text-generation-inference/server/text_generation_server/models/causal_lm.py

930 lines
36 KiB
Python

import os
import tempfile
from text_generation_server.utils.tokens import batch_top_tokens
import torch
from dataclasses import dataclass
from opentelemetry import trace
from transformers import AutoTokenizer, AutoModelForCausalLM, PreTrainedTokenizerBase, AutoConfig
from typing import Optional, Tuple, List, Type, Dict
from habana_frameworks.torch.hpu import wrap_in_hpu_graph
import habana_frameworks.torch as htorch
from contextlib import nullcontext
from optimum.habana.utils import HabanaProfile
from optimum.habana.transformers.generation import MODELS_OPTIMIZED_WITH_STATIC_SHAPES
from optimum.habana.checkpoint_utils import (
get_repo_root,
model_on_meta,
write_checkpoints_json,
)
from text_generation_server.models import Model
from text_generation_server.models.types import (
Batch,
PrefillTokens,
Generation,
GeneratedText,
TopTokens,
)
from text_generation_server.pb import generate_pb2
from text_generation_server.utils import HeterogeneousNextTokenChooser, StoppingCriteria, Sampling
from loguru import logger
tracer = trace.get_tracer(__name__)
@dataclass
class CausalLMBatch(Batch):
batch_id: int
requests: List[generate_pb2.Request]
requests_idx_mapping: Dict[int, int]
# Decoder values
input_ids: torch.Tensor
attention_mask: torch.Tensor
position_ids: torch.Tensor
past_key_values: Optional[List[Tuple]]
# All tokens
all_input_ids: List[torch.Tensor]
# Lengths of all generations present in the batch
input_lengths: List[int]
prefix_offsets: List[int]
read_offsets: List[int]
# Generation helpers
next_token_chooser: HeterogeneousNextTokenChooser
stopping_criterias: List[StoppingCriteria]
top_n_tokens: List[int]
top_n_tokens_tensor: torch.Tensor
# Metadata used for padding
max_input_length: int
padding_right_offset: int
# Maximum number of tokens this batch will grow to
max_tokens: int
# Past metadata
keys_head_dim_last: bool = True
def to_pb(self) -> generate_pb2.CachedBatch:
return generate_pb2.CachedBatch(
id=self.batch_id,
request_ids=[r.id for r in self.requests],
size=len(self),
max_tokens=self.max_tokens,
)
@classmethod
def from_pb(
cls,
pb: generate_pb2.Batch,
tokenizer: PreTrainedTokenizerBase,
dtype: torch.dtype,
device: torch.device,
is_optimized_for_gaudi: bool = False,
) -> "CausalLMBatch":
inputs = []
next_token_chooser_parameters = []
stopping_criterias = []
top_n_tokens = []
prefix_offsets = []
read_offsets = []
requests_idx_mapping = {}
input_lengths = []
