mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-04-19 22:02:06 +00:00
# What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil -->
273 lines
8.6 KiB
Python
273 lines
8.6 KiB
Python
import torch
|
|
|
|
from torch import nn
|
|
|
|
HAS_BITS_AND_BYTES = True
|
|
try:
|
|
from bitsandbytes.nn import Linear8bitLt
|
|
except ImportError as e:
|
|
HAS_BITS_AND_BYTES = False
|
|
|
|
|
|
class FastLinear(nn.Linear):
|
|
def __init__(
|
|
self,
|
|
in_features: int,
|
|
out_features: int,
|
|
bias: bool = True,
|
|
device=None,
|
|
dtype=None,
|
|
) -> None:
|
|
super(FastLinear, self).__init__(in_features, out_features, bias, device, dtype)
|
|
self.quantized = False
|
|
self.bnb_linear = None
|
|
|
|
def prepare_weights(self, quantize: bool = False):
|
|
if quantize == "bitsandbytes":
|
|
if not HAS_BITS_AND_BYTES:
|
|
raise ImportError(
|
|
"bitsandbytes is not available on your machine either because it is not installed "
|
|
"or you don't have a GPU.\n"
|
|
"You can install it with `pip install bitsandbytes`."
|
|
)
|
|
|
|
self.quantized = True
|
|
self.bnb_linear = Linear8bitLt(
|
|
self.in_features,
|
|
self.out_features,
|
|
has_fp16_weights=False,
|
|
threshold=6.0,
|
|
bias=False,
|
|
)
|
|
# Copy data to bnb_linear
|
|
self.bnb_linear.weight.data = self.weight.data
|
|
if self.bias is not None:
|
|
self.bnb_linear.bias = nn.Parameter(self.bias)
|
|
|
|
# Delete reference to data
|
|
self.weight = None
|
|
self.bias = None
|
|
elif quantize == "gptq":
|
|
raise NotImplementedError("`gptq` is not implemented for now")
|
|
elif quantize is None:
|
|
self.weight = nn.Parameter(self.weight.T)
|
|
else:
|
|
raise ValueError(f"Unexpected quantize `{quantize}`")
|
|
|
|
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
|
if self.quantized:
|
|
return self.bnb_linear(input)
|
|
else:
|
|
if self.bias is not None:
|
|
return torch.addmm(self.bias, input, self.weight)
|
|
return torch.matmul(input, self.weight)
|
|
|
|
|
|
class TensorParallelColumnLinear(FastLinear):
|
|
def __init__(
|
|
self,
|
|
in_features,
|
|
out_features,
|
|
process_group: torch.distributed.ProcessGroup,
|
|
bias=True,
|
|
device=None,
|
|
dtype=None,
|
|
):
|
|
self.process_group = process_group
|
|
self.tp_world_size = process_group.size()
|
|
assert out_features % self.tp_world_size == 0
|
|
out_features = out_features // self.tp_world_size
|
|
|
|
super().__init__(
|
|
in_features=in_features,
|
|
out_features=out_features,
|
|
bias=bias,
|
|
device=device,
|
|
dtype=dtype,
|
|
)
|
|
|
|
|
|
class TensorParallelRowLinear(FastLinear):
|
|
def __init__(
|
|
self,
|
|
in_features,
|
|
out_features,
|
|
process_group: torch.distributed.ProcessGroup,
|
|
reduce=True,
|
|
bias=True,
|
|
device=None,
|
|
dtype=None,
|
|
):
|
|
self.process_group = process_group
|
|
self.tp_world_size = process_group.size()
|
|
self.reduce = reduce
|
|
assert in_features % self.tp_world_size == 0
|
|
in_features = in_features // self.tp_world_size
|
|
|
|
super().__init__(
|
|
in_features=in_features,
|
|
out_features=out_features,
|
|
bias=bias,
|
|
device=device,
|
|
dtype=dtype,
|
|
)
|
|
|
|
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
|
out = super(TensorParallelRowLinear, self).forward(input)
|
|
if self.reduce:
|
|
torch.distributed.all_reduce(out, group=self.process_group)
|
|
|
|
return out
|
|
|
|
|
|
class TensorParallelEmbedding(nn.Embedding):
|
|
def __init__(
|
|
self,
|
|
num_embeddings,
|
|
embedding_dim,
|
|
process_group: torch.distributed.ProcessGroup,
|
|
padding_idx=None,
|
|
max_norm=None,
|
|
norm_type=2.0,
|
|
scale_grad_by_freq=False,
|
|
sparse=False,
|
|
_weight=None,
|
|
device=None,
|
|
dtype=None,
|
|
):
|
|
self.process_group = process_group
|
|
self.tp_rank = process_group.rank()
|
|
self.tp_world_size = process_group.size()
