Spdk/scripts/perf/vhost/conf-generator

372 lines
10 KiB
Plaintext
Raw Permalink Normal View History

#!/usr/bin/env bash
# SPDX-License-Identifier: BSD-3-Clause
# Copyright (C) 2022 Intel Corporation.
# All rights reserved.
curdir=$(readlink -f "$(dirname "$0")")
rootdir=$(readlink -f "$curdir/../../../")
source "$rootdir/scripts/common.sh"
source "$rootdir/test/scheduler/common.sh"
get_auto_cfg() {
local vm_cpus vm_node vm vms vms_per_nvme
local cpu node nodes_idxs node_idx
local nvmes nvme nvme_idx nvme_diff nvmes_per_node
local vm_diff aligned_number_of_vms=0
local diff iter
local -g auto_cpu_map=() auto_disk_map=() spdk=()
map_cpus
get_nvme_numa_map
nodes_idxs=("${!nodes[@]}")
# Construct initial NUMA-aware setup by pinning VM to given nvme's node. First run is meant
# to pin enough number of VMs (as per vm_count) to match the number of available nvme ctrls.
vm=0
for node in "${nodes_idxs[@]}"; do
nvmes=(${!nvme_numa_map[node]})
for ((nvme_idx = 0; nvme_idx < ${#nvmes[@]} && vm < vm_count; vm++, nvme_idx++)); do
eval "vm${vm}_node=$node"
done
nvmes_per_node[node]=${#nvmes[@]}
done
vm_diff=$((vm_count - vm))
# Align extra number of VMs in case nvme ctrls are not distributed evenly across the existing
# NUMA nodes.
# FIXME: This is targeted for systems with only 2 NUMA nodes. Technically, kernel supports
# more than that - it's possible to achieve setups with > 2 NUMA nodes under virtual env
# for instance. Should this be of any concern?
if ((nvmes_per_node[0] < nvmes_per_node[1])); then
nvme_diff=$((nvmes_per_node[1] - nvmes_per_node[0]))
elif ((nvmes_per_node[0] > nvmes_per_node[1])); then
nvme_diff=$((nvmes_per_node[0] - nvmes_per_node[1]))
else
nvme_diff=0
fi
diff=$((vm_diff + nvme_diff))
if ((diff % 2 == 0)); then
aligned_number_of_vms=$((diff / ${#nodes_idxs[@]}))
fi
# Second run distributes extra VMs across existing NUMA nodes. In case we can distribute even
# number of extra VMs (as per vm_count) then simply assign them in bulk. In case there's an
# odd number, do some simple rr balancing where we assign them one by one - first to node0,
# second to node1, third to node0, etc.
if ((aligned_number_of_vms)); then
for node in "${nodes_idxs[@]}"; do
for ((iter = 0; iter < aligned_number_of_vms && vm < vm_count; iter++, vm++)); do
eval "vm${vm}_node=$node"
done
done
else
while ((vm < vm_count)); do
for node in "${nodes_idxs[@]}"; do
eval "vm${vm}_node=$node"
((++vm))
done
done
fi
local -g vm_numa_map=()
for ((vm = 0; vm < vm_count; vm++)); do
# Load balance the cpus across available numa nodes based on the pinning
# done prior. If there are no cpus left under selected node, iterate over
# all available nodes. If no cpus are left, fail. We don't allow to mix
# cpus from different nodes for the sake of the performance.
node_idx=0 node_idx_perc=0
eval "vm_node=\$vm${vm}_node"
local -n node_cpus=node_${vm_node}_cpu
local -n vm_nodes=node_${vm_node}_vm
vm_numa_map[vm_node]="node_${vm_node}_vm[@]"
while ((${#node_cpus[@]} < vm_cpu_num && node_idx < ${#nodes_idxs[@]})); do
vm_node=${nodes_idxs[node_idx]}
local -n node_cpus=node_${nodes_idxs[node_idx++]}_cpu
done
if ((${#node_cpus[@]} < vm_cpu_num)); then
printf 'Not enough CPUs available for VM %u (CPUs: %u, Nodes: %u, CPUs per VM: %u)\n' \
"$vm" "${#cpus[@]}" "${#nodes_idxs[@]}" "$vm_cpu_num" >&2
return 1
fi
# Normalize indexes
node_cpus=("${node_cpus[@]}")
vm_cpus=("${node_cpus[@]::vm_cpu_num}")
node_cpus=("${node_cpus[@]:vm_cpu_num}")
auto_cpu_map+=("$(
cat <<- CPU_VM
VM_${vm}_qemu_mask=$(
IFS=","
echo "${vm_cpus[*]}"
)
VM_${vm}_qemu_numa_node=$vm_node
CPU_VM
)")
