mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-04-19 22:02:06 +00:00
* Working loading state. * Preprocessing. * Working state ? (Broke idefics1 temporarily). * Cleaner condition. * Fix idefics. * Updating config, removing TODO * Mllama * Ugrade transformers 4.45 * Flashing mllama. * Starting to get there. * Working state. * Integrations tests for mllama (cutting to 10 tokens because there seems' to be instability after (meaning size of the batch matters. * Updating model link. * Earlier assert. * Fix vlm ? * remove log. * Force ignore all images but last. * Default dtype bfloat16. * Update integration test after switch to bf16. * Remove dead code. * Removed dead code. * Upgrade the flake to latest transformers/tokenizers * Move to hf tgi-nix * Upgrade to 0.5.0
900 lines
34 KiB
Python
900 lines
34 KiB
Python
from io import BytesIO
|
|
from PIL import Image
|
|
import torch
|
|
import time
|
|
|
|
from dataclasses import dataclass
|
|
from opentelemetry import trace
|
|
from transformers import (
|
|
AutoConfig,
|
|
AutoProcessor,
|
|
AutoTokenizer,
|
|
PreTrainedTokenizerBase,
|
|
ProcessorMixin,
|
|
)
|
|
from typing import Optional, Tuple, List, Type, Dict
|
|
|
|
from text_generation_server.models import Model
|
|
from text_generation_server.models.types import (
|
|
Batch,
|
|
Tokens,
|
|
Generation,
|
|
GeneratedText,
|
|
)
|
|
from text_generation_server.pb import generate_pb2
|
|
from text_generation_server.utils import NextTokenChooser, StoppingCriteria, Sampling
|
|
import torch.distributed
|
|
from text_generation_server.models.custom_modeling.idefics_modeling import (
|
|
IdeficsForVisionText2Text,
|
|
)
|
|
from text_generation_server.utils import (
|
|
initialize_torch_distributed,
|
|
weight_files,
|
|
Weights,
|
|
)
|
|
from text_generation_server.utils.quantization import get_loader
|
|
|
|
from text_generation_server.utils.import_utils import SYSTEM
|
|
|
|
|
|
tracer = trace.get_tracer(__name__)
|
|
|
|
|
|
@dataclass
|
|
class IdeficsCausalLMBatch(Batch):
|
|
batch_id: int
|
|
requests: List[generate_pb2.Request]
|
|
requests_idx_mapping: Dict[int, int]
|
|
|
|
# Decoder values
|
|
input_ids: torch.Tensor
|
|
attention_mask: torch.Tensor
|
|
position_ids: torch.Tensor
|
|
pixel_values: Optional[torch.Tensor]
|
|
image_hidden_states: Optional[torch.Tensor]
|
|
image_attention_mask: Optional[torch.Tensor]
|
|
past_key_values: Optional[List[Tuple]]
|
|
|
|
# All tokens
|
|
all_input_ids: List[torch.Tensor]
|
|
|
|
# Lengths of all generations present in the batch
|
|
input_lengths: List[int]
|
|
prefix_offsets: List[int]
|
|
read_offsets: List[int]
|
|
|
|
# Generation helpers
|
|
next_token_choosers: List[NextTokenChooser]
|
|
stopping_criterias: List[StoppingCriteria]
|
|
|
|
# Metadata used for padding
|
|
max_input_length: int
|
|
padding_right_offset: int
|
|
|
|
# Maximum number of tokens this batch will grow to
|
|
max_tokens: int
|
|
|
|
# Past metadata
|
|
keys_head_dim_last: bool = True
|
|
|
|
def to_pb(self) -> generate_pb2.CachedBatch:
|
|
return generate_pb2.CachedBatch(
|
|
id=self.batch_id,
|
|
request_ids=[r.id for r in self.requests],
|
|
size=len(self),
|
|
max_tokens=self.max_tokens,
|
|
)
|
|
|
|
@classmethod
|
|
def from_pb(
|
|
cls,
|
|
pb: generate_pb2.Batch,
|
|
tokenizer: PreTrainedTokenizerBase,
|
|
dtype: torch.dtype,
|
|
device: torch.device,
|
|
) -> "IdeficsCausalLMBatch":
|
|
raise NotImplementedError
|
|
|
|
@classmethod
|
|
def from_pb_processor(
|
|
cls,
|
|
pb: generate_pb2.Batch,
|
|
tokenizer: PreTrainedTokenizerBase,
|
|
processor: ProcessorMixin, # Hack
|
|
config,
|
|
dtype: torch.dtype,
|
|
device: torch.device,
|
|
) -> "IdeficsCausalLMBatch":
|
|
inputs = []
|
|
next_token_choosers = []
|
|
stopping_criterias = []
|
|
prefix_offsets = []
|
|
read_offsets = []
|
|
requests_idx_mapping = {}
|
|
|
|
# Parse batch
|
|
max_truncation = 0
|
|
padding_right_offset = 0
|
|
max_decode_tokens = 0
|
|
for i, r in enumerate(pb.requests):
|
|
requests_idx_mapping[r.id] = i
|
|
inputs.append(r.input_chunks.chunks)
|
|
next_token_choosers.append(
|
|
NextTokenChooser.from_pb(r.parameters, device, tokenizer)
|
|
)
|
|
stopping_criteria = StoppingCriteria.from_pb(
|
|
r.stopping_parameters, tokenizer
|
|
)
|
|
stopping_criterias.append(stopping_criteria)
|
|
max_truncation = max(max_truncation, r.truncate)
|
|
max_decode_tokens += stopping_criteria.max_new_tokens
|
|
padding_right_offset = max(
|
|
padding_right_offset, stopping_criteria.max_new_tokens
|
|
)
|
|
|
|
# TODO Check impact on idefics
|
|
prompts = []
|
|
for inp in inputs:
|
|
# Each input is encoded into a list, where each element of this input list is either a string or a URL
|
|
prompt = []
|
|
for chunk in inp:
|
|
chunk_type = chunk.WhichOneof("chunk")
|
|
if chunk_type == "text":
|
|
prompt.append(chunk.text)
|
|
elif chunk_type == "image":
|
|
image = Image.open(BytesIO(chunk.image.data))
|
|
prompt.append(image)
|
|
else:
|
|
raise RuntimeError(f"Invalid chunk type {chunk_type}")
|
|
prompts.append(prompt)
|
|
|
|
# The processor replaces the call to tokenizer, and
|
|
# a/ takes care of fetching images from the URL
|
|
# b/ generate the correct input_ids, attention_mask, pixel_values, image_attention_mask to feed to