int g_rw_percentage;
static int g_is_random;
static int g_queue_depth;
static int g_time_in_sec;
static uint32_t g_max_completions;
static int g_dpdk_mem;
static bool g_warn;
static uint32_t g_keep_alive_timeout_in_ms = 0;
static uint8_t g_transport_retry_count = 4;
static uint8_t g_transport_ack_timeout = 0; /* disabled */
static bool g_dpdk_mem_single_seg = false;
static const char *g_core_mask;
struct trid_entry {
struct spdk_nvme_transport_id trid;
struct spdk_nvme_transport_id failover_trid;
TAILQ_ENTRY(trid_entry) tailq;
};
static TAILQ_HEAD(, trid_entry) g_trid_list = TAILQ_HEAD_INITIALIZER(g_trid_list);
static inline void task_complete(struct perf_task *task);
static void submit_io(struct ns_worker_ctx *ns_ctx, int queue_depth);
static void io_complete(void *ctx, const struct spdk_nvme_cpl *cpl);
static void
nvme_setup_payload(struct perf_task *task)
{
/* maximum extended lba format size from all active namespace,
* it's same with g_io_size_bytes for namespace without metadata.
*/
task->iov.iov_base = spdk_dma_zmalloc(g_io_size_bytes, g_io_align, NULL);
task->iov.iov_len = g_io_size_bytes;
if (task->iov.iov_base == NULL) {
fprintf(stderr, "task->buf spdk_dma_zmalloc failed\n");
exit(1);
}
}
static int
nvme_submit_io(struct perf_task *task, struct ns_worker_ctx *ns_ctx,
struct ns_entry *entry, uint64_t offset_in_ios)
{
uint64_t lba;
int qp_num;
lba = offset_in_ios * entry->io_size_blocks;
qp_num = ns_ctx->last_qpair;
ns_ctx->last_qpair++;
if (ns_ctx->last_qpair == ns_ctx->num_qpairs) {
ns_ctx->last_qpair = 0;
}
if (task->is_read) {
return spdk_nvme_ns_cmd_read(entry->ns, ns_ctx->qpair[qp_num],
task->iov.iov_base, lba,
entry->io_size_blocks, io_complete,
task, entry->io_flags);
}
return spdk_nvme_ns_cmd_write(entry->ns, ns_ctx->qpair[qp_num],
task->iov.iov_base, lba,
entry->io_size_blocks, io_complete,
task, entry->io_flags);
}
static void
nvme_check_io(struct ns_worker_ctx *ns_ctx)
{
int i, rc;
for (i = 0; i < ns_ctx->num_qpairs; i++) {
rc = spdk_nvme_qpair_process_completions(ns_ctx->qpair[i], g_max_completions);
/* The transport level qpair is failed and we need to reconnect it. */
if (spdk_unlikely(rc == -ENXIO)) {
rc = spdk_nvme_ctrlr_reconnect_io_qpair(ns_ctx->qpair[i]);
/* successful reconnect */
if (rc == 0) {
continue;
} else if (rc == -ENXIO) {
/* This means the controller is failed. Defer to it to restore the qpair. */
continue;
} else {
/*
* We were unable to restore the qpair on this attempt. We don't
* really know why. For naive handling, just keep trying.
* TODO: add a retry limit, and destroy the qpair after x iterations.
*/
fprintf(stderr, "qpair failed and we were unable to recover it.\n");
}
} else if (spdk_unlikely(rc < 0)) {
fprintf(stderr, "Received an unknown error processing completions.\n");
exit(1);
}
}
}
/*
* TODO: If a controller has multiple namespaces, they could all use the same queue.
* For now, give each namespace/thread combination its own queue.
