mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-04-19 22:02:06 +00:00
# What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil -->
331 lines
11 KiB
Python
331 lines
11 KiB
Python
# imlementation of the PhiModel and PhiForCausalLM classes
|
|
|
|
import torch
|
|
import torch.distributed
|
|
|
|
import math
|
|
from torch import nn
|
|
from typing import Optional, List, Tuple, Any
|
|
from transformers.configuration_utils import PretrainedConfig
|
|
from transformers.modeling_outputs import CausalLMOutputWithPast
|
|
|
|
from text_generation_server.layers import (
|
|
TensorParallelRowLinear,
|
|
TensorParallelColumnLinear,
|
|
TensorParallelEmbedding,
|
|
SpeculativeHead,
|
|
FastLinear,
|
|
)
|
|
|
|
|
|
# PhiConfig is the configuration class for the PhiModel.
|
|
class PhiConfig(PretrainedConfig):
|
|
def __init__(
|
|
self,
|
|
vocab_size=51200,
|
|
n_positions=2048,
|
|
n_embd=2560,
|
|
n_layer=32,
|
|
n_inner=None,
|
|
n_head=32,
|
|
rotary_dim=32,
|
|
layer_norm_epsilon=1e-5,
|
|
tie_word_embeddings=False,
|
|
pad_vocab_size_multiple=64,
|
|
pad_token_id=0,
|
|
bos_token_id=1,
|
|
eos_token_id=2,
|
|
no_bias=False,
|
|
**kwargs,
|
|
):
|
|
self.vocab_size = vocab_size
|
|
self.n_positions = n_positions
|
|
self.n_embd = n_embd
|
|
self.n_layer = n_layer
|
|
self.n_inner = n_inner
|
|
self.n_head = n_head
|
|
self.rotary_dim = rotary_dim
|
|
|
|
self.layer_norm_epsilon = layer_norm_epsilon
|
|
self.tie_word_embeddings = tie_word_embeddings
|
|
self.pad_vocab_size_multiple = pad_vocab_size_multiple
|
|
self.pad_token_id = pad_token_id
|
|
self.bos_token_id = bos_token_id
|
|
self.eos_token_id = eos_token_id
|
|
self.no_bias = no_bias
|
|
|
|
super().__init__(
|
|
pad_token_id=pad_token_id,
|
|
bos_token_id=bos_token_id,
|
|
eos_token_id=eos_token_id,
|
|
tie_word_embeddings=tie_word_embeddings,
|
|
**kwargs,
|
|
)
|
|
|
|
|
|
# RotaryEmbedding is a class that implements the rotary embedding.
|
|
class RotaryEmbedding(nn.Module):
|
|
def __init__(self, dim, max_seq_len):
|
|
super().__init__()
|
|
inv_freq = [1.0 / 10000.0 ** (i / dim) for i in range(0, dim, 2)]
|
|
inv_freq_len = len(inv_freq)
|
|
inv_freq = torch.tensor(inv_freq).view(1, inv_freq_len)
|
|
t = torch.arange(0, max_seq_len, dtype=torch.float).view(max_seq_len, 1)
|
|
freqs = t.matmul(inv_freq)
|
|
self.sin = freqs.sin()
|
|
self.cos = freqs.cos()
|
|
|
|
def apply_rotary_emb_qkv(self, qkv, seqlen_offset):
|
|
b_size, seqlen, three, _, _headdim = qkv.shape
|
|
if three != 3:
|
|
raise Exception("unexpected shape for qkv")
|
|
_, rotary_dim = self.cos.shape
|
|
rotary_dim = rotary_dim * 2
|
|
q_rot = qkv[:, :, 0, :, :rotary_dim]
|
|
q_pass = qkv[:, :, 0, :, rotary_dim:]
|
|
k_rot = qkv[:, :, 1, :, :rotary_dim]
|
|
k_pass = qkv[:, :, 1, :, rotary_dim:]
|
|
q12 = torch.chunk(q_rot, 2, dim=-1)
|
|
k12 = torch.chunk(k_rot, 2, dim=-1)
|
|
q1, q2 = q12[0], q12[1]
|
|
k1, k2 = k12[0], k12[1]
|
|
c = self.cos.narrow(0, seqlen_offset, seqlen).unsqueeze(1)
|
|
s = self.sin.narrow(0, seqlen_offset, seqlen).unsqueeze(1)
|
|
q_rot = torch.cat(
|
|
[
|
|
q1 * c - q2 * s,
|
|
q1 * s + q2 * c,
|
|
],
|
|
dim=-1,
|
|
)
|
|
k_rot = torch.cat(
|
|
[
|
|
k1 * c - k2 * s,
|
|
k1 * s + k2 * c,
|
|
],
|
|
dim=-1,
|
|
)
|
|
q = torch.cat([q_rot, q_pass], dim=-1)
|
|
k = torch.cat([k_rot, k_pass], dim=-1)
|
|
v = qkv[:, :, 2]
