text-generation-inference/server/text_generation_server/models/flash_causal_lm.py
2023-04-19 12:51:11 +02:00

485 lines
17 KiB
Python

import torch
import torch.distributed
from torch.nn import functional as F
from dataclasses import dataclass
from opentelemetry import trace
from transformers import AutoTokenizer, PreTrainedTokenizerBase, PreTrainedModel
from typing import Optional, Tuple, List, Type, Union
from text_generation_server.models import Model
from text_generation_server.models.types import (
Batch,
PrefillTokens,
Generation,
GeneratedText,
)
from text_generation_server.pb import generate_pb2
from text_generation_server.utils import (
NextTokenChooser,
StoppingCriteria,
Sampling,
)
tracer = trace.get_tracer(__name__)
@dataclass
class FlashCausalLMBatch(Batch):
batch_id: int
requests: List[generate_pb2.Request]
# Decoder values
input_ids: torch.Tensor
position_ids: torch.Tensor
# cumulative sequence lengths
cu_seqlens: torch.Tensor
max_seqlen: int
past_key_values: Optional[torch.Tensor]
# All tokens
all_input_ids: List[List[int]]
all_input_ids_tensor: List[torch.Tensor]
# Lengths of all generations present in the batch
input_lengths: List[int]
offsets: List[Optional[int]]
token_offsets: List[Optional[int]]
# Generation helpers
next_token_choosers: List[NextTokenChooser]
stopping_criterias: List[StoppingCriteria]
def to_pb(self) -> generate_pb2.Batch:
return generate_pb2.Batch(
id=self.batch_id, requests=self.requests, size=len(self)
)
@classmethod
def from_pb(
cls,
pb: generate_pb2.Batch,
tokenizer: PreTrainedTokenizerBase,
device: torch.device,
) -> "CausalLMBatch":
input_ids = []
position_ids = []
cu_seqlens = [0]
max_seqlen = 0
input_lengths = []
offsets = []
token_offsets = []
all_input_ids = []
all_input_ids_tensor = []
next_token_choosers = []
stopping_criterias = []
# Cumulative length
cumulative_length = 0
# Parse batch
for r in pb.requests:
tokenized_input = tokenizer(
r.inputs, truncation=True, max_length=r.truncate
)["input_ids"]
input_length = len(tokenized_input)
max_seqlen = max(max_seqlen, input_length)
input_lengths.append(input_length)
offsets.append(None)
token_offsets.append(None)
all_input_ids.append(tokenized_input)
tokenized_input = torch.tensor(tokenized_input, device=device)
input_ids.append(tokenized_input)
# Position ids
position_ids.append(torch.arange(0, input_length, dtype=torch.int32))
# Add cumulative lengths of all previous inputs
cu_seqlens.append(cumulative_length + input_length)
next_token_choosers.append(NextTokenChooser.from_pb(r.parameters, device))
stopping_criteria = StoppingCriteria.from_pb(
r.stopping_parameters, tokenizer
)
stopping_criterias.append(stopping_criteria)
all_input_ids_tensor.append(
F.pad(tokenized_input, (0, stopping_criteria.max_new_tokens))
)
# Update
cumulative_length += input_length
input_ids = torch.concat(input_ids)
position_ids = torch.concat(position_ids)
cu_seqlens = torch.tensor(cu_seqlens, dtype=torch.int32)
return cls(
batch_id=pb.id,
requests=pb.requests,
input_ids=input_ids,
position_ids=position_ids,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen,
past_key_values=None,
input_lengths=input_lengths,
offsets=offsets,
token_offsets=token_offsets,
all_input_ids=all_input_ids,
all_input_ids_tensor=all_input_ids_tensor,
next_token_choosers=next_token_choosers,
stopping_criterias=stopping_criterias,
)
@classmethod
@tracer.start_as_current_span("concatenate")
def concatenate(cls, batches: List["FlashCausalLMBatch"]) -> "FlashCausalLMBatch":
# Batch attributes
requests = []
input_lengths = []
offsets = []
token_offsets = []
all_input_ids = []
all_input_ids_tensor = []
next_token_choosers = []
stopping_criterias = []
# Batch tensors
input_ids = []
position_ids = []
cu_seqlens = [torch.tensor([0], dtype=torch.int32)]
max_seqlen = 0
past_key_values = []
# Cumulative length
cumulative_length = torch.tensor(0)
for i, batch in enumerate(batches):
requests.extend(batch.requests)
input_lengths.extend(batch.input_lengths)
offsets.extend(batch.offsets)
token_offsets.extend(batch.token_offsets)
all_input_ids.extend(batch.all_input_ids)
all_input_ids_tensor.extend(batch.all_input_ids_tensor)
next_token_choosers.extend(batch.next_token_choosers)
stopping_criterias.extend(batch.stopping_criterias)