*/
static int
nvme_init_ns_worker_ctx(struct ns_worker_ctx *ns_ctx)
{
struct spdk_nvme_io_qpair_opts opts;
struct ns_entry *entry = ns_ctx->entry;
int i;
ns_ctx->num_qpairs = 1;
ns_ctx->qpair = calloc(ns_ctx->num_qpairs, sizeof(struct spdk_nvme_qpair *));
if (!ns_ctx->qpair) {
return -1;
}
spdk_nvme_ctrlr_get_default_io_qpair_opts(entry->ctrlr, &opts, sizeof(opts));
if (opts.io_queue_requests < entry->num_io_requests) {
opts.io_queue_requests = entry->num_io_requests;
}
for (i = 0; i < ns_ctx->num_qpairs; i++) {
ns_ctx->qpair[i] = spdk_nvme_ctrlr_alloc_io_qpair(entry->ctrlr, &opts,
sizeof(opts));
if (!ns_ctx->qpair[i]) {
printf("ERROR: spdk_nvme_ctrlr_alloc_io_qpair failed\n");
return -1;
}
}
return 0;
}
static void
nvme_cleanup_ns_worker_ctx(struct ns_worker_ctx *ns_ctx)
{
int i;
for (i = 0; i < ns_ctx->num_qpairs; i++) {
spdk_nvme_ctrlr_free_io_qpair(ns_ctx->qpair[i]);
}
free(ns_ctx->qpair);
}
static void
build_nvme_name(char *name, size_t length, struct spdk_nvme_ctrlr *ctrlr)
{
const struct spdk_nvme_transport_id *trid;
trid = spdk_nvme_ctrlr_get_transport_id(ctrlr);
switch (trid->trtype) {
case SPDK_NVME_TRANSPORT_RDMA:
snprintf(name, length, "RDMA (addr:%s subnqn:%s)", trid->traddr, trid->subnqn);
break;
case SPDK_NVME_TRANSPORT_TCP:
snprintf(name, length, "TCP (addr:%s subnqn:%s)", trid->traddr, trid->subnqn);
break;
case SPDK_NVME_TRANSPORT_VFIOUSER:
snprintf(name, length, "VFIOUSER (%s)", trid->traddr);
break;
case SPDK_NVME_TRANSPORT_CUSTOM:
snprintf(name, length, "CUSTOM (%s)", trid->traddr);
break;
default:
fprintf(stderr, "Unknown transport type %d\n", trid->trtype);
break;
}
}
static void
register_ns(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns)
{
struct ns_entry *entry;
const struct spdk_nvme_ctrlr_data *cdata;
uint32_t max_xfer_size, entries, sector_size;
uint64_t ns_size;
struct spdk_nvme_io_qpair_opts opts;
cdata = spdk_nvme_ctrlr_get_data(ctrlr);
if (!spdk_nvme_ns_is_active(ns)) {
printf("Controller %-20.20s (%-20.20s): Skipping inactive NS %u\n",
cdata->mn, cdata->sn,
spdk_nvme_ns_get_id(ns));
g_warn = true;
return;
}
ns_size = spdk_nvme_ns_get_size(ns);
sector_size = spdk_nvme_ns_get_sector_size(ns);
if (ns_size < g_io_size_bytes || sector_size > g_io_size_bytes) {
printf("WARNING: controller %-20.20s (%-20.20s) ns %u has invalid "
"ns size %" PRIu64 " / block size %u for I/O size %u\n",
cdata->mn, cdata->sn, spdk_nvme_ns_get_id(ns),
ns_size, spdk_nvme_ns_get_sector_size(ns), g_io_size_bytes);
g_warn = true;
return;
}
max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
spdk_nvme_ctrlr_get_default_io_qpair_opts(ctrlr, &opts, sizeof(opts));
/* NVMe driver may add additional entries based on
* stripe size and maximum transfer size, we assume
* 1 more entry be used for stripe.
*/
entries = (g_io_size_bytes - 1) / max_xfer_size + 2;
if ((g_queue_depth * entries) > opts.io_queue_size) {
printf("controller IO queue size %u less than required\n",
opts.io_queue_size);
printf("Consider using lower queue depth or small IO size because "
"IO requests may be queued at the NVMe driver.\n");
g_warn = true;
}
/* For requests which have children requests, parent request itself
* will also occupy 1 entry.