|
|
|
|
self.original_num_embeddings = num_embeddings
|
|
|
|
assert num_embeddings % self.tp_world_size == 0
|
|
block_size = num_embeddings // self.tp_world_size
|
|
# inputs in `[min_id, max_id[` are handled by `self` to get embeddings
|
|
self.min_id = self.tp_rank * block_size
|
|
self.max_id = (self.tp_rank + 1) * block_size
|
|
|
|
# Additional entry that will map to zero
|
|
# Used for masking
|
|
self.null_idx = block_size
|
|
|
|
super().__init__(
|
|
block_size,
|
|
embedding_dim,
|
|
padding_idx=padding_idx,
|
|
max_norm=max_norm,
|
|
norm_type=norm_type,
|
|
scale_grad_by_freq=scale_grad_by_freq,
|
|
sparse=sparse,
|
|
_weight=_weight,
|
|
device=device,
|
|
dtype=dtype,
|
|
)
|
|
|
|
def add_null_idx(self):
|
|
"""Additional 0 entry used for masking"""
|
|
self.weight = nn.Parameter(F.pad(self.weight, (0, 0, 0, 1)))
|
|
|
|
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
|
# default all out of bounds values to `self.null_idx` that will then be mapped to 0
|
|
# translate for [0, self.max_id - self.min_id[
|
|
input = torch.where(
|
|
(self.min_id > input) | (input >= self.max_id),
|
|
self.null_idx,
|
|
input - self.min_id,
|
|
)
|
|
out = super().forward(input)
|
|
torch.distributed.all_reduce(out, group=self.process_group)
|
|
return out
|
|
|
|
|
|
try:
|
|
import dropout_layer_norm
|
|
|
|
class FastLayerNorm(nn.LayerNorm):
|
|
def forward(self, hidden_states, residual=None):
|
|
if hidden_states.shape[-1] > 8192:
|
|
if residual is not None:
|
|
hidden_states += residual
|
|
residual = hidden_states
|
|
|
|
return super(FastLayerNorm, self).forward(hidden_states), residual
|
|
else:
|
|
(
|
|
normed_hidden_states,
|
|
residual,
|
|
*rest,
|
|
) = dropout_layer_norm.dropout_add_ln_fwd(
|
|
hidden_states,
|
|
residual,
|
|
self.weight,
|
|
self.bias,
|
|
None,
|
|
None,
|
|
None,
|
|
None,
|
|
0.0,
|
|
self.eps,
|
|
1.0,
|
|
0,
|
|
None,
|
|
False,
|
|
False,
|
|
)
|
|
if residual is None:
|
|
residual = hidden_states
|
|
|
|
return normed_hidden_states, residual
|
|
|
|
except ImportError:
|
|
pass
|
|
|
|
|
|
try:
|
|
from flash_attn.layers.rotary import RotaryEmbedding
|
|
import rotary_emb
|
|
|
|
class PositionRotaryEmbedding(RotaryEmbedding):
|
|
def _update_cos_sin_cache(self, dtype, device, seqlen):
|
|
# Reset the tables if the sequence length has changed,
|
|
# or if we're on a new device (possibly due to tracing for instance)
|
|
if (
|
|
seqlen > self._seq_len_cached
|
|
or self._cos_cached.device != device
|
|
or self._cos_cached.dtype != dtype
|
|
):
|
|
self._seq_len_cached = seqlen
|
|
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
|
|
# Don't do einsum, it converts fp32 to fp16
|
|
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
|
freqs = torch.outer(t, self.inv_freq.to(device=t.device))
|
|
self._cos_cached = torch.cos(freqs).to(dtype)
|
|
self._sin_cached = torch.sin(freqs).to(dtype)
|
|
|
|
def get_cos_sin(
|
|
self, position_ids: torch.Tensor, max_s: int, dtype: torch.dtype
|
|
):
|
|
"""
|
|
Return cos and sin for the asked position ids
|
|
"""
|
|
|
|
self._update_cos_sin_cache(dtype, position_ids.device, max_s)
|
|
|
|
cos = torch.index_select(self._cos_cached, 0, position_ids)
|
|
sin = torch.index_select(self._sin_cached, 0, position_ids)
|
|
return cos.unsqueeze(1), sin.unsqueeze(1)
|
|
|
|
def forward(self, qkv: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor):
|
|
rotary_dim = cos.shape[-1]
|
|
q1 = qkv[:, 0, :, :rotary_dim]
|
|
q2 = qkv[:, 0, :, rotary_dim : 2 * rotary_dim]
|
|
k1 = qkv[:, 1, :, :rotary_dim]
|
|
k2 = qkv[:, 1, :, rotary_dim : 2 * rotary_dim]
|
|
|
|
rotary_emb.apply_rotary(q1, q2, cos, sin, q1, q2, False)
|
|
rotary_emb.apply_rotary(k1, k2, cos, sin, k1, k2, False)
|
|
return qkv
|
|
|
|
except ImportError:
|
|
pass
|