# Add cumulative lengths of all previous inputs
cu_seqlens.append(batch.cu_seqlens[1:] + cumulative_length)
input_ids.append(batch.input_ids)
position_ids.append(batch.position_ids)
past_key_values.append(batch.past_key_values)
max_seqlen = max(max_seqlen, batch.max_seqlen)
# Update
cumulative_length += batch.cu_seqlens[-1]
input_ids = torch.concat(input_ids)
position_ids = torch.concat(position_ids)
# Concat on dim=1 as first dim represents the model layers
past_key_values = torch.concat(past_key_values, dim=1)
cu_seqlens = torch.concat(cu_seqlens)
return FlashCausalLMBatch(
batch_id=batches[0].batch_id,
requests=requests,
input_ids=input_ids,
position_ids=position_ids,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen,
past_key_values=past_key_values,
input_lengths=input_lengths,
offsets=offsets,
token_offsets=token_offsets,
all_input_ids=all_input_ids,
all_input_ids_tensor=all_input_ids_tensor,
next_token_choosers=next_token_choosers,
stopping_criterias=stopping_criterias,
)
def __len__(self):
return len(self.requests)
class FlashCausalLM(Model):
def __init__(
self,
model_cls: Type[PreTrainedModel],
model_id: str,
revision: Optional[str] = None,
quantize: bool = False,
decode_buffer: int = 3,
):
if torch.cuda.is_available():
device = torch.device("cuda")
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
else:
raise NotImplementedError("FlashCausalLM is only available on GPU")
tokenizer = AutoTokenizer.from_pretrained(
model_id, revision=revision, padding_side="left", truncation_side="left"
)
self.model = (
model_cls.from_pretrained(
model_id,
revision=revision,
torch_dtype=dtype,
load_in_8bit=quantize,
)
.eval()
.to(device)
)
super(FlashCausalLM, self).__init__(
tokenizer=tokenizer, device=device, decode_buffer=decode_buffer
)
@property
def batch_type(self) -> Type[FlashCausalLMBatch]:
return FlashCausalLMBatch
def decode(self, generated_ids: Union[torch.Tensor, List[int]]) -> str:
return self.tokenizer.decode(
generated_ids, skip_special_tokens=True, cleanup_tokenization_spaces=False
)
def forward(
self,
input_ids: torch.Tensor,
position_ids: torch.Tensor,
cu_seqlens: torch.Tensor,
max_s: int,
past_key_values: Optional = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
# Model Forward
return self.model.forward(
input_ids=input_ids,
position_ids=position_ids,
cu_seqlens=cu_seqlens,
max_s=max_s,
past_key_values=past_key_values,
)
@tracer.start_as_current_span("generate_token")
def generate_token(
self, batch: FlashCausalLMBatch
) -> Tuple[List[Generation], Optional[FlashCausalLMBatch]]:
# Better to send to device here to avoid device issues in concatenate
position_ids = batch.position_ids.to(self.device, non_blocking=True)
cu_seqlens = batch.cu_seqlens.to(self.device)
out, present = self.forward(
batch.input_ids,
position_ids,
cu_seqlens,
batch.max_seqlen,
batch.past_key_values,
)
# List of indices to cache
next_batch_keep_indices = []
# New values for next forward
next_batch_input_ids = []
next_batch_position_ids = []
next_batch_cu_seqlens = [0]
next_batch_max_seqlen = 0
next_batch_past_key_values = []
next_batch_input_lengths = []
next_batch_offsets = []
next_batch_token_offsets = []
next_batch_all_input_ids = []
next_batch_all_input_ids_tensor = []
# Cumulative length
cumulative_length = 0
# Results
generations: List[Generation] = []
# Zipped iterator
iterator = zip(
batch.requests,
batch.input_lengths,
batch.offsets,
batch.token_offsets,
batch.next_token_choosers,
batch.stopping_criterias,
batch.all_input_ids,
batch.all_input_ids_tensor,
)
# For each member of the batch
for i, (
request,
input_length,
offset,
token_offset,
next_token_chooser,
stopping_criteria,
all_input_ids,
all_input_ids_tensor,
) in enumerate(iterator):
# Indexing metadata
start_index = cumulative_length
end_index = cumulative_length + input_length
if batch.past_key_values is None:
# Prefill mode
# out is of shape [cumulative_sequence_lengths, vocab_size]
logits = out[start_index:end_index]
else:
# Decode mode
# out is of shape [batch_size, vocab_size]
logits = out[i].unsqueeze(0)
# Select next token
next_token_id, logprobs = next_token_chooser(
all_input_ids_tensor[None, :input_length], logits
)
next_token_id_squeezed = next_token_id.squeeze()
next_token_id_item = next_token_id_squeezed.item()