# Parse batch
max_truncation = 0
padding_right_offset = 0
max_decode_tokens = 0
# TODO: this should be set to rust side `max_total_tokens`,
# (see https://github.com/huggingface/text-generation-inference/blob/main/launcher/src/main.rs#L177)
# but TGI does not offer an API to expose this variable to python, as this variable
# is handled by the client but it appears the model is initialized by the server.
# An alternative could be to initialize the buffers during warmup.
# Dummy
max_total_tokens = int(os.getenv("MAX_TOTAL_TOKENS", "0"))
logger.info("MAX_TOTAL_TOKENS = {}".format(max_total_tokens))
for i, r in enumerate(pb.requests):
requests_idx_mapping[r.id] = i
inputs.append(r.inputs)
next_token_chooser_parameters.append(r.parameters)
stopping_criteria = StoppingCriteria.from_pb(r.stopping_parameters, tokenizer)
stopping_criterias.append(stopping_criteria)
top_n_tokens.append(r.top_n_tokens)
max_truncation = max(max_truncation, r.truncate)
max_decode_tokens += stopping_criteria.max_new_tokens
padding_right_offset = max(padding_right_offset, stopping_criteria.max_new_tokens)
next_token_chooser = HeterogeneousNextTokenChooser.from_pb(
next_token_chooser_parameters, dtype, device
)
tokenized_inputs = tokenizer(
inputs,
return_tensors="pt",
padding="max_length",
return_token_type_ids=False,
truncation=True,
max_length=max_truncation,
)
for _ in pb.requests:
input_len = tokenized_inputs["input_ids"].shape[1]
input_lengths.append(input_len)
prefix_offsets.append(input_len - 5)
read_offsets.append(input_len)
max_input_length = max(input_lengths)
if max_total_tokens == 0:
max_total_tokens = max_input_length
max_tokens = len(inputs) * max_input_length + max_decode_tokens
if is_optimized_for_gaudi and max_total_tokens > max_input_length:
# pad to max_total_tokens in case max_new_token changes per request and triggers new hpu graph generation
padding_right_offset = max_total_tokens - max_input_length
input_ids = tokenized_inputs["input_ids"]
attention_mask = tokenized_inputs["attention_mask"]
# only move model inputs to device
attention_mask = attention_mask.to(device)
if is_optimized_for_gaudi:
input_ids_cpu = torch.nn.functional.pad(
input_ids, (0, padding_right_offset), value=tokenizer.pad_token_id
)
input_ids = input_ids_cpu.to(device)
attention_mask = torch.nn.functional.pad(attention_mask, (0, padding_right_offset), value=0)
all_input_ids = input_ids_cpu.T.split(1, dim=1)
else:
all_input_ids = input_ids.clone().T.split(1, dim=1)
input_ids = input_ids.to(device)
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
htorch.core.mark_step()
top_n_tokens_tensor = torch.tensor(top_n_tokens, device=device, dtype=torch.int64)
return cls(
batch_id=pb.id,
requests=pb.requests,
requests_idx_mapping=requests_idx_mapping,
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=None,
all_input_ids=list(all_input_ids),
input_lengths=input_lengths,
prefix_offsets=prefix_offsets,
read_offsets=read_offsets,
next_token_chooser=next_token_chooser,
stopping_criterias=stopping_criterias,
top_n_tokens=top_n_tokens,
top_n_tokens_tensor=top_n_tokens_tensor,
max_input_length=max_input_length,
padding_right_offset=padding_right_offset,
max_tokens=max_tokens,
)
@tracer.start_as_current_span("filter")
def filter(self, request_ids: List[int], is_optimized_for_gaudi: bool = False) -> Optional["CausalLMBatch"]:
if len(request_ids) == 0:
raise ValueError("Batch must have at least one request")
if len(request_ids) == len(self):
return self
keep_indices = []
# New values after filtering
requests_idx_mapping = {}
requests = []
input_lengths = []
prefix_offsets = []
read_offsets = []
all_input_ids = []
max_input_length = 0
stopping_criterias = []
top_n_tokens = []
total_remaining_decode_tokens = 0
new_padding_right_offset = 0
for i, request_id in enumerate(request_ids):
idx = self.requests_idx_mapping[request_id]
requests_idx_mapping[request_id] = i
keep_indices.append(idx)
requests.append(self.requests[idx])
prefix_offsets.append(self.prefix_offsets[idx])
read_offsets.append(self.read_offsets[idx])
all_input_ids.append(self.all_input_ids[idx])
request_input_length = self.input_lengths[idx]
input_lengths.append(request_input_length)
max_input_length = max(max_input_length, request_input_length)