*/
entries += 1;
entry = calloc(1, sizeof(struct ns_entry));
if (entry == NULL) {
perror("ns_entry malloc");
exit(1);
}
entry->ctrlr = ctrlr;
entry->ns = ns;
entry->num_io_requests = g_queue_depth * entries;
entry->size_in_ios = ns_size / g_io_size_bytes;
entry->io_size_blocks = g_io_size_bytes / sector_size;
entry->block_size = spdk_nvme_ns_get_sector_size(ns);
if (g_max_io_size_blocks < entry->io_size_blocks) {
g_max_io_size_blocks = entry->io_size_blocks;
}
build_nvme_name(entry->name, sizeof(entry->name), ctrlr);
g_num_namespaces++;
TAILQ_INSERT_TAIL(&g_namespaces, entry, link);
}
static void
unregister_namespaces(void)
{
struct ns_entry *entry, *tmp;
TAILQ_FOREACH_SAFE(entry, &g_namespaces, link, tmp) {
TAILQ_REMOVE(&g_namespaces, entry, link);
free(entry);
}
}
static void
register_ctrlr(struct spdk_nvme_ctrlr *ctrlr, struct trid_entry *trid_entry)
{
struct spdk_nvme_ns *ns;
struct ctrlr_entry *entry = calloc(1, sizeof(struct ctrlr_entry));
const struct spdk_nvme_transport_id *ctrlr_trid;
uint32_t nsid;
if (entry == NULL) {
perror("ctrlr_entry malloc");
exit(1);
}
ctrlr_trid = spdk_nvme_ctrlr_get_transport_id(ctrlr);
assert(ctrlr_trid != NULL);
/* each controller needs a unique failover trid. */
entry->failover_trid = trid_entry->failover_trid;
/*
* Users are allowed to leave the trid subnqn blank or specify a discovery controller subnqn.
* In those cases, the controller subnqn will not equal the trid_entry subnqn and, by association,
* the failover_trid subnqn.
* When we do failover, we want to reconnect to the same nqn so explicitly set the failover nqn to
* the ctrlr nqn here.
*/
snprintf(entry->failover_trid.subnqn, SPDK_NVMF_NQN_MAX_LEN + 1, "%s", ctrlr_trid->subnqn);
build_nvme_name(entry->name, sizeof(entry->name), ctrlr);
entry->ctrlr = ctrlr;
entry->trtype = trid_entry->trid.trtype;
TAILQ_INSERT_TAIL(&g_controllers, entry, link);
for (nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
nsid != 0; nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid)) {
ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
if (ns == NULL) {
continue;
}
register_ns(ctrlr, ns);
}
}
static __thread unsigned int seed = 0;
static inline void
submit_single_io(struct perf_task *task)
{
uint64_t offset_in_ios;
int rc;
struct ns_worker_ctx *ns_ctx = task->ns_ctx;
struct ns_entry *entry = ns_ctx->entry;
if (g_is_random) {
offset_in_ios = rand_r(&seed) % entry->size_in_ios;
} else {
offset_in_ios = ns_ctx->offset_in_ios++;
if (ns_ctx->offset_in_ios == entry->size_in_ios) {
ns_ctx->offset_in_ios = 0;
}
}
if ((g_rw_percentage == 100) ||
(g_rw_percentage != 0 && ((rand_r(&seed) % 100) < g_rw_percentage))) {
task->is_read = true;
} else {
task->is_read = false;
}
rc = nvme_submit_io(task, ns_ctx, entry, offset_in_ios);
if (spdk_unlikely(rc != 0)) {
fprintf(stderr, "starting I/O failed\n");
} else {
ns_ctx->current_queue_depth++;
}
}
static inline void
task_complete(struct perf_task *task)
{
struct ns_worker_ctx *ns_ctx;
ns_ctx = task->ns_ctx;
ns_ctx->current_queue_depth--;
ns_ctx->io_completed++;
/*
* is_draining indicates when time has expired for the test run
* and we are just waiting for the previously submitted I/O
* to complete. In this case, do not submit a new I/O to replace
* the one just completed.
