text-generation-inference/backends/gaudi/server/text_generation_server/layers/layernorm.py
Wang, Yi d658b5def3
Deepseek R1 for Gaudi backend (#3211)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2025-05-19 16:36:39 +02:00

63 lines
1.8 KiB
Python

import torch
from torch import nn
from accelerate import init_empty_weights
# Monkey patching
@classmethod
def load_layer_norm(cls, prefix, weights, eps):
weight = weights.get_tensor(f"{prefix}.weight")
bias = weights.get_tensor(f"{prefix}.bias")
with init_empty_weights():
ln = cls(weight.shape, eps=eps)
ln.weight = torch.nn.Parameter(weight)
ln.bias = torch.nn.Parameter(bias)
return ln
@classmethod
def load_layer_norm_no_bias(cls, prefix, weights, eps):
weight = weights.get_tensor(f"{prefix}.weight")
with init_empty_weights():
ln = cls(weight.shape, eps=eps)
ln.weight = torch.nn.Parameter(weight)
ln.bias = None
return ln
torch.nn.LayerNorm.load = load_layer_norm
torch.nn.LayerNorm.load_no_bias = load_layer_norm_no_bias
class FastLayerNorm(nn.LayerNorm):
def forward(self, hidden_states, residual=None):
if residual is not None:
hidden_states += residual
residual = hidden_states
return super().forward(hidden_states), residual
class FastRMSNorm(nn.Module):
def __init__(self, weight: torch.Tensor, eps: float):
super().__init__()
self.weight = nn.Parameter(weight)
self.variance_epsilon = eps
@classmethod
def load(cls, prefix, weights, eps=1e-6):
weight = weights.get_tensor(f"{prefix}.weight")
return cls(weight, eps)
def forward(self, hidden_states, residual=None):
if residual is not None:
hidden_states += residual
residual = hidden_states
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(self.weight.dtype), residual