Spdk/test/unit/lib/thread/thread.c/thread_ut.c

562 lines
13 KiB
C
Raw Normal View History

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "spdk/stdinc.h"
#include "spdk_cunit.h"
#include "spdk_internal/thread.h"
#include "thread/thread.c"
#include "common/lib/ut_multithread.c"
static void
thread_alloc(void)
{
CU_ASSERT(TAILQ_EMPTY(&g_threads));
allocate_threads(1);
CU_ASSERT(!TAILQ_EMPTY(&g_threads));
free_threads();
CU_ASSERT(TAILQ_EMPTY(&g_threads));
}
static void
send_msg_cb(void *ctx)
{
bool *done = ctx;
*done = true;
}
static void
thread_send_msg(void)
{
struct spdk_thread *thread0;
bool done = false;
allocate_threads(2);
set_thread(0);
thread0 = spdk_get_thread();
set_thread(1);
/* Simulate thread 1 sending a message to thread 0. */
spdk_thread_send_msg(thread0, send_msg_cb, &done);
/* We have not polled thread 0 yet, so done should be false. */
CU_ASSERT(!done);
/*
* Poll thread 1. The message was sent to thread 0, so this should be
* a nop and done should still be false.
*/
poll_thread(1);
CU_ASSERT(!done);
/*
* Poll thread 0. This should execute the message and done should then
* be true.
*/
poll_thread(0);
CU_ASSERT(done);
free_threads();
}
static int
poller_run_done(void *ctx)
{
bool *poller_run = ctx;
*poller_run = true;
return -1;
}
static void
thread_poller(void)
{
struct spdk_poller *poller = NULL;
bool poller_run = false;
allocate_threads(1);
set_thread(0);
MOCK_SET(spdk_get_ticks, 0);
/* Register a poller with no-wait time and test execution */
poller = spdk_poller_register(poller_run_done, &poller_run, 0);
CU_ASSERT(poller != NULL);
poll_threads();
CU_ASSERT(poller_run == true);
spdk_poller_unregister(&poller);
CU_ASSERT(poller == NULL);
/* Register a poller with 1000us wait time and test single execution */
poller_run = false;
poller = spdk_poller_register(poller_run_done, &poller_run, 1000);
CU_ASSERT(poller != NULL);
poll_threads();
CU_ASSERT(poller_run == false);
spdk_delay_us(1000);
poll_threads();
CU_ASSERT(poller_run == true);
poller_run = false;
poll_threads();
CU_ASSERT(poller_run == false);
spdk_delay_us(1000);
poll_threads();
CU_ASSERT(poller_run == true);
spdk_poller_unregister(&poller);
CU_ASSERT(poller == NULL);
free_threads();
}
static void
for_each_cb(void *ctx)
{
int *count = ctx;
(*count)++;
}
static void
thread_for_each(void)
{
int count = 0;
int i;
allocate_threads(3);
set_thread(0);
spdk_for_each_thread(for_each_cb, &count, for_each_cb);
/* We have not polled thread 0 yet, so count should be 0 */
CU_ASSERT(count == 0);
/* Poll each thread to verify the message is passed to each */
for (i = 0; i < 3; i++) {
poll_thread(i);
CU_ASSERT(count == (i + 1));
}
/*
* After each thread is called, the completion calls it
* one more time.
*/
poll_thread(0);
CU_ASSERT(count == 4);
free_threads();
}
static int
channel_create(void *io_device, void *ctx_buf)
{
return 0;
}
static void
channel_destroy(void *io_device, void *ctx_buf)
{
}
static void
channel_msg(struct spdk_io_channel_iter *i)
{
struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i);
int *count = spdk_io_channel_get_ctx(ch);
(*count)++;
spdk_for_each_channel_continue(i, 0);
}
static void
channel_cpl(struct spdk_io_channel_iter *i, int status)
{
}
static void
for_each_channel_remove(void)
{
struct spdk_io_channel *ch0, *ch1, *ch2;
int io_target;
int count = 0;
allocate_threads(3);
set_thread(0);
spdk_io_device_register(&io_target, channel_create, channel_destroy, sizeof(int), NULL);
ch0 = spdk_get_io_channel(&io_target);
set_thread(1);
ch1 = spdk_get_io_channel(&io_target);
set_thread(2);
ch2 = spdk_get_io_channel(&io_target);
/*
* Test that io_channel handles the case where we start to iterate through
* the channels, and during the iteration, one of the channels is deleted.
* This is done in some different and sometimes non-intuitive orders, because
* some operations are deferred and won't execute until their threads are
* polled.
*
* Case #1: Put the I/O channel before spdk_for_each_channel.
*/
set_thread(0);
spdk_put_io_channel(ch0);
poll_threads();
spdk_for_each_channel(&io_target, channel_msg, &count, channel_cpl);
poll_threads();
/*
* Case #2: Put the I/O channel after spdk_for_each_channel, but before
* thread 0 is polled.