*/
if (spdk_unlikely(ns_ctx->is_draining)) {
spdk_dma_free(task->iov.iov_base);
free(task);
} else {
submit_single_io(task);
}
}
static void
io_complete(void *ctx, const struct spdk_nvme_cpl *cpl)
{
struct perf_task *task = ctx;
if (spdk_unlikely(spdk_nvme_cpl_is_error(cpl))) {
fprintf(stderr, "%s completed with error (sct=%d, sc=%d)\n",
task->is_read ? "Read" : "Write",
cpl->status.sct, cpl->status.sc);
}
task_complete(task);
}
static void
check_io(struct ns_worker_ctx *ns_ctx)
{
nvme_check_io(ns_ctx);
}
static struct perf_task *
allocate_task(struct ns_worker_ctx *ns_ctx, int queue_depth)
{
struct perf_task *task;
task = calloc(1, sizeof(*task));
if (task == NULL) {
fprintf(stderr, "Out of memory allocating tasks\n");
exit(1);
}
nvme_setup_payload(task);
task->ns_ctx = ns_ctx;
return task;
}
static void
submit_io(struct ns_worker_ctx *ns_ctx, int queue_depth)
{
struct perf_task *task;
while (queue_depth-- > 0) {
task = allocate_task(ns_ctx, queue_depth);
submit_single_io(task);
}
}
static int
work_fn(void *arg)
{
uint64_t tsc_end;
struct worker_thread *worker = (struct worker_thread *)arg;
struct ns_worker_ctx *ns_ctx = NULL;
uint32_t unfinished_ns_ctx;
printf("Starting thread on core %u\n", worker->lcore);
/* Allocate queue pairs for each namespace. */
TAILQ_FOREACH(ns_ctx, &worker->ns_ctx, link) {
if (nvme_init_ns_worker_ctx(ns_ctx) != 0) {
printf("ERROR: init_ns_worker_ctx() failed\n");
return 1;
}
}
tsc_end = spdk_get_ticks() + g_time_in_sec * g_tsc_rate;
/* Submit initial I/O for each namespace. */
TAILQ_FOREACH(ns_ctx, &worker->ns_ctx, link) {
submit_io(ns_ctx, g_queue_depth);
}
while (1) {
/*
* Check for completed I/O for each controller. A new
* I/O will be submitted in the io_complete callback
* to replace each I/O that is completed.
*/
TAILQ_FOREACH(ns_ctx, &worker->ns_ctx, link) {
check_io(ns_ctx);
}
if (spdk_get_ticks() > tsc_end) {
break;
}
}
/* drain the io of each ns_ctx in round robin to make the fairness */
do {
unfinished_ns_ctx = 0;
TAILQ_FOREACH(ns_ctx, &worker->ns_ctx, link) {
/* first time will enter into this if case */
if (!ns_ctx->is_draining) {
ns_ctx->is_draining = true;
}
if (ns_ctx->current_queue_depth > 0) {
check_io(ns_ctx);
if (ns_ctx->current_queue_depth == 0) {
nvme_cleanup_ns_worker_ctx(ns_ctx);
} else {
unfinished_ns_ctx++;
}
}
}
} while (unfinished_ns_ctx > 0);
return 0;
}
static void
usage(char *program_name)
{
printf("%s options", program_name);
printf("\n");
printf("\t[-q io depth]\n");
printf("\t[-o io size in bytes]\n");
printf("\t[-w io pattern type, must be one of\n");
printf("\t\t(read, write, randread, randwrite, rw, randrw)]\n");
printf("\t[-M rwmixread (100 for reads, 0 for writes)]\n");
printf("\t[-t time in seconds]\n");
printf("\t[-c core mask for I/O submission/completion.]\n");
printf("\t\t(default: 1)\n");
printf("\t[-r Transport ID for NVMeoF]\n");
printf("\t Format: 'key:value [key:value] ...'\n");
printf("\t Keys:\n");
printf("\t trtype Transport type (e.g. RDMA)\n");
printf("\t adrfam Address family (e.g. IPv4, IPv6)\n");
printf("\t traddr Transport address (e.g. 192.168.100.8 for RDMA)\n");
printf("\t trsvcid Transport service identifier (e.g. 4420)\n");
printf("\t subnqn Subsystem NQN (default: %s)\n", SPDK_NVMF_DISCOVERY_NQN);