stopping_criteria = self.stopping_criterias[idx]
stopping_criterias.append(stopping_criteria)
top_n_tokens.append(self.top_n_tokens[idx])
remaining_decode_tokens = stopping_criteria.max_new_tokens - stopping_criteria.current_tokens
total_remaining_decode_tokens += remaining_decode_tokens
new_padding_right_offset = max(new_padding_right_offset, remaining_decode_tokens)
# Apply indices to input_ids, attention mask, past key values and other items that need to be cached
input_ids = self.input_ids[keep_indices]
position_ids = self.position_ids[keep_indices]
next_token_chooser = self.next_token_chooser.filter(keep_indices)
if is_optimized_for_gaudi:
self.attention_mask = self.attention_mask[keep_indices]
else:
self.attention_mask = self.attention_mask[
keep_indices,
-(self.padding_right_offset + max_input_length) : (
self.attention_mask.shape[1] - self.padding_right_offset
)
+ new_padding_right_offset,
]
# Ensure that past_key_values tensors can be updated in-place
kv_tuple = False
if type(self.past_key_values[0]) == tuple:
self.past_key_values = [list(layer) for layer in self.past_key_values]
kv_tuple = True
# Update tensors in-place to allow incremental garbage collection
past_kv_length = max_input_length - 1
for layer in self.past_key_values:
past_keys, past_values = layer
past_keys_dims = len(past_keys.shape)
if past_keys_dims == 3:
# Force past to be of dim [self_size, num_heads, ...] for easy indexing
past_keys = past_keys.view(len(self), -1, *past_keys.shape[-2:])
past_values = past_values.view(len(self), -1, *past_values.shape[-2:])
if is_optimized_for_gaudi:
layer[0] = past_keys[keep_indices]
del past_keys
layer[1] = past_values[keep_indices]
del past_values
else:
if self.keys_head_dim_last:
layer[0] = past_keys[keep_indices, :, -past_kv_length:, :]
else:
layer[0] = past_keys[keep_indices, :, :, -past_kv_length:]
del past_keys
layer[1] = past_values[keep_indices, :, -past_kv_length:, :]
del past_values
if past_keys_dims == 3:
layer[0] = layer[0].view(layer[0].shape[0] * layer[0].shape[1], *layer[0].shape[-2:])
layer[1] = layer[1].view(layer[1].shape[0] * layer[1].shape[1], *layer[1].shape[-2:])
top_n_tokens_tensor = self.top_n_tokens_tensor[keep_indices]
max_tokens = len(request_ids) * max_input_length + total_remaining_decode_tokens
if kv_tuple:
self.past_key_values = [tuple(layer) for layer in self.past_key_values]
self.requests = requests
self.requests_idx_mapping = requests_idx_mapping
self.input_ids = input_ids
self.position_ids = position_ids
self.all_input_ids = all_input_ids
self.input_lengths = input_lengths
self.prefix_offsets = prefix_offsets
self.read_offsets = read_offsets
self.next_token_chooser = next_token_chooser
self.stopping_criterias = stopping_criterias
self.top_n_tokens = top_n_tokens
self.top_n_tokens_tensor = top_n_tokens_tensor
self.max_input_length = max_input_length
self.padding_right_offset = new_padding_right_offset
self.max_tokens = max_tokens
return self
@classmethod
@tracer.start_as_current_span("concatenate")
def concatenate(cls, batches: List["CausalLMBatch"], is_optimized_for_gaudi: bool = False) -> "CausalLMBatch":
# Used for padding
total_batch_size = 0
max_input_length = 0
padding_right_offset = 0
max_total_tokens = 0
for batch in batches:
total_batch_size += len(batch)
max_input_length = max(max_input_length, batch.max_input_length)
padding_right_offset = max(padding_right_offset, batch.padding_right_offset)
max_total_tokens = max(max_total_tokens, batch.max_input_length + batch.padding_right_offset)
if is_optimized_for_gaudi and max_total_tokens > max_input_length:
padding_right_offset = max_total_tokens - max_input_length
# Batch attributes
requests = []
requests_idx_mapping = {}
input_lengths = []
prefix_offsets = []
read_offsets = []
all_input_ids = []
next_token_chooser_parameters = []
stopping_criterias = []
top_n_tokens = []
max_tokens = 0
# Batch tensors
input_ids = None
attention_mask = None
position_ids = None
past_key_values = []
top_n_tokens_tensor = None
# Used for slicing correctly inside the tensors
# Equivalent to a cumsum on batch sizes
start_index = 0
for i, batch in enumerate(batches):
requests.extend(batch.requests)
input_lengths.extend(batch.input_lengths)
prefix_offsets.extend(batch.prefix_offsets)
