mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-04-21 14:52:20 +00:00
- Always return the hidden states. - Create the output tensor inside the `attention` and `paged_attention` functions. This removes the difference between how the output is handled between attention (output parameter) and paged attention (return value). This also removes the assumption that the attention implementation can write to an output tensor (in preparation of FlashInfer).
309 lines
9.1 KiB
Python
309 lines
9.1 KiB
Python
import torch
|
|
from text_generation_server.utils.import_utils import SYSTEM
|
|
from text_generation_server.models.globals import FLASH_DECODING, BLOCK_SIZE
|
|
from text_generation_server.layers.attention import Seqlen
|
|
from typing import Optional
|
|
|
|
major, minor = torch.cuda.get_device_capability()
|
|
is_sm75 = major == 7 and minor == 5
|
|
_PARTITION_SIZE = 512
|
|
|
|
try:
|
|
from vllm._C import cache_ops
|
|
except Exception as e:
|
|
raise ImportError(
|
|
f"Could not import vllm paged attention. Make sure your installation is correct. Complete error: {e}"
|
|
)
|
|
|
|
|
|
def reshape_and_cache(
|
|
key: torch.Tensor,
|
|
value: torch.Tensor,
|
|
key_cache: torch.Tensor,
|
|
value_cache: torch.Tensor,
|
|
slots: torch.Tensor,
|
|
):
|
|
if FLASH_DECODING:
|
|
shape = key_cache.shape
|
|
key_cache.view(-1, shape[-2], shape[-1])[slots] = key
|
|
value_cache.view(-1, shape[-2], shape[-1])[slots] = value
|
|
else:
|
|
cache_ops.reshape_and_cache(
|
|
key, value, key_cache, value_cache, slots, "auto", 1.0
|
|
)
|
|
|
|
|
|
def paged_attention(
|
|
query: torch.Tensor,
|
|
key_cache: torch.Tensor,
|
|
value_cache: torch.Tensor,
|
|
kv_head_mapping: torch.Tensor,
|
|
softmax_scale: float,
|
|
block_tables: torch.Tensor,
|
|
seqlen: Seqlen,
|
|
max_s: int,
|
|
softcap: Optional[float] = None,
|
|
):
|
|
# Adapted from: https://github.com/vllm-project/vllm/blob/f8a1e39fae05ca610be8d5a78be9d40f5274e5fc/vllm/model_executor/layers/attention.py
|
|
# Copyright 2023 The vLLM team. All rights
|
|
# reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
# value_cache => [num_blocks, num_heads, head_size, block_size]
|
|
# block_size = value_cache.shape[3]
|
|
block_size = BLOCK_SIZE
|
|
num_seqs, num_heads, head_size = query.shape
|
|
max_num_partitions = (max_s + _PARTITION_SIZE - 1) // _PARTITION_SIZE
|
|
|
|
# NOTE(woosuk): We use a simple heuristic to decide whether to use
|
|
# PagedAttention V1 or V2. If the number of partitions is 1, we use
|
|
# V1 to avoid the overhead of reduction. Also, if the number of
|
|
# sequences or heads is large, we use V1 since there is enough work
|
|
# to parallelize.
|
|
if FLASH_DECODING:
|
|
max_q = 1
|
|
max_k = max_s
|
|
import flash_attn_2_cuda
|
|
|
|
# TODO fixme when flash contains the fix.
|
|
# Number of splits is not correctly handled
|
|
# by the current path
|
|
# https://github.com/Dao-AILab/flash-attention/blob/320fb59487658f033f56711efd3d61b7c7a6f8f3/csrc/flash_attn/flash_api.cpp#L577
|
|
# This fails becuase we're using causal, therefore window_right is set to 0 and the split logic is never applied.
|
|
if softcap is None:
|
|
softcap = 0.0
|
|
out = flash_attn_2_cuda.varlen_fwd(
|
|
query,
|
|
key_cache,
|
|
value_cache,
|
|
None,
|
|
seqlen.cu_seqlen_q,
|
|
seqlen.cu_seqlen_k,
|
|
None, # pad_k
|
|
None,
|
|
block_tables,
|
|
None,
|
|
max_q,
|
|
max_k,
|
|
0.0, # dropout
|
|
softmax_scale,
|
|
False, # zero_tensors
|
|
True, # causal
|
|
-1, # Window_left
|
|
-1, # Window right
|
|
softcap,
|
|
False, # return softmax
|
|
None, # generator
|
|
)
|
|
return out[0]
|
|
else:
|
|
if softcap is not None:
|
|
raise RuntimeError("Paged attention doesn't support softcapping")
|
|
input_lengths = seqlen.input_lengths
|
|
from vllm._C import ops
|
|
|
|
out = torch.empty_like(query)
|
|
|
|
use_v1 = max_s <= 8192 and (
|
|
max_num_partitions == 1 or num_seqs * num_heads > 512
|
|
)
|
|
if use_v1:
|
|
ops.paged_attention_v1(
|
|
out,
|
|
query,
|
|
key_cache,
|
|
value_cache,
|
|
kv_head_mapping,
|
|
softmax_scale,
|
|
block_tables,
|
|
input_lengths,
|
|
block_size,
|
|
max_s,
|
|
None,
|
|
"auto",
|
|
1.0,
|
|
)
|
|
else:
