text-generation-inference/server/text_generation_server/server.py
drbh 40213c957f
Pali gemma modeling (#1895)
This PR adds paligemma modeling code

Blog post: https://huggingface.co/blog/paligemma
Transformers PR: https://github.com/huggingface/transformers/pull/30814

install the latest changes and run with
```bash
# get the weights
# text-generation-server download-weights gv-hf/PaliGemma-base-224px-hf

# run TGI
text-generation-launcher --model-id gv-hf/PaliGemma-base-224px-hf
```


basic example sending various requests
```python
from huggingface_hub import InferenceClient

client = InferenceClient("http://127.0.0.1:3000")


images = [
    "https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/cow_beach_1.png",
    "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png",
]

prompts = [
    "What animal is in this image?",
    "Name three colors in this image.",
    "What are 10 colors in this image?",
    "Where is the cow standing?",
    "answer en Where is the cow standing?",
    "Is there a bird in the image?",
    "Is ther a cow in the image?",
    "Is there a rabbit in the image?",
    "how many birds are in the image?",
    "how many rabbits are in the image?",
]

for img in images:
    print(f"\nImage: {img.split('/')[-1]}")
    for prompt in prompts:
        inputs = f"![]({img}){prompt}\n"
        json_data = {
            "inputs": inputs,
            "parameters": {
                "max_new_tokens": 30,
                "do_sample": False,
            },
        }
        generated_output = client.text_generation(prompt, max_new_tokens=30, stream=False)
        print([f"{prompt}\n{generated_output}"])