read_offsets.extend(batch.read_offsets)
all_input_ids.extend(batch.all_input_ids)
next_token_chooser_parameters.extend([r.parameters for r in batch.requests])
stopping_criterias.extend(batch.stopping_criterias)
top_n_tokens.extend(batch.top_n_tokens)
if i == 0:
requests_idx_mapping = batch.requests_idx_mapping
else:
# We need to offset the mapping for each batch by the cumulative batch size
for k, v in batch.requests_idx_mapping.items():
requests_idx_mapping[k] = v + start_index
# Slicing end index for this batch
end_index = start_index + len(batch)
# We only concatenate batches that did at least one step
if batch.past_key_values is None:
raise ValueError("only concatenate prefilled batches")
# Create empty tensor
# input_ids is always of shape [batch_size, 1]
# We do not need to pad it
if input_ids is None:
input_ids = batch.input_ids.new_empty((total_batch_size, 1))
# Copy to correct indices
input_ids[start_index:end_index] = batch.input_ids
# Create padded tensor
if attention_mask is None:
attention_mask = batch.attention_mask.new_zeros(
(total_batch_size, max_input_length + padding_right_offset),
)
if top_n_tokens_tensor is None:
top_n_tokens_tensor = batches[0].top_n_tokens_tensor.new_zeros(
total_batch_size,
)
top_n_tokens_tensor[start_index:end_index] = batch.top_n_tokens_tensor
# We need to slice the attention mask to remove padding from previous steps
# and to remove unused allocated space
left_offset = max_input_length - batch.max_input_length
batch_left_offset = batch.attention_mask.shape[1] - batch.max_input_length - batch.padding_right_offset
attention_mask[start_index:end_index, left_offset:-padding_right_offset] = batch.attention_mask[
:,
batch_left_offset : -batch.padding_right_offset,
]
# Create empty tensor
# position_ids is always of shape [batch_size, 1]
if position_ids is None:
position_ids = batch.position_ids.new_empty((total_batch_size, 1))
position_ids[start_index:end_index] = batch.position_ids
# Shenanigans to get dimensions because BLOOM outputs a past with a different shape
# BLOOM Keys: [batch_size * num_heads, head_dim, seq_length]
# BLOOM Values: [batch_size * num_heads, seq_length, head_dim]
# And ensure that we can update tensors in-place
kv_tuple = False
past_key_values_dims = len(batch.past_key_values[0][0].shape)
if type(batch.past_key_values[0]) == tuple:
batch.past_key_values = [
[t.view(len(batch), -1, *t.shape[-2:]) for t in layer] for layer in batch.past_key_values
]
kv_tuple = True
elif past_key_values_dims == 3:
for layer in batch.past_key_values:
for k, t in enumerate(layer):
layer[k] = t.view(len(batch), -1, *t.shape[-2:])
# Add eventual padding tokens that were added while concatenating
max_tokens += batch.max_tokens + (max_input_length - batch.max_input_length) * len(batch)
start_index = end_index
next_token_chooser = HeterogeneousNextTokenChooser.from_pb(
next_token_chooser_parameters,
dtype=batches[0].next_token_chooser.dtype,
device=batches[0].next_token_chooser.device,
)
first_past_kvs = batches[0].past_key_values
_, num_heads, _, head_dim = first_past_kvs[0][1].shape
padded_sequence_length = (
max_input_length + padding_right_offset if is_optimized_for_gaudi else max_input_length - 1
)
padded_past_values_shape = (
total_batch_size,
num_heads,
padded_sequence_length,
head_dim,
)
if batches[0].keys_head_dim_last:
padded_past_keys_shape = padded_past_values_shape
else:
# seq_length is last for BLOOM
padded_past_keys_shape = (
total_batch_size,
num_heads,
head_dim,
padded_sequence_length,
)
# Iterate over attention layers
# Concatenate past key values layer by layer to allow incremental garbage collection
for j in range(len(first_past_kvs)):
padded_past_keys = first_past_kvs[j][0].new_zeros(padded_past_keys_shape)
start_index = 0
for batch in batches:
past_keys = batch.past_key_values[j][0]
# Clear reference to the original tensor
batch.past_key_values[j][0] = None
# Slicing end index for this batch
end_index = start_index + len(batch)
# We slice the keys to remove the padding from previous batches
past_seq_len = batch.max_input_length - 1
# recaculate the offset
left_offset = max_input_length - batch.max_input_length
batch_left_offset = batch.attention_mask.shape[1] - batch.max_input_length - batch.padding_right_offset