printf("\t alt_traddr (Optional) Alternative Transport address for failover.\n");
printf("\t Example: -r 'trtype:RDMA adrfam:IPv4 traddr:192.168.100.8 trsvcid:4420' for NVMeoF\n");
printf("\t[-k keep alive timeout period in millisecond]\n");
printf("\t[-s DPDK huge memory size in MB.]\n");
printf("\t[-m max completions per poll]\n");
printf("\t\t(default: 0 - unlimited)\n");
printf("\t[-i shared memory group ID]\n");
printf("\t[-A transport ACK timeout]\n");
printf("\t[-R transport retry count]\n");
printf("\t");
spdk_log_usage(stdout, "-T");
#ifdef DEBUG
printf("\t[-G enable debug logging]\n");
#else
printf("\t[-G enable debug logging (flag disabled, must reconfigure with --enable-debug)]\n");
#endif
}
static void
unregister_trids(void)
{
struct trid_entry *trid_entry, *tmp;
TAILQ_FOREACH_SAFE(trid_entry, &g_trid_list, tailq, tmp) {
TAILQ_REMOVE(&g_trid_list, trid_entry, tailq);
free(trid_entry);
}
}
static int
add_trid(const char *trid_str)
{
struct trid_entry *trid_entry;
struct spdk_nvme_transport_id *trid;
char *alt_traddr;
int len;
trid_entry = calloc(1, sizeof(*trid_entry));
if (trid_entry == NULL) {
return -1;
}
trid = &trid_entry->trid;
snprintf(trid->subnqn, sizeof(trid->subnqn), "%s", SPDK_NVMF_DISCOVERY_NQN);
if (spdk_nvme_transport_id_parse(trid, trid_str) != 0) {
fprintf(stderr, "Invalid transport ID format '%s'\n", trid_str);
free(trid_entry);
return 1;
}
trid_entry->failover_trid = trid_entry->trid;
alt_traddr = strcasestr(trid_str, "alt_traddr:");
if (alt_traddr) {
alt_traddr += strlen("alt_traddr:");
len = strcspn(alt_traddr, " \t\n");
if (len > SPDK_NVMF_TRADDR_MAX_LEN) {
fprintf(stderr, "The failover traddr %s is too long.\n", alt_traddr);
free(trid_entry);
return -1;
}
snprintf(trid_entry->failover_trid.traddr, SPDK_NVMF_TRADDR_MAX_LEN + 1, "%s", alt_traddr);
}
TAILQ_INSERT_TAIL(&g_trid_list, trid_entry, tailq);
return 0;
}
static int
parse_args(int argc, char **argv)
{
struct trid_entry *trid_entry, *trid_entry_tmp;
const char *workload_type;
int op;
bool mix_specified = false;
long int val;
int rc;
/* default value */
g_queue_depth = 0;
g_io_size_bytes = 0;
workload_type = NULL;
g_time_in_sec = 0;
g_rw_percentage = -1;
g_core_mask = NULL;
g_max_completions = 0;
while ((op = getopt(argc, argv, "c:gm:o:q:r:k:s:t:w:A:GM:R:T:")) != -1) {
switch (op) {
case 'm':
case 'o':
case 'q':
case 'k':
case 's':
case 't':
case 'A':
case 'M':
case 'R':
val = spdk_strtol(optarg, 10);
if (val < 0) {
fprintf(stderr, "Converting a string to integer failed\n");
return val;
}
switch (op) {
case 'm':
g_max_completions = val;
break;
case 'o':
g_io_size_bytes = val;
break;
case 'q':
g_queue_depth = val;
break;
case 'k':
g_keep_alive_timeout_in_ms = val;
break;
case 's':
g_dpdk_mem = val;
break;
case 't':
g_time_in_sec = val;
break;
case 'A':
g_transport_ack_timeout = val;
break;
case 'M':
g_rw_percentage = val;
mix_specified = true;
break;
case 'R':
g_transport_retry_count = val;
break;
}
break;
case 'c':
g_core_mask = optarg;
break;
case 'g':
g_dpdk_mem_single_seg = true;
break;
case 'r':
if (add_trid(optarg)) {
usage(argv[0]);
return 1;
}
break;
case 'w':
workload_type = optarg;
break;
case 'G':
#ifndef DEBUG
fprintf(stderr, "%s must be configured with --enable-debug for -G flag\n",
argv[0]);
usage(argv[0]);
return 1;
#else
spdk_log_set_flag("nvme");