# Append next token to all tokens
all_input_ids.append(next_token_id_item)
all_input_ids_tensor[input_length] = next_token_id_item
new_input_length = input_length + 1
# Generated token
next_token_logprob = logprobs[-1, next_token_id_item]
next_token_text, offset, token_offset = self.decode_token(
all_input_ids,
offset,
token_offset,
)
# Evaluate stopping criteria
stop, reason = stopping_criteria(
next_token_id_item,
next_token_text,
)
if stop:
# Decode generated tokens
output_text = self.decode(
all_input_ids[-stopping_criteria.current_tokens :]
)
# Get seed
if isinstance(next_token_chooser.choice, Sampling):
seed = next_token_chooser.choice.seed
else:
seed = None
generated_text = GeneratedText(
output_text, stopping_criteria.current_tokens, reason, seed
)
else:
# Keep request in the batch
next_batch_keep_indices.append(i)
generated_text = None
# Get sequence present
seq_present = present[:, start_index:end_index]
# Pad it for next iter attention
past = torch.nn.functional.pad(seq_present, (0, 0, 0, 0, 0, 0, 0, 1))
next_batch_past_key_values.append(past)
next_batch_input_ids.append(next_token_id)
next_batch_position_ids.append(input_length)
# Cumulative sum
next_batch_cu_seqlens.append(
next_batch_cu_seqlens[-1] + new_input_length
)
next_batch_input_lengths.append(new_input_length)
next_batch_offsets.append(offset)
next_batch_token_offsets.append(token_offset)
next_batch_all_input_ids.append(all_input_ids)
next_batch_all_input_ids_tensor.append(all_input_ids_tensor)
next_batch_max_seqlen = max(next_batch_max_seqlen, new_input_length)
# Prefill
if stopping_criteria.current_tokens == 1:
# Remove generated token to only have prefill and add nan for first prompt token
prefill_logprobs = [float("nan")] + logprobs.gather(
1, all_input_ids_tensor[1:input_length].unsqueeze(1)
).squeeze(1)[:-1].tolist()
prefill_token_ids = all_input_ids[:-1]
prefill_texts = self.tokenizer.batch_decode(
prefill_token_ids,
clean_up_tokenization_spaces=False,
skip_special_tokens=False,
)
prefill_tokens = PrefillTokens(
prefill_token_ids, prefill_logprobs, prefill_texts
)
else:
prefill_tokens = None
generation = Generation(
request.id,
prefill_tokens,
next_token_id_item,
next_token_logprob,
next_token_text,
next_token_id_item in self.all_special_ids,
generated_text,
)
generations.append(generation)
cumulative_length += input_length
# We finished all generations in the batch; there is no next batch
if not next_batch_keep_indices:
return generations, None
# If we finished at least one generation, we need to evict the indices of the generations that finished
# from the values of the next batch
if len(next_batch_keep_indices) != len(batch):
# Apply indices to requests, token_choosers and stopping_criterias that need to be cached
next_batch_requests = [batch.requests[i] for i in next_batch_keep_indices]
next_batch_next_token_choosers = [
batch.next_token_choosers[i] for i in next_batch_keep_indices
]
next_batch_stopping_criterias = [
batch.stopping_criterias[i] for i in next_batch_keep_indices
]
else:
next_batch_requests = batch.requests
next_batch_next_token_choosers = batch.next_token_choosers
next_batch_stopping_criterias = batch.stopping_criterias
# Create final next batch tensors
next_batch_position_ids = torch.tensor(
next_batch_position_ids, dtype=torch.int32
)
next_batch_cu_seqlens = torch.tensor(next_batch_cu_seqlens, dtype=torch.int32)
if len(next_batch_keep_indices) > 1:
next_batch_input_ids = torch.concat(next_batch_input_ids).squeeze(1)
next_batch_past_key_values = torch.concat(next_batch_past_key_values, dim=1)
else:
next_batch_input_ids = next_batch_input_ids[0].view(1)
next_batch_past_key_values = next_batch_past_key_values[0]
next_batch = FlashCausalLMBatch(
batch_id=batch.batch_id,
requests=next_batch_requests,
input_ids=next_batch_input_ids,
position_ids=next_batch_position_ids,
cu_seqlens=next_batch_cu_seqlens,
max_seqlen=next_batch_max_seqlen,
past_key_values=next_batch_past_key_values,
input_lengths=next_batch_input_lengths,
offsets=next_batch_offsets,
token_offsets=next_batch_token_offsets,
all_input_ids=next_batch_all_input_ids,
all_input_ids_tensor=next_batch_all_input_ids_tensor,
next_token_choosers=next_batch_next_token_choosers,
stopping_criterias=next_batch_stopping_criterias,
)
return generations, next_batch