|
|
return q, k, v
|
|
|
|
|
|
# PhiCausalLMHead is the head of the PhiModel. It is a linear layer with a layer norm.
|
|
class PhiCausalLMHead(nn.Module):
|
|
def __init__(self, config, weights):
|
|
super().__init__()
|
|
self.ln = nn.LayerNorm.load(
|
|
prefix="lm_head.ln",
|
|
weights=weights,
|
|
eps=config.layer_norm_epsilon,
|
|
)
|
|
self.linear = SpeculativeHead.load(
|
|
config=config, prefix="lm_head.linear", weights=weights
|
|
)
|
|
|
|
def forward(self, hidden_states):
|
|
hidden_states = self.ln(hidden_states)
|
|
hidden_states = self.linear(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
# PhiMHA is a multi-head attention layer. This layer uses an attention mask to prevent tokens from attending to subsequent tokens.
|
|
class PhiMHA(nn.Module):
|
|
def __init__(self, prefix, config, weights):
|
|
super().__init__()
|
|
self.Wqkv = TensorParallelColumnLinear.load(
|
|
config, prefix=f"{prefix}.Wqkv", weights=weights, bias=not config.no_bias
|
|
)
|
|
self.out_proj = TensorParallelRowLinear.load(
|
|
config,
|
|
prefix=f"{prefix}.out_proj",
|
|
weights=weights,
|
|
bias=not config.no_bias,
|
|
)
|
|
self.op_size = config.n_embd
|
|
self.head_dim = int(config.n_embd / config.n_head)
|
|
self.num_heads = config.n_head
|
|
self.rotary_emb = RotaryEmbedding(
|
|
config.rotary_dim,
|
|
config.n_positions,
|
|
)
|
|
self.softmax_scale = 1.0 / math.sqrt(self.head_dim)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states,
|
|
past_kv_cache,
|
|
attention_mask=None,
|
|
):
|
|
b_size, seq_len, _n_embd = hidden_states.shape
|
|
qkv = self.Wqkv(hidden_states)
|
|
qkv = qkv.view(b_size, seq_len, 3, self.num_heads, self.head_dim)
|
|
seqlen_offset = 0 if past_kv_cache is None else past_kv_cache[0].shape[1]
|
|
q, k, v = self.rotary_emb.apply_rotary_emb_qkv(qkv, seqlen_offset)
|
|
|
|
# if there is a kv_cache, then we need to concatenate
|
|
if past_kv_cache is not None:
|
|
prev_k, prev_v = past_kv_cache
|
|
k = torch.cat([prev_k, k], dim=1)
|
|
v = torch.cat([prev_v, v], dim=1)
|
|
|
|
past_kv_cache = [k, v]
|
|
attn_weights = torch.einsum("bthd,bshd->bhts", q, k * self.softmax_scale)
|
|
|
|
if attention_mask is not None:
|
|
seqlen_k = k.shape[1]
|
|
seqlen_q = q.shape[1]
|
|
causal_mask = torch.triu(
|
|
torch.full((seqlen_q, seqlen_k), -10000.0, device=attn_weights.device),
|
|
1,
|
|
)
|
|
attn_weights = attn_weights + causal_mask.to(dtype=attn_weights.dtype)
|
|
|
|
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1)
|
|
attn_output = attn_weights.matmul(v.transpose(1, 2)).squeeze(0)
|
|
attn_output = (
|
|
attn_output.view((b_size, self.num_heads, seq_len, self.head_dim))
|
|
.transpose(1, 2)
|
|
.flatten(-2)
|
|
)
|
|
return self.out_proj(attn_output), past_kv_cache
|
|
|
|
|
|
# PhiMLP is a multi-layer perceptron. It contains two linear layers with a gelu activation function.
|
|
class PhiMLP(nn.Module):
|
|
def __init__(self, prefix, config, weights):
|
|
super().__init__()
|
|
|
|
self.n_inner = config.n_inner
|
|
self.fc1 = FastLinear.load(
|
|
config=config,
|
|
prefix=f"{prefix}.fc1",
|
|
weights=weights,
|
|
bias=False,
|
|
)
|
|
self.fc2 = FastLinear.load(
|
|
config=config,
|
|
prefix=f"{prefix}.fc2",
|
|
weights=weights,
|
|
bias=False,
|
|
)
|
|
self.activation = torch.nn.functional.gelu
|
|
|
|
def forward(self, hidden_states):
|
|
hidden_states = self.fc1(hidden_states)
|
|
hidden_states = self.activation(hidden_states)
|
|
hidden_states = self.fc2(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
# PhiBlock is a single transformer block. It contains a layer norm, a multi-head attention layer and an multi-layer perceptron.