spdk_log_set_print_level(SPDK_LOG_DEBUG);
break;
#endif
case 'T':
rc = spdk_log_set_flag(optarg);
if (rc < 0) {
fprintf(stderr, "unknown flag\n");
usage(argv[0]);
exit(EXIT_FAILURE);
}
#ifdef DEBUG
spdk_log_set_print_level(SPDK_LOG_DEBUG);
#endif
break;
default:
usage(argv[0]);
return 1;
}
}
if (!g_queue_depth) {
usage(argv[0]);
return 1;
}
if (!g_io_size_bytes) {
usage(argv[0]);
return 1;
}
if (!workload_type) {
usage(argv[0]);
return 1;
}
if (!g_time_in_sec) {
usage(argv[0]);
return 1;
}
if (strcmp(workload_type, "read") &&
strcmp(workload_type, "write") &&
strcmp(workload_type, "randread") &&
strcmp(workload_type, "randwrite") &&
strcmp(workload_type, "rw") &&
strcmp(workload_type, "randrw")) {
fprintf(stderr,
"io pattern type must be one of\n"
"(read, write, randread, randwrite, rw, randrw)\n");
return 1;
}
if (!strcmp(workload_type, "read") ||
!strcmp(workload_type, "randread")) {
g_rw_percentage = 100;
}
if (!strcmp(workload_type, "write") ||
!strcmp(workload_type, "randwrite")) {
g_rw_percentage = 0;
}
if (!strcmp(workload_type, "read") ||
!strcmp(workload_type, "randread") ||
!strcmp(workload_type, "write") ||
!strcmp(workload_type, "randwrite")) {
if (mix_specified) {
fprintf(stderr, "Ignoring -M option... Please use -M option"
" only when using rw or randrw.\n");
}
}
if (!strcmp(workload_type, "rw") ||
!strcmp(workload_type, "randrw")) {
if (g_rw_percentage < 0 || g_rw_percentage > 100) {
fprintf(stderr,
"-M must be specified to value from 0 to 100 "
"for rw or randrw.\n");
return 1;
}
}
if (!strcmp(workload_type, "read") ||
!strcmp(workload_type, "write") ||
!strcmp(workload_type, "rw")) {
g_is_random = 0;
} else {
g_is_random = 1;
}
if (TAILQ_EMPTY(&g_trid_list)) {
fprintf(stderr, "You must specify at least one fabrics TRID.\n");
return -1;
}
/* check whether there is local PCIe type and fail. */
TAILQ_FOREACH_SAFE(trid_entry, &g_trid_list, tailq, trid_entry_tmp) {
if (trid_entry->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
fprintf(stderr, "This application was not intended to be run on PCIe controllers.\n");
return 1;
}
}
return 0;
}
static int
register_workers(void)
{
uint32_t i;
struct worker_thread *worker;
SPDK_ENV_FOREACH_CORE(i) {
worker = calloc(1, sizeof(*worker));
if (worker == NULL) {
fprintf(stderr, "Unable to allocate worker\n");
return -1;
}
TAILQ_INIT(&worker->ns_ctx);
worker->lcore = i;
TAILQ_INSERT_TAIL(&g_workers, worker, link);
g_num_workers++;
}
return 0;
}
static void
unregister_workers(void)
{
struct worker_thread *worker, *tmp_worker;
struct ns_worker_ctx *ns_ctx, *tmp_ns_ctx;
/* Free namespace context and worker thread */
TAILQ_FOREACH_SAFE(worker, &g_workers, link, tmp_worker) {
TAILQ_REMOVE(&g_workers, worker, link);
TAILQ_FOREACH_SAFE(ns_ctx, &worker->ns_ctx, link, tmp_ns_ctx) {
TAILQ_REMOVE(&worker->ns_ctx, ns_ctx, link);
free(ns_ctx);
}
free(worker);
}
}
static bool
probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
struct spdk_nvme_ctrlr_opts *opts)
{
/* These should have been weeded out earlier. */
assert(trid->trtype != SPDK_NVME_TRANSPORT_PCIE);
printf("Attaching to NVMe over Fabrics controller at %s:%s: %s\n",
trid->traddr, trid->trsvcid,
trid->subnqn);
/* Set io_queue_size to UINT16_MAX, NVMe driver
* will then reduce this to MQES to maximize
* the io_queue_size as much as possible.