|
|
# Run PagedAttention V2.
|
|
assert _PARTITION_SIZE % block_size == 0
|
|
tmp_output = torch.empty(
|
|
size=(num_seqs, num_heads, max_num_partitions, head_size),
|
|
dtype=out.dtype,
|
|
device=out.device,
|
|
)
|
|
exp_sums = torch.empty(
|
|
size=(num_seqs, num_heads, max_num_partitions),
|
|
dtype=torch.float32,
|
|
device=out.device,
|
|
)
|
|
max_logits = torch.empty_like(exp_sums)
|
|
|
|
ops.paged_attention_v2(
|
|
out,
|
|
exp_sums,
|
|
max_logits,
|
|
tmp_output,
|
|
query,
|
|
key_cache,
|
|
value_cache,
|
|
kv_head_mapping,
|
|
softmax_scale,
|
|
block_tables,
|
|
input_lengths,
|
|
block_size,
|
|
max_s,
|
|
None,
|
|
"auto",
|
|
1.0,
|
|
)
|
|
return out
|
|
|
|
|
|
try:
|
|
import flash_attn_2_cuda
|
|
|
|
V2 = True
|
|
except ImportError:
|
|
try:
|
|
import flash_attn_cuda
|
|
|
|
V2 = False
|
|
except ImportError as e:
|
|
if major >= 8:
|
|
architecture_suffix = f"-{SYSTEM}"
|
|
raise ImportError(
|
|
"Flash Attention V2 is not installed.\n"
|
|
"Use the official Docker image (ghcr.io/huggingface/text-generation-inference:latest) "
|
|
f"or install flash attention v2 with `cd server && make install install-flash-attention-v2{architecture_suffix}`"
|
|
)
|
|
elif is_sm75:
|
|
raise ImportError(
|
|
"Flash Attention is not installed.\n"
|
|
"Use the official Docker image (ghcr.io/huggingface/text-generation-inference:latest) "
|
|
"or install flash attention with `cd server && make install install-flash-attention`"
|
|
) from e
|
|
else:
|
|
raise ImportError(
|
|
f"GPU with CUDA capability {major} {minor} is not supported"
|
|
) from e
|
|
|
|
|
|
SUPPORTS_WINDOWING = V2
|
|
|
|
if V2:
|
|
|
|
def attention(
|
|
q,
|
|
k,
|
|
v,
|
|
cu_seqlens,
|
|
max_s,
|
|
softmax_scale,
|
|
window_size_left=-1,
|
|
causal=True,
|
|
softcap=0.0,
|
|
):
|
|
out = torch.empty_like(q)
|
|
if window_size_left <= 0 and window_size_left != -1:
|
|
raise ValueError("`window_size_left` must be > 0 or -1")
|
|
return flash_attn_2_cuda.varlen_fwd(
|
|
q,
|
|
k,
|
|
v,
|
|
out,
|
|
cu_seqlens,
|
|
cu_seqlens,
|
|
None,
|
|
None,
|
|
None,
|
|
None,
|
|
max_s,
|
|
max_s,
|
|
0.0,
|
|
softmax_scale,
|
|
False,
|
|
causal,
|
|
window_size_left,
|
|
0,
|
|
softcap,
|
|
False,
|
|
None,
|
|
)[0]
|
|
|
|
else:
|
|
|
|
def attention(
|
|
q,
|
|
k,
|
|
v,
|
|
cu_seqlens,
|
|
max_s,
|
|
softmax_scale,
|
|
window_size_left=-1,
|
|
softcap=None,
|
|
):
|
|
if window_size_left != -1:
|
|
raise NotImplementedError(
|
|
"window_size_left is only available with flash attn v2"
|
|
)
|
|
if softcap is not None:
|
|
raise NotImplementedError("softcap is only available with flash attn v2")
|
|
|
|
# Flash attention v1 requires q, k and v to have the same number of heads
|
|
if k.shape[1] != q.shape[1]:
|
|
# MQA expand
|
|
if k.shape[1] == 1:
|
|
k = k.expand(-1, q.shape[1], -1)
|
|
# Grouped attention reshape
|
|
else:
|
|
original_shape = k.shape
|
|
k = (
|
|
k.unsqueeze(2)
|
|
.expand(-1, -1, q.shape[1] // k.shape[1], -1)
|
|
.reshape(original_shape[0], -1, original_shape[2])
|
|
)
|
|
if v.shape[1] != q.shape[1]:
|
|
# MQA expand
|
|
if v.shape[1] == 1:
|
|
v = v.expand(-1, q.shape[1], -1)
|
|
# Grouped attention reshape
|
|
else:
|
|
original_shape = v.shape
|
|
v = (
|
|
v.unsqueeze(2)
|
|
.expand(-1, -1, q.shape[1] // v.shape[1], -1)
|
|
.reshape(original_shape[0], -1, original_shape[2])
|
|
)
|
|
|
|
out = torch.empty_like(q)
|
|
|
|
return flash_attn_cuda.fwd(
|
|
q,
|
|
k,
|
|
v,
|
|
out,
|
|
cu_seqlens,
|
|
cu_seqlens,
|
|
max_s,
|
|
max_s,
|
|
0.0,
|
|
softmax_scale,
|
|
False,
|
|
True,
|
|
False,
|
|
0,
|
|
None,
|
|
)[0]
|