if batch.keys_head_dim_last:
padded_past_keys[
start_index:end_index, :, left_offset : left_offset + past_seq_len, :
] = past_keys[:, :, batch_left_offset : batch_left_offset + past_seq_len, :]
else:
# BLOOM case
padded_past_keys[
start_index:end_index, :, :, left_offset : left_offset + past_seq_len
] = past_keys[:, :, :, batch_left_offset : batch_left_offset + past_seq_len]
del past_keys
start_index = end_index
padded_past_values = first_past_kvs[j][1].new_zeros(padded_past_values_shape)
start_index = 0
for batch in batches:
past_values = batch.past_key_values[j][1]
# Clear reference to the original tensor
batch.past_key_values[j][1] = None
# Slicing end index for this batch
end_index = start_index + len(batch)
# We slice the past values to remove the padding from previous batches
past_seq_len = batch.max_input_length - 1
# recaculate the offset
left_offset = max_input_length - batch.max_input_length
batch_left_offset = batch.attention_mask.shape[1] - batch.max_input_length - batch.padding_right_offset
padded_past_values[
start_index:end_index, :, left_offset : left_offset + past_seq_len, :
] = past_values[:, :, batch_left_offset : batch_left_offset + past_seq_len, :]
del past_values
# Update values
start_index = end_index
if past_key_values_dims == 3:
padded_past_keys = padded_past_keys.view(
padded_past_keys.shape[0] * padded_past_keys.shape[1], *padded_past_keys.shape[-2:]
)
padded_past_values = padded_past_values.view(
padded_past_values.shape[0] * padded_past_values.shape[1], *padded_past_values.shape[-2:]
)
if kv_tuple:
past_key_values.append((padded_past_keys, padded_past_values))
else:
past_key_values.append([padded_past_keys, padded_past_values])
return cls(
batch_id=batches[0].batch_id,
requests=requests,
requests_idx_mapping=requests_idx_mapping,
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
all_input_ids=all_input_ids,
input_lengths=input_lengths,
prefix_offsets=prefix_offsets,
read_offsets=read_offsets,
next_token_chooser=next_token_chooser,
stopping_criterias=stopping_criterias,
top_n_tokens=top_n_tokens,
top_n_tokens_tensor=top_n_tokens_tensor,
max_input_length=max_input_length,
padding_right_offset=padding_right_offset,
keys_head_dim_last=batches[0].keys_head_dim_last,
max_tokens=max_tokens,
)
def __len__(self):
return len(self.requests)
class CausalLM(Model):
def __init__(
self,
model_id: str,
revision: Optional[str] = None,
dtype: Optional[torch.dtype] = None,
):
device = torch.device("hpu")
dtype = torch.bfloat16 if dtype is None else dtype
from optimum.habana.transformers.modeling_utils import adapt_transformers_to_gaudi
adapt_transformers_to_gaudi()
tokenizer = AutoTokenizer.from_pretrained(
model_id,
revision=revision,
padding_side="left",
truncation_side="left",
)
model_kwargs = {
"revision": revision,
}
world_size = int(os.getenv("WORLD_SIZE", "1"))
rank = int(os.getenv("RANK"), 0)
self.enable_hpu_graph = os.getenv("ENABLE_HPU_GRAPH", "true").lower() == "true"
self.limit_hpu_graph = os.getenv("LIMIT_HPU_GRAPH", "false").lower() == "true"
if world_size > 1:
import habana_frameworks.torch.hpu as torch_hpu
# Get world size, rank and local rank
from habana_frameworks.torch.distributed.hccl import initialize_distributed_hpu
world_size, rank, local_rank = initialize_distributed_hpu()
import deepspeed
# Initialize process(es) for DeepSpeed
deepspeed.init_distributed(dist_backend="hccl")
logger.info(
"DeepSpeed is enabled. world_size {} rank {} local_rank {}".format(world_size, rank, local_rank)
)
config = AutoConfig.from_pretrained(model_id, **model_kwargs)
load_to_meta = model_on_meta(config)
if load_to_meta:
# Construct model with fake meta tensors, later will be replaced on devices during ds-inference ckpt load
with deepspeed.OnDevice(dtype=dtype, device="meta"):
model = AutoModelForCausalLM.from_config(config, torch_dtype=dtype)
else:
get_repo_root(model_id, local_rank=os.getenv("LOCAL_RANK"))
# TODO: revisit placement on CPU when auto-injection is possible
with deepspeed.OnDevice(dtype=dtype, device="cpu"):
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=dtype, **model_kwargs)
model = model.eval()
# Initialize the model
ds_inference_kwargs = {"dtype": dtype}