*/
ch0 = spdk_get_io_channel(&io_target);
spdk_for_each_channel(&io_target, channel_msg, &count, channel_cpl);
spdk_put_io_channel(ch0);
poll_threads();
set_thread(1);
spdk_put_io_channel(ch1);
set_thread(2);
spdk_put_io_channel(ch2);
spdk_io_device_unregister(&io_target, NULL);
poll_threads();
free_threads();
}
struct unreg_ctx {
bool ch_done;
bool foreach_done;
};
static void
unreg_ch_done(struct spdk_io_channel_iter *i)
{
struct unreg_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
ctx->ch_done = true;
SPDK_CU_ASSERT_FATAL(i->cur_thread != NULL);
spdk_for_each_channel_continue(i, 0);
}
static void
unreg_foreach_done(struct spdk_io_channel_iter *i, int status)
{
struct unreg_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
ctx->foreach_done = true;
}
static void
for_each_channel_unreg(void)
{
struct spdk_io_channel *ch0;
struct io_device *dev;
struct unreg_ctx ctx = {};
int io_target;
allocate_threads(1);
set_thread(0);
CU_ASSERT(TAILQ_EMPTY(&g_io_devices));
spdk_io_device_register(&io_target, channel_create, channel_destroy, sizeof(int), NULL);
CU_ASSERT(!TAILQ_EMPTY(&g_io_devices));
dev = TAILQ_FIRST(&g_io_devices);
SPDK_CU_ASSERT_FATAL(dev != NULL);
CU_ASSERT(TAILQ_NEXT(dev, tailq) == NULL);
ch0 = spdk_get_io_channel(&io_target);
spdk_for_each_channel(&io_target, unreg_ch_done, &ctx, unreg_foreach_done);
spdk_io_device_unregister(&io_target, NULL);
/*
* There is an outstanding foreach call on the io_device, so the unregister should not
* have removed the device.
*/
CU_ASSERT(dev == TAILQ_FIRST(&g_io_devices));
spdk_io_device_register(&io_target, channel_create, channel_destroy, sizeof(int), NULL);
/*
* There is already a device registered at &io_target, so a new io_device should not
* have been added to g_io_devices.
*/
CU_ASSERT(dev == TAILQ_FIRST(&g_io_devices));
CU_ASSERT(TAILQ_NEXT(dev, tailq) == NULL);
poll_thread(0);
CU_ASSERT(ctx.ch_done == true);
CU_ASSERT(ctx.foreach_done == true);
/*
* There are no more foreach operations outstanding, so we can unregister the device,
* even though a channel still exists for the device.
*/
spdk_io_device_unregister(&io_target, NULL);
CU_ASSERT(TAILQ_EMPTY(&g_io_devices));
set_thread(0);
spdk_put_io_channel(ch0);
poll_threads();
free_threads();
}
static void
thread_name(void)
{
struct spdk_thread *thread;
const char *name;
/* Create thread with no name, which automatically generates one */
thread = spdk_allocate_thread(NULL);
spdk_set_thread(thread);
thread = spdk_get_thread();
SPDK_CU_ASSERT_FATAL(thread != NULL);
name = spdk_thread_get_name(thread);
CU_ASSERT(name != NULL);
spdk_free_thread(thread);
/* Create thread named "test_thread" */
thread = spdk_allocate_thread("test_thread");
spdk_set_thread(thread);
thread = spdk_get_thread();
SPDK_CU_ASSERT_FATAL(thread != NULL);
name = spdk_thread_get_name(thread);
SPDK_CU_ASSERT_FATAL(name != NULL);
CU_ASSERT(strcmp(name, "test_thread") == 0);
spdk_free_thread(thread);
}
static uint64_t device1;
static uint64_t device2;
static uint64_t device3;
static uint64_t ctx1 = 0x1111;
static uint64_t ctx2 = 0x2222;
static int g_create_cb_calls = 0;
static int g_destroy_cb_calls = 0;
static int
create_cb_1(void *io_device, void *ctx_buf)
{
CU_ASSERT(io_device == &device1);
*(uint64_t *)ctx_buf = ctx1;
g_create_cb_calls++;
return 0;
}
static void
destroy_cb_1(void *io_device, void *ctx_buf)
{
CU_ASSERT(io_device == &device1);
CU_ASSERT(*(uint64_t *)ctx_buf == ctx1);
g_destroy_cb_calls++;
}
static int
create_cb_2(void *io_device, void *ctx_buf)
{
CU_ASSERT(io_device == &device2);
*(uint64_t *)ctx_buf = ctx2;
g_create_cb_calls++;
return 0;
}
static void