*/
opts->io_queue_size = UINT16_MAX;
opts->keep_alive_timeout_ms = spdk_max(opts->keep_alive_timeout_ms,
g_keep_alive_timeout_in_ms);
opts->transport_retry_count = g_transport_retry_count;
opts->transport_ack_timeout = g_transport_ack_timeout;
return true;
}
static void
attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
{
struct trid_entry *trid_entry = cb_ctx;
printf("Attached to NVMe over Fabrics controller at %s:%s: %s\n",
trid->traddr, trid->trsvcid,
trid->subnqn);
register_ctrlr(ctrlr, trid_entry);
}
static int
register_controllers(void)
{
struct trid_entry *trid_entry;
printf("Initializing NVMe Controllers\n");
TAILQ_FOREACH(trid_entry, &g_trid_list, tailq) {
if (spdk_nvme_probe(&trid_entry->trid, trid_entry, probe_cb, attach_cb, NULL) != 0) {
fprintf(stderr, "spdk_nvme_probe() failed for transport address '%s'\n",
trid_entry->trid.traddr);
return -1;
}
}
return 0;
}
static void
unregister_controllers(void)
{
struct ctrlr_entry *entry, *tmp;
struct spdk_nvme_detach_ctx *detach_ctx = NULL;
TAILQ_FOREACH_SAFE(entry, &g_controllers, link, tmp) {
TAILQ_REMOVE(&g_controllers, entry, link);
spdk_nvme_detach_async(entry->ctrlr, &detach_ctx);
free(entry);
}
if (detach_ctx) {
spdk_nvme_detach_poll(detach_ctx);
}
}
static int
associate_workers_with_ns(void)
{
struct ns_entry *entry = TAILQ_FIRST(&g_namespaces);
struct worker_thread *worker = TAILQ_FIRST(&g_workers);
struct ns_worker_ctx *ns_ctx;
int i, count;
count = g_num_namespaces > g_num_workers ? g_num_namespaces : g_num_workers;
for (i = 0; i < count; i++) {
if (entry == NULL) {
break;
}
ns_ctx = calloc(1, sizeof(struct ns_worker_ctx));
if (!ns_ctx) {
return -1;
}
printf("Associating %s with lcore %d\n", entry->name, worker->lcore);
ns_ctx->entry = entry;
TAILQ_INSERT_TAIL(&worker->ns_ctx, ns_ctx, link);
worker = TAILQ_NEXT(worker, link);
if (worker == NULL) {
worker = TAILQ_FIRST(&g_workers);
}
entry = TAILQ_NEXT(entry, link);
if (entry == NULL) {
entry = TAILQ_FIRST(&g_namespaces);
}
}
return 0;
}
static void *
nvme_poll_ctrlrs(void *arg)
{
struct ctrlr_entry *entry;
const struct spdk_nvme_transport_id *old_trid;
int oldstate;
int rc;
spdk_unaffinitize_thread();
while (true) {
pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &oldstate);
TAILQ_FOREACH(entry, &g_controllers, link) {
rc = spdk_nvme_ctrlr_process_admin_completions(entry->ctrlr);
/* This controller has encountered a failure at the transport level. reset it. */
if (rc == -ENXIO) {
if (entry->num_resets == 0) {
old_trid = spdk_nvme_ctrlr_get_transport_id(entry->ctrlr);
fprintf(stderr, "A controller has encountered a failure and is being reset.\n");
if (spdk_nvme_transport_id_compare(old_trid, &entry->failover_trid)) {