|
|
class PhiBlock(nn.Module):
|
|
def __init__(self, layer_id, config, weights):
|
|
super().__init__()
|
|
self.layer_id = layer_id
|
|
self.layer_norm = nn.LayerNorm.load(
|
|
prefix=f"{layer_id}.ln", weights=weights, eps=config.layer_norm_epsilon
|
|
)
|
|
self.mixer = PhiMHA(prefix=f"{layer_id}.mixer", config=config, weights=weights)
|
|
self.mlp = PhiMLP(prefix=f"{layer_id}.mlp", config=config, weights=weights)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states,
|
|
kv_cache,
|
|
attention_mask,
|
|
):
|
|
residual = hidden_states
|
|
hidden_states = self.layer_norm(hidden_states)
|
|
attn_outputs, past_kv_cache = self.mixer(
|
|
hidden_states, kv_cache, attention_mask
|
|
)
|
|
feed_forward_hidden_states = self.mlp(hidden_states)
|
|
out = attn_outputs + feed_forward_hidden_states + residual
|
|
return out, past_kv_cache
|
|
|
|
|
|
# PhiModel implements the embedding layer and the transformer blocks.
|
|
class PhiModel(nn.Module):
|
|
def __init__(self, config, weights):
|
|
super().__init__()
|
|
self.tp_rank = weights.process_group.rank()
|
|
self.tp_world_size = weights.process_group.size()
|
|
self.embed_tokens = TensorParallelEmbedding(
|
|
prefix="transformer.embd.wte", weights=weights
|
|
)
|
|
self.blocks = nn.ModuleList(
|
|
[
|
|
PhiBlock(f"transformer.h.{layer_id}", config, weights)
|
|
for layer_id in range(config.n_layer)
|
|
]
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.LongTensor,
|
|
past_key_values: Optional[List[Tuple[torch.FloatTensor]]] = None,
|
|
attention_mask: Optional[torch.ByteTensor] = None,
|
|
return_dict: Optional[bool] = None,
|
|
use_cache: Optional[bool] = None,
|
|
) -> Tuple[torch.Tensor, List[Tuple[torch.Tensor, torch.Tensor]]]:
|
|
hidden_states = self.embed_tokens(input_ids)
|
|
seq_len = hidden_states.shape[1]
|
|
mask = None if seq_len <= 1 else attention_mask
|
|
|
|
past_key_values = (
|
|
[None] * len(self.blocks) if past_key_values is None else past_key_values
|
|
)
|
|
|
|
for index, block in enumerate(self.blocks):
|
|
hidden_states, new_key_values = block(
|
|
hidden_states, past_key_values[index], mask
|
|
)
|
|
past_key_values[index] = new_key_values
|
|
|
|
return hidden_states, past_key_values
|
|
|
|
|
|
# PhiForCausalLM wraps the PhiModel and PhiCausalLMHead together and returns a CausalLMOutputWithPast object.
|
|
class PhiForCausalLM(torch.nn.Module):
|
|
def __init__(self, config, weights):
|
|
super().__init__()
|
|
self.model = PhiModel(config, weights)
|
|
self.lm_head = PhiCausalLMHead(config, weights)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.LongTensor,
|
|
past_key_values: Optional[List[Tuple[torch.FloatTensor]]] = None,
|
|
attention_mask: Optional[torch.ByteTensor] = None,
|
|
return_dict: Optional[bool] = None,
|
|
use_cache: Optional[bool] = None,
|
|
labels: Optional[torch.LongTensor] = None,
|
|
) -> Tuple[torch.Tensor, List[Tuple[torch.Tensor, torch.Tensor]]]:
|
|
model_output = self.model(
|
|
input_ids, past_key_values, attention_mask, return_dict, use_cache
|
|
)
|
|
logits = self.lm_head(model_output[0])
|
|
|
|
loss = None
|
|
if labels is not None:
|
|
loss = nn.CrossEntropyLoss()(
|
|
logits[:, :-1].view(-1, logits.size(-1)), labels[:, 1:].view(-1)
|
|
)
|
|
|
|
if not return_dict:
|
|
return (
|
|
((loss,) + (logits,) + model_output[1:])
|
|
if loss is not None
|
|
else (logits,) + model_output[1:]
|
|
)
|
|
|
|
return CausalLMOutputWithPast(
|
|
loss=loss,
|
|
logits=logits,
|
|
past_key_values=model_output[1],
|
|
hidden_states=None,
|
|
attentions=None,
|
|
)
|