# Save map of each VM->NUMA node to be able to construct a disk map in later steps.
vm_nodes+=("$vm")
done
# auto_cpu_map is ready, all requested VMs should be balanced across all NUMA nodes
# making sure each nvme drive will be bound to at least 1 VM placed on the
# corresponding NUMA node. Now, construct disk_cfg and assign VMs, with proper
# split value, to each nvme - extra VMs will be added to nvme drives in their
# bus order.
local -A nvme_vm_map=()
local iter nvmes_no=0 vms_no=0
for node in "${nodes_idxs[@]}"; do
if [[ ! -v nvme_numa_map[node] ]]; then
# There are no drives available on that node, skip it
continue
fi
nvmes=(${!nvme_numa_map[node]}) nvmes_no=${#nvmes[@]}
vms=(${!vm_numa_map[node]}) vms_no=${#vms[@]}
for ((iter = 0; iter <= (vms_no - nvmes_no <= 0 ? 1 : vms_no - nvmes_no); iter++)); do
for nvme in "${nvmes[@]}"; do
if ((${#vms[@]} == 0)); then
# No VMs on given node or they have been exhausted - skip all remaining drives.
continue 3
fi
nvme_vm_map["$nvme"]="_${nvme//[:.]/_}_[@]"
local -n nvme_vms=_${nvme//[:.]/_}_
nvme_vms+=("${vms[0]}") vms=("${vms[@]:1}")
done
done
done
local sorted_nvmes=()
sorted_nvmes=($(printf '%s\n' "${!nvme_vm_map[@]}" | sort))
for nvme in "${!sorted_nvmes[@]}"; do
vms=(${!nvme_vm_map["${sorted_nvmes[nvme]}"]})
auto_disk_map+=("${sorted_nvmes[nvme]},Nvme$((nvme++)),${#vms[*]},${vms[*]}")
done
get_spdk_cpus || return 1
auto_cpu_map+=("vhost_0_reactor_mask=[$(
IFS=","
echo "${spdk[*]}"
)]")
auto_cpu_map+=("vhost_0_master_core=${spdk[0]}")
}
get_nvme_numa_map() {
local nvmes nvme node
local -g nvme_numa_map=()
cache_pci_bus
for nvme in ${pci_bus_cache[0x010802]}; do
node=$(< "/sys/bus/pci/devices/$nvme/numa_node")
nvme_numa_map[node]="node_${node}_nvme[@]"
local -n node_nvmes=node_${node}_nvme
node_nvmes+=("$nvme")
done
}
get_spdk_cpus() {
local -g spdk=()
local node vms perc
local cpus_per_node cpus_exhausted=() cpus_remained=()
if [[ -z $spdk_cpu_num ]]; then
spdk=(0)
return 0
fi
if [[ -n $spdk_cpu_list ]]; then
spdk=($(parse_cpu_list <(echo "$spdk_cpu_list")))
return 0
fi
# Start allocating from NUMA node with greater number of pinned VMs.
node_sort=($(for node in "${!vm_numa_map[@]}"; do
vms=(${!vm_numa_map[node]})
echo "${#vms[@]}:$node"
done | sort -rn))
for _node in "${node_sort[@]}"; do
node=${_node#*:} vms=${_node%:*}
local -n node_all_cpus=node_${node}_cpu
perc=$((vms * 100 / vm_count))
cpus_per_node=$((spdk_cpu_num * perc / 100))
cpus_per_node=$((cpus_per_node == 0 ? 1 : cpus_per_node))
if ((${#node_all_cpus[@]} == 0)); then
printf 'No CPUs left to allocate for SPDK on node%u. Need %u CPUs\n' \
"$node" "$cpus_per_node" >&2
cpus_exhausted[node]=1
continue
fi
if ((${#node_all_cpus[@]} < cpus_per_node)); then
printf 'Not enough CPUs to allocate for SPDK on node%u. Need %u CPUs, getting %u\n' \
"$node" "$cpus_per_node" "${#node_all_cpus[@]}" >&2
cpus_per_node=${#node_all_cpus[@]}
cpus_exhauseted[node]=1
fi
spdk+=("${node_all_cpus[@]::cpus_per_node}")
node_all_cpus=("${node_all_cpus[@]:cpus_per_node}")
cpus_remained+=("${node_all_cpus[@]}")