ds_inference_kwargs["tensor_parallel"] = {"tp_size": world_size}
ds_inference_kwargs["enable_cuda_graph"] = self.enable_hpu_graph
if load_to_meta:
# model loaded to meta is managed differently
checkpoints_json = tempfile.NamedTemporaryFile(suffix=".json", mode="+w")
write_checkpoints_json(model_id, local_rank, checkpoints_json)
ds_inference_kwargs["checkpoint"] = checkpoints_json.name
model = deepspeed.init_inference(model, **ds_inference_kwargs)
model = model.module
else:
get_repo_root(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
revision=revision,
torch_dtype=dtype,
)
model = model.eval().to(device)
#wrap in hpu_graph only if self.enable_hpu_graph is set
if self.enable_hpu_graph:
model = wrap_in_hpu_graph(model)
if model.config.model_type in MODELS_OPTIMIZED_WITH_STATIC_SHAPES:
self.is_optimized_for_gaudi = True
else:
self.is_optimized_for_gaudi = False
if tokenizer.pad_token_id is None:
if model.config.pad_token_id is not None:
tokenizer.pad_token_id = model.config.pad_token_id
elif model.config.eos_token_id is not None:
tokenizer.pad_token_id = model.config.eos_token_id
elif tokenizer.eos_token_id is not None:
tokenizer.pad_token_id = tokenizer.eos_token_id
else:
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
kwargs = {
"use_cache": True,
"return_dict": True,
}
if model.config.model_type == "llama":
kwargs["attn_softmax_bf16"] = True
kwargs["trim_logits"] = True
super(CausalLM, self).__init__(
model=model,
tokenizer=tokenizer,
requires_padding=True,
dtype=dtype,
device=device,
rank=rank,
kwargs=kwargs,
)
self.profiling_warmup_steps = int(os.getenv("PROF_WARMUPSTEP", "0"))
self.profiling_steps = int(os.getenv("PROF_STEP", "5"))
output_dir = os.getenv("PROF_PATH", "/tmp/hpu_profile")
self.hb_profer = HabanaProfile(
warmup=self.profiling_warmup_steps, active=self.profiling_steps, output_dir=output_dir
)
if self.profiling_warmup_steps > 0:
self.hb_profer_started = True
self.hb_profer.start()
else:
self.hb_profer = None
self.hb_profer_started = False
self.step = 0
@property
def batch_type(self) -> Type[CausalLMBatch]:
return CausalLMBatch
def decode(self, generated_ids: List[int]) -> str:
return self.tokenizer.decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
def forward(
self,
input_ids,
attention_mask,
position_ids,
token_idx: Optional = None,
past_key_values: Optional = None,
bypass_hpu_graph: Optional = None,
) -> Tuple[torch.Tensor, List[Tuple[torch.Tensor, torch.Tensor]]]:
# Model Forward
kwargs = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"past_key_values": past_key_values,
}
if self.is_optimized_for_gaudi:
kwargs["token_idx"] = token_idx
if self.has_position_ids:
kwargs["position_ids"] = position_ids
if bypass_hpu_graph != None:
kwargs["bypass_hpu_graphs"] = bypass_hpu_graph
kwargs.update(self.kwargs)
outputs = self.model.forward(**kwargs)
return outputs.logits, outputs.past_key_values
@tracer.start_as_current_span("generate_token")
def generate_token(self, batch: CausalLMBatch) -> Tuple[List[Generation], Optional[CausalLMBatch]]:
self.step = self.step + 1
if self.hb_profer_started == True and self.step > self.profiling_warmup_steps + self.profiling_steps:
self.hb_profer.stop()
self.hb_profer_started = False
if self.is_optimized_for_gaudi:
token_idx = torch.tensor(batch.attention_mask.shape[-1] - batch.padding_right_offset).to(self.device)
attention_mask = batch.attention_mask
else:
token_idx = None
# slice the attention mask to the correct shape
attention_mask = batch.attention_mask[:, : -batch.padding_right_offset]
prefill = batch.past_key_values is None
if batch.past_key_values:
if token_idx is not None:
input_ids = torch.index_select(batch.input_ids, 1, token_idx - 1)
else:
input_ids = batch.input_ids
logits, past = self.forward(
input_ids,
attention_mask,
batch.position_ids,
token_idx,
batch.past_key_values,
bypass_hpu_graph = prefill and self.limit_hpu_graph if self.enable_hpu_graph else None
)
# Results
generations: List[Generation] = []
stopped = True
# Select next token
input_length = batch.input_lengths[0]
if self.is_optimized_for_gaudi and logits.shape[-2] > 1:
next_input_ids, next_token_logprobs, logprobs = batch.next_token_chooser(
batch.input_ids[:, :token_idx], logits[:, input_length - 1 : input_length, :].squeeze(-2)