destroy_cb_2(void *io_device, void *ctx_buf)
{
CU_ASSERT(io_device == &device2);
CU_ASSERT(*(uint64_t *)ctx_buf == ctx2);
g_destroy_cb_calls++;
}
static void
channel(void)
{
struct spdk_io_channel *ch1, *ch2;
void *ctx;
allocate_threads(1);
set_thread(0);
spdk_io_device_register(&device1, create_cb_1, destroy_cb_1, sizeof(ctx1), NULL);
spdk_io_device_register(&device2, create_cb_2, destroy_cb_2, sizeof(ctx2), NULL);
g_create_cb_calls = 0;
ch1 = spdk_get_io_channel(&device1);
CU_ASSERT(g_create_cb_calls == 1);
SPDK_CU_ASSERT_FATAL(ch1 != NULL);
g_create_cb_calls = 0;
ch2 = spdk_get_io_channel(&device1);
CU_ASSERT(g_create_cb_calls == 0);
CU_ASSERT(ch1 == ch2);
SPDK_CU_ASSERT_FATAL(ch2 != NULL);
g_destroy_cb_calls = 0;
spdk_put_io_channel(ch2);
poll_threads();
CU_ASSERT(g_destroy_cb_calls == 0);
g_create_cb_calls = 0;
ch2 = spdk_get_io_channel(&device2);
CU_ASSERT(g_create_cb_calls == 1);
CU_ASSERT(ch1 != ch2);
SPDK_CU_ASSERT_FATAL(ch2 != NULL);
ctx = spdk_io_channel_get_ctx(ch2);
CU_ASSERT(*(uint64_t *)ctx == ctx2);
g_destroy_cb_calls = 0;
spdk_put_io_channel(ch1);
poll_threads();
CU_ASSERT(g_destroy_cb_calls == 1);
g_destroy_cb_calls = 0;
spdk_put_io_channel(ch2);
poll_threads();
CU_ASSERT(g_destroy_cb_calls == 1);
ch1 = spdk_get_io_channel(&device3);
CU_ASSERT(ch1 == NULL);
spdk_io_device_unregister(&device1, NULL);
poll_threads();
spdk_io_device_unregister(&device2, NULL);
poll_threads();
CU_ASSERT(TAILQ_EMPTY(&g_io_devices));
free_threads();
CU_ASSERT(TAILQ_EMPTY(&g_threads));
}
static int
create_cb(void *io_device, void *ctx_buf)
{
uint64_t *refcnt = (uint64_t *)ctx_buf;
CU_ASSERT(*refcnt == 0);
*refcnt = 1;
return 0;
}
static void
destroy_cb(void *io_device, void *ctx_buf)
{
uint64_t *refcnt = (uint64_t *)ctx_buf;
CU_ASSERT(*refcnt == 1);
*refcnt = 0;
}
/**
* This test is checking that a sequence of get, put, get, put without allowing
* the deferred put operation to complete doesn't result in releasing the memory
* for the channel twice.
*/
static void
channel_destroy_races(void)
{
uint64_t device;
struct spdk_io_channel *ch;
allocate_threads(1);
set_thread(0);
spdk_io_device_register(&device, create_cb, destroy_cb, sizeof(uint64_t), NULL);
ch = spdk_get_io_channel(&device);
SPDK_CU_ASSERT_FATAL(ch != NULL);
spdk_put_io_channel(ch);
ch = spdk_get_io_channel(&device);
SPDK_CU_ASSERT_FATAL(ch != NULL);
spdk_put_io_channel(ch);
poll_threads();
spdk_io_device_unregister(&device, NULL);
poll_threads();
CU_ASSERT(TAILQ_EMPTY(&g_io_devices));
free_threads();
CU_ASSERT(TAILQ_EMPTY(&g_threads));
}
int
main(int argc, char **argv)
{
CU_pSuite suite = NULL;
unsigned int num_failures;
if (CU_initialize_registry() != CUE_SUCCESS) {
return CU_get_error();
}
suite = CU_add_suite("io_channel", NULL, NULL);
if (suite == NULL) {
CU_cleanup_registry();
return CU_get_error();
}
if (
CU_add_test(suite, "thread_alloc", thread_alloc) == NULL ||
CU_add_test(suite, "thread_send_msg", thread_send_msg) == NULL ||
CU_add_test(suite, "thread_poller", thread_poller) == NULL ||
CU_add_test(suite, "thread_for_each", thread_for_each) == NULL ||
CU_add_test(suite, "for_each_channel_remove", for_each_channel_remove) == NULL ||
CU_add_test(suite, "for_each_channel_unreg", for_each_channel_unreg) == NULL ||
CU_add_test(suite, "thread_name", thread_name) == NULL ||
CU_add_test(suite, "channel", channel) == NULL ||
CU_add_test(suite, "channel_destroy_races", channel_destroy_races) == NULL
) {
CU_cleanup_registry();
return CU_get_error();
}
CU_basic_set_mode(CU_BRM_VERBOSE);
CU_basic_run_tests();
num_failures = CU_get_number_of_failures();
CU_cleanup_registry();
return num_failures;
}