text-generation-inference/benchmark/src/main.rs
Nicolas Patry 211b54ac41
Rebased #617 (#868)
# What does this PR do?

<!--
Congratulations! You've made it this far! You're not quite done yet
though.

Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.

Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.

Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->

<!-- Remove if not applicable -->

Fixes # (issue)


## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
      Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
      to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?


## Who can review?

Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.

<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @


@OlivierDehaene OR @Narsil

 -->

---------

Co-authored-by: Vincent Brouwers <vincent.brouwers@ing.com>
2023-08-28 11:43:47 +02:00

216 lines
7.4 KiB
Rust

/// Text Generation Inference benchmarking tool
///
/// Inspired by the great Oha app: https://github.com/hatoo/oha
/// and: https://github.com/orhun/rust-tui-template
use clap::Parser;
use std::path::Path;
use text_generation_client::ShardedClient;
use tokenizers::{FromPretrainedParameters, Tokenizer};
use tracing_subscriber::layer::SubscriberExt;
use tracing_subscriber::util::SubscriberInitExt;
use tracing_subscriber::EnvFilter;
/// App Configuration
#[derive(Parser, Debug)]
#[clap(author, version, about, long_about = None)]
struct Args {
/// The name of the tokenizer (as in model_id on the huggingface hub, or local path).
#[clap(short, long, env)]
tokenizer_name: String,
/// The revision to use for the tokenizer if on the hub.
#[clap(default_value = "main", long, env)]
revision: String,
/// The various batch sizes to benchmark for, the idea is to get enough
/// batching to start seeing increased latency, this usually means you're
/// moving from memory bound (usual as BS=1) to compute bound, and this is
/// a sweet spot for the maximum batch size for the model under test
#[clap(short, long)]
batch_size: Option<Vec<u32>>,
/// This is the initial prompt sent to the text-generation-server length
/// in token. Longer prompt will slow down the benchmark. Usually the
/// latency grows somewhat linearly with this for the prefill step.
///
/// Most importantly, the prefill step is usually not the one dominating
/// your runtime, so it's ok to keep it short.
#[clap(default_value = "10", short, long, env)]
sequence_length: u32,
/// This is how many tokens will be generated by the server and averaged out
/// to give the `decode` latency. This is the *critical* number you want to optimize for
/// LLM spend most of their time doing decoding.
///
/// Decode latency is usually quite stable.
#[clap(default_value = "8", short, long, env)]
decode_length: u32,
///How many runs should we average from
#[clap(default_value = "10", short, long, env)]
runs: usize,
/// Number of warmup cycles
#[clap(default_value = "1", short, long, env)]
warmups: usize,
/// The location of the grpc socket. This benchmark tool bypasses the router
/// completely and directly talks to the gRPC processes
#[clap(default_value = "/tmp/text-generation-server-0", short, long, env)]
master_shard_uds_path: String,
/// Generation parameter in case you want to specifically test/debug particular
/// decoding strategies, for full doc refer to the `text-generation-server`
#[clap(long, env)]
temperature: Option<f32>,
/// Generation parameter in case you want to specifically test/debug particular
/// decoding strategies, for full doc refer to the `text-generation-server`
#[clap(long, env)]
top_k: Option<u32>,
/// Generation parameter in case you want to specifically test/debug particular
/// decoding strategies, for full doc refer to the `text-generation-server`
#[clap(long, env)]
top_p: Option<f32>,
/// Generation parameter in case you want to specifically test/debug particular
/// decoding strategies, for full doc refer to the `text-generation-server`
#[clap(long, env)]
typical_p: Option<f32>,
/// Generation parameter in case you want to specifically test/debug particular
/// decoding strategies, for full doc refer to the `text-generation-server`
#[clap(long, env)]
repetition_penalty: Option<f32>,
/// Generation parameter in case you want to specifically test/debug particular
/// decoding strategies, for full doc refer to the `text-generation-server`
#[clap(long, env)]
watermark: bool,
/// Generation parameter in case you want to specifically test/debug particular
/// decoding strategies, for full doc refer to the `text-generation-server`
#[clap(long, env)]
do_sample: bool,
/// Generation parameter in case you want to specifically test/debug particular
/// decoding strategies, for full doc refer to the `text-generation-server`
#[clap(long, env)]
top_n_tokens: Option<u32>,
}
fn main() -> Result<(), Box<dyn std::error::Error>> {
init_logging();
// Get args
let args = Args::parse();
// Pattern match configuration
let Args {
tokenizer_name,
revision,
batch_size,
sequence_length,
decode_length,
runs,
warmups,
temperature,
top_k,
top_p,
typical_p,
repetition_penalty,
watermark,
do_sample,
master_shard_uds_path,
top_n_tokens,
} = args;
let batch_size = batch_size.unwrap_or(vec![1, 2, 4, 8, 16, 32]);
// Tokenizer instance
// This will only be used to validate payloads
tracing::info!("Loading tokenizer");
let local_path = Path::new(&tokenizer_name);
let tokenizer =
if local_path.exists() && local_path.is_dir() && local_path.join("tokenizer.json").exists()
{
// Load local tokenizer
tracing::info!("Found local tokenizer");
Tokenizer::from_file(local_path.join("tokenizer.json")).unwrap()
} else {
tracing::info!("Downloading tokenizer");
// Parse Huggingface hub token
let auth_token = std::env::var("HUGGING_FACE_HUB_TOKEN").ok();
// Download and instantiate tokenizer
// We need to download it outside of the Tokio runtime
let params = FromPretrainedParameters {
revision,
auth_token,
..Default::default()
};
Tokenizer::from_pretrained(tokenizer_name.clone(), Some(params)).unwrap()
};
tracing::info!("Tokenizer loaded");
// Launch Tokio runtime
tokio::runtime::Builder::new_multi_thread()
.enable_all()
.build()
.unwrap()
.block_on(async {
// Instantiate sharded client from the master unix socket
tracing::info!("Connect to model server");
let mut sharded_client = ShardedClient::connect_uds(master_shard_uds_path)
.await
.expect("Could not connect to server");
// Clear the cache; useful if the webserver rebooted
sharded_client
.clear_cache(None)
.await
.expect("Unable to clear cache");
tracing::info!("Connected");
// Run app
text_generation_benchmark::run(
tokenizer_name,
tokenizer,
batch_size,
sequence_length,
decode_length,
top_n_tokens,
runs,
warmups,
temperature,
top_k,
top_p,
typical_p,
repetition_penalty,
watermark,
do_sample,
sharded_client,
)
.await
.unwrap();
});
Ok(())
}
/// Init logging using LOG_LEVEL
fn init_logging() {
// STDOUT/STDERR layer
let fmt_layer = tracing_subscriber::fmt::layer()
.with_file(true)
.with_line_number(true);
// Filter events with LOG_LEVEL
let env_filter =
EnvFilter::try_from_env("LOG_LEVEL").unwrap_or_else(|_| EnvFilter::new("info"));
tracing_subscriber::registry()
.with(env_filter)
.with(fmt_layer)
.init();
}