)
else:
next_input_ids, next_token_logprobs, logprobs = batch.next_token_chooser(
batch.input_ids[:, :token_idx], logits.squeeze(-2)
)
batch_top_token_ids, batch_top_token_logprobs = batch_top_tokens(
batch.top_n_tokens,
batch.top_n_tokens_tensor,
logprobs,
)
htorch.core.mark_step()
logits = logits.to("cpu")
next_token_logprobs = next_token_logprobs.tolist()
next_token_ids = next_input_ids
# Zipped iterator
iterator = zip(
batch.requests,
batch.input_lengths,
batch.prefix_offsets,
batch.read_offsets,
logits,
batch.next_token_chooser.do_sample,
batch.next_token_chooser.seeds,
batch.stopping_criterias,
batch.all_input_ids,
batch.top_n_tokens,
next_token_ids,
next_token_logprobs,
batch_top_token_ids,
batch_top_token_logprobs,
)
# For each member of the batch
for i, (
request,
input_length,
prefix_offset,
read_offset,
logits,
do_sample,
seed,
stopping_criteria,
all_input_ids,
top_n_tokens,
next_token_id,
next_token_logprob,
top_token_ids,
top_token_logprobs,
) in enumerate(iterator):
# Append next token to all tokens
if self.is_optimized_for_gaudi:
all_input_ids[input_length] = next_token_id
else:
all_input_ids = torch.cat([all_input_ids, next_token_id])
new_input_length = input_length + 1
# Generated token
next_token_text, prefix_offset, read_offset = self.decode_token(
all_input_ids[0:new_input_length, 0], prefix_offset, read_offset
)
# Evaluate stopping criteria
stop, reason = stopping_criteria(
next_token_id,
next_token_text,
)
if not stop:
stopped = False
# Shard generations
# All generations will be appended in the rust sharded client
if i % self.world_size == self.rank:
if stop:
# Decode generated tokens
output_text = self.decode(
all_input_ids[new_input_length - stopping_criteria.current_tokens : new_input_length, 0]
)
generated_text = GeneratedText(
output_text,
stopping_criteria.current_tokens,
reason,
seed if do_sample else None,
)
else:
generated_text = None
# Prefill
if stopping_criteria.current_tokens == 1 and request.prefill_logprobs:
# Remove generated token to only have prefill and add nan for first prompt token
prefill_logprobs = [float("nan")] + next_token_logprobs
prefill_token_ids = all_input_ids[0 : new_input_length - 1]
prefill_texts = self.tokenizer.batch_decode(
prefill_token_ids,
clean_up_tokenization_spaces=False,
skip_special_tokens=False,
)
prefill_tokens = PrefillTokens(prefill_token_ids, prefill_logprobs, prefill_texts)
else:
prefill_tokens = None
if top_n_tokens > 0:
toptoken_texts = self.tokenizer.batch_decode(
top_token_ids,
clean_up_tokenization_spaces=False,
skip_special_tokens=False,
)
special_toptokens = [token_id in self.all_special_ids for token_id in top_token_ids]
top_tokens = TopTokens(
top_token_ids,
top_token_logprobs,
toptoken_texts,
special_toptokens,
)
else:
top_tokens = None
generation = Generation(
request.id,
prefill_tokens,
next_token_id,
next_token_logprob,
next_token_text,
next_token_id in self.all_special_ids,
generated_text,
top_tokens,
)
generations.append(generation)
batch.all_input_ids[i] = all_input_ids
batch.input_lengths[i] = new_input_length
batch.prefix_offsets[i] = prefix_offset
batch.read_offsets[i] = read_offset
batch.max_input_length = max(batch.max_input_length, new_input_length)
next_tokens = torch.tensor(next_token_ids, dtype=torch.int64).to(self.device)
if token_idx is None:
batch.input_ids[:, 0] = next_tokens[:, 0]
else:
batch.input_ids[:, token_idx] = next_tokens
# We finished all generations in the batch; there is no next batch
if stopped:
if self.hb_profer_started == True:
self.hb_profer.step()
return generations, None
# Slice unused values from prefill, use it to store next token
if token_idx is None:
batch.input_ids = batch.input_ids[:, :1]
# Update attention_mask as we added a new token to input_ids
if self.is_optimized_for_gaudi:
batch.attention_mask.index_fill_(1, token_idx, 1)
else:
batch.attention_mask[:, -batch.padding_right_offset] = 1
# Decrease right offset
batch.padding_right_offset -= 1
# Update position_ids
if prefill:
batch.position_ids = batch.position_ids[:, token_idx - 1 : token_idx] + 1
else:
batch.position_ids += 1
# Update past key values
batch.past_key_values = past
if self.hb_profer_started == True:
self.hb_profer.step()
return generations, batch