fprintf(stderr, "Resorting to new failover address %s\n", entry->failover_trid.traddr);
spdk_nvme_ctrlr_fail(entry->ctrlr);
rc = spdk_nvme_ctrlr_set_trid(entry->ctrlr, &entry->failover_trid);
if (rc != 0) {
fprintf(stderr, "Unable to fail over to back up trid.\n");
}
}
}
rc = spdk_nvme_ctrlr_reset(entry->ctrlr);
if (rc != 0) {
entry->num_resets++;
fprintf(stderr, "Unable to reset the controller.\n");
if (entry->num_resets > g_max_ctrlr_resets) {
fprintf(stderr, "Controller cannot be recovered. Exiting.\n");
exit(1);
}
} else {
fprintf(stderr, "Controller properly reset.\n");
}
}
}
pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &oldstate);
/* This is a pthread cancellation point and cannot be removed. */
sleep(1);
}
return NULL;
}
int
main(int argc, char **argv)
{
int rc;
struct worker_thread *worker, *main_worker;
unsigned main_core;
struct spdk_env_opts opts;
pthread_t thread_id = 0;
rc = parse_args(argc, argv);
if (rc != 0) {
return rc;
}
spdk_env_opts_init(&opts);
opts.name = "reconnect";
if (g_core_mask) {
opts.core_mask = g_core_mask;
}
if (g_dpdk_mem) {
opts.mem_size = g_dpdk_mem;
}
opts.hugepage_single_segments = g_dpdk_mem_single_seg;
if (spdk_env_init(&opts) < 0) {
fprintf(stderr, "Unable to initialize SPDK env\n");
unregister_trids();
return 1;
}
g_tsc_rate = spdk_get_ticks_hz();
if (register_workers() != 0) {
rc = 1;
goto cleanup;
}
if (register_controllers() != 0) {
rc = 1;
goto cleanup;
}
if (g_warn) {
printf("WARNING: Some requested NVMe devices were skipped\n");
}
if (g_num_namespaces == 0) {
fprintf(stderr, "No valid NVMe controllers found\n");
goto cleanup;
}
rc = pthread_create(&thread_id, NULL, &nvme_poll_ctrlrs, NULL);
if (rc != 0) {
fprintf(stderr, "Unable to spawn a thread to poll admin queues.\n");
goto cleanup;
}
if (associate_workers_with_ns() != 0) {
rc = 1;
goto cleanup;
}
printf("Initialization complete. Launching workers.\n");
/* Launch all of the secondary workers */
main_core = spdk_env_get_current_core();
main_worker = NULL;
TAILQ_FOREACH(worker, &g_workers, link) {
if (worker->lcore != main_core) {
spdk_env_thread_launch_pinned(worker->lcore, work_fn, worker);
} else {
assert(main_worker == NULL);
main_worker = worker;
}
}
assert(main_worker != NULL);
rc = work_fn(main_worker);
spdk_env_thread_wait_all();
cleanup:
if (thread_id && pthread_cancel(thread_id) == 0) {
pthread_join(thread_id, NULL);
}
unregister_trids();
unregister_namespaces();
unregister_controllers();
unregister_workers();
spdk_env_fini();
if (rc != 0) {
fprintf(stderr, "%s: errors occurred\n", argv[0]);
/*
* return a generic error to the caller. This allows us to
* distinguish between a failure in the script and something
* like a segfault or an invalid access which causes the program
* to crash.
*/
rc = 1;
}
return rc;
}