```

---------

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2024-05-16 06:58:47 +02:00

263 lines
8.6 KiB
Python

import asyncio
import os
import torch
import time
import signal
from grpc import aio
from loguru import logger
from grpc_reflection.v1alpha import reflection
from pathlib import Path
from typing import List, Optional
from text_generation_server.cache import Cache
from text_generation_server.interceptor import ExceptionInterceptor
from text_generation_server.models import Model, get_model
from text_generation_server.models.pali_gemma import PaliGemmaBatch
from text_generation_server.models.vlm_causal_lm import (
VlmCausalLMBatch,
)
from text_generation_server.pb import generate_pb2_grpc, generate_pb2
from text_generation_server.tracing import UDSOpenTelemetryAioServerInterceptor
from text_generation_server.models.idefics_causal_lm import IdeficsCausalLMBatch
class SignalHandler:
KEEP_PROCESSING = True
def __init__(self):
signal.signal(signal.SIGINT, self.exit_gracefully)
signal.signal(signal.SIGTERM, self.exit_gracefully)
def exit_gracefully(self, signum, frame):
print(f"Exiting gracefully: Signal {signum}")
self.KEEP_PROCESSING = False
signal_handler = SignalHandler()
class TextGenerationService(generate_pb2_grpc.TextGenerationServiceServicer):
def __init__(
self,
model: Model,
cache: Cache,
quantize: Optional[str],
server_urls: List[str],
):
self.cache = cache
self.model = model
self.quantize = quantize
self.server_urls = server_urls
# For some reason, inference_mode does not work well with GLOO which we use on CPU
if model.device.type == "cuda":
# Force inference mode for the lifetime of TextGenerationService
self._inference_mode_raii_guard = torch._C._InferenceMode(True)
async def Info(self, request, context):
return self.model.info
async def Health(self, request, context):
if self.model.device.type == "cuda":
torch.zeros((2, 2)).cuda()
return generate_pb2.HealthResponse()
async def ServiceDiscovery(self, request, context):
return generate_pb2.ServiceDiscoveryResponse(urls=self.server_urls)
async def ClearCache(self, request, context):
if request.HasField("id"):
self.cache.delete(request.id)
else:
self.cache.clear()
return generate_pb2.ClearCacheResponse()
async def FilterBatch(self, request, context):
batch = self.cache.pop(request.batch_id)
if batch is None:
raise ValueError(f"Batch ID {request.batch_id} not found in cache.")
filtered_batch = batch.filter(request.request_ids)
self.cache.set(filtered_batch)
return generate_pb2.FilterBatchResponse(batch=filtered_batch.to_pb())
async def Warmup(self, request, context):
if self.quantize == "gptq":
try:
# When using GPTQ, Exllama kernels need some global kernels
# For which we have the finale shapes only after the model has loaded
# This will allocate those buffers.
from text_generation_server.layers.gptq import (
create_exllama_buffers,
set_device,
)
set_device(self.model.device)
create_exllama_buffers(request.max_prefill_tokens)
except ImportError:
pass
if self.model.batch_type in {
IdeficsCausalLMBatch,
VlmCausalLMBatch,
PaliGemmaBatch,
}: # Hack, i would rather use kwargs in the `from_pb` call
batch = self.model.batch_type.from_pb_processor(
request.batch,
self.model.tokenizer,
self.model.processor,
self.model.model.config,
self.model.dtype,
self.model.device,
)
else:
batch = self.model.batch_type.from_pb(
request.batch, self.model.tokenizer, self.model.dtype, self.model.device
)
max_supported_total_tokens = self.model.warmup(batch)
return generate_pb2.WarmupResponse(
max_supported_total_tokens=max_supported_total_tokens
)
async def Prefill(self, request, context):
start = time.time_ns()
if self.model.batch_type in {
IdeficsCausalLMBatch,
VlmCausalLMBatch,
PaliGemmaBatch,
}: # Hack, i would rather use kwargs in the `from_pb` call
batch = self.model.batch_type.from_pb_processor(
request.batch,
self.model.tokenizer,
self.model.processor,
self.model.model.config,
self.model.dtype,
self.model.device,
)
else:
batch = self.model.batch_type.from_pb(
request.batch, self.model.tokenizer, self.model.dtype, self.model.device
)
generations, next_batch, timings = self.model.generate_token(batch)
self.cache.set(next_batch)
return generate_pb2.PrefillResponse(
generations=[generation.to_pb() for generation in generations],
batch=next_batch.to_pb() if next_batch else None,
forward_ns=timings[0],
decode_ns=timings[1],
total_ns=time.time_ns() - start,
)
async def Decode(self, request, context):
start = time.time_ns()
if len(request.batches) == 0:
raise ValueError("Must provide at least one batch")
batches = []
for batch_pb in request.batches:
batch = self.cache.pop(batch_pb.id)
if batch is None:
raise ValueError(f"Batch ID {batch_pb.id} not found in cache.")
batches.append(batch)
if len(batches) == 0:
raise ValueError("All batches are empty")
if len(batches) > 1:
start_concat = time.time_ns()
batch = self.model.batch_type.concatenate(batches)
concat_ns = time.time_ns() - start_concat
else:
batch = batches[0]
concat_ns = None
generations, next_batch, timings = self.model.generate_token(batch)
self.cache.set(next_batch)
return generate_pb2.DecodeResponse(
generations=[generation.to_pb() for generation in generations],
batch=next_batch.to_pb() if next_batch else None,
concat_ns=concat_ns,
forward_ns=timings[0],
decode_ns=timings[1],
total_ns=time.time_ns() - start,
)
def serve(
model_id: str,
revision: Optional[str],
sharded: bool,
quantize: Optional[str],
speculate: Optional[int],
dtype: Optional[str],
trust_remote_code: bool,
uds_path: Path,
):
async def serve_inner(
model_id: str,
revision: Optional[str],
sharded: bool = False,
quantize: Optional[str] = None,
speculate: Optional[int] = None,
dtype: Optional[str] = None,
trust_remote_code: bool = False,
):
unix_socket_template = "unix://{}-{}"
if sharded:
server_urls = [
unix_socket_template.format(uds_path, rank)
for rank in range(int(os.environ["WORLD_SIZE"]))
]
local_url = server_urls[int(os.environ["RANK"])]
else:
local_url = unix_socket_template.format(uds_path, 0)
server_urls = [local_url]
try:
model = get_model(
model_id,
revision,
sharded,
quantize,
speculate,
dtype,
trust_remote_code,
)
except Exception:
logger.exception("Error when initializing model")
raise
server = aio.server(
interceptors=[
ExceptionInterceptor(),
UDSOpenTelemetryAioServerInterceptor(),
]
)
generate_pb2_grpc.add_TextGenerationServiceServicer_to_server(
TextGenerationService(model, Cache(), quantize, server_urls), server
)
SERVICE_NAMES = (
generate_pb2.DESCRIPTOR.services_by_name["TextGenerationService"].full_name,
reflection.SERVICE_NAME,
)
reflection.enable_server_reflection(SERVICE_NAMES, server)
server.add_insecure_port(local_url)
await server.start()
logger.info("Server started at {}".format(local_url))
while signal_handler.KEEP_PROCESSING:
await asyncio.sleep(0.5)
asyncio.run(
serve_inner(
model_id, revision, sharded, quantize, speculate, dtype, trust_remote_code
)
)