done
# If we didn't allocate the entire number of requested cpus in the initial run,
# adjust it by adding the remaining portion from the node having greater number
# of pinned VMs.
if ((${#spdk[@]} < spdk_cpu_num)); then
if [[ -n $ALIGN_FROM_ALL_NODES ]] && ((${#cpus_remained[@]} > 0)); then
printf 'Trying to get extra CPUs from all nodes\n'
local -n node_all_cpus=cpus_remained
else
node=${node_sort[0]#*:}
printf 'Trying to get extra CPUs from the dominant node%u to align: %u < %u\n' \
"$node" "${#spdk[@]}" "$spdk_cpu_num"
if ((cpus_exhausted[node])); then
printf 'No CPUs available on node%u\n' "$node"
else
local -n node_all_cpus=node_${node}_cpu
fi
fi
spdk+=("${node_all_cpus[@]::spdk_cpu_num-${#spdk[@]}}")
fi >&2
if ((${#spdk[@]} != spdk_cpu_num)); then
printf 'Different number of SPDK CPUs allocated to meet the requirements: requested %u, got %u\n' \
"$spdk_cpu_num" "${#spdk[@]}"
else
printf 'Requested number of SPDK CPUs allocated: %u\n' "$spdk_cpu_num"
fi >&2
}
_p_disk_map() {
((${#auto_disk_map[@]} > 0)) || return 0
printf '%s\n' "${auto_disk_map[@]}"
}
_p_cpu_map() {
((${#auto_cpu_map[@]} > 0)) || return 0
printf '%s\n' "${auto_cpu_map[@]}"
}
p_disk_map() {
cat <<- DISK_MAP
# Generated automatically by ${0##*/}
# NVMe Drives: ${#auto_disk_map[@]} VM count: $vm_count
$(_p_disk_map)
DISK_MAP
}
p_vms_in_node() {
((${#vm_numa_map[@]} > 0)) || return 0
local node vms
for node in "${!vm_numa_map[@]}"; do
vms=(${!vm_numa_map[node]})
echo "Node$node: ${#vms[@]} VMs"
done
}
p_cpu_map() {
local node_stats
mapfile -t node_stats < <(p_vms_in_node)
cat <<- CPU_MAP
# Generated automatically by ${0##*/}
# VM NUMA Nodes: ${#vm_numa_map[@]} VM count: $vm_count CPU Per VM: $vm_cpu_num SPDK CPU count: ${#spdk[@]}
$(printf '# - %s\n' "${node_stats[@]}")
$(_p_cpu_map)
CPU_MAP
}
p_all() {
p_disk_map
printf '\n'
p_cpu_map
}
fetch_env() {
spdk_cpu_num=${spdk_cpu_num:-1}
vm_count=${vm_count:-1}
vm_cpu_num=${vm_cpu_num:-1}
# Normalize
spdk_cpu_num=$((spdk_cpu_num <= 0 ? 1 : spdk_cpu_num))
vm_count=$((vm_count <= 0 ? 1 : vm_count))
vm_cpu_num=$((vm_cpu_num <= 0 ? 1 : vm_cpu_num))
cpu_out=${cpu_out:-"$PWD/auto-cpu.conf"}
disk_out=${disk_out:-"$PWD/auto-disk.conf"}
}
help() {
cat <<- HELP
${0##*/}: [-p all|cpu|disk -s]
Configuration is generated based on system's cpu and nvme topology. Parameters
taken directly from the environment:
spdk_cpu_list - list of CPUs to assign to a SPDK app
spdk_cpu_num - number of CPUs to use across all NUMA nodes
(spdk_cpu_list takes priority, default: 1)
vm_count - number of VMs to prepare the configuration for
(default: 1)
vm_cpu_num - number of CPUs to assign per VM (default: 1)
Override parameters:
vmN_node - overrides selected NUMA node for VM N - by default,
this is allocated up to number of nvme drives
cpu_out - with -s, points at location where to save cpu conf
disk_out - with -s, points at location where to save disk conf
Note: VMs are pinned to nvme drives based on their NUMA location.
Example:
# Allocate 6 cpus from node1 for SPDK. Configure 24 VMs, 2 CPUs per VM
$ export spdk_cpu_num=6 vm_count=24 vm_cpu_num=2
$ ${0##*/} -p all
HELP
}
print=""
save=no
fetch_env
while getopts :hsp: arg; do
case "$arg" in
h)
help
exit 0
;;
p) print=$OPTARG ;;
s) save=yes ;;
*) ;;
esac
done
get_auto_cfg || exit 1
case "$print" in
all) p_all ;;
cpu) p_cpu_map ;;
disk) p_disk_map ;;
*) ;;
esac
if [[ $save == yes ]]; then
p_cpu_map > "$cpu_out"
p_disk_map > "$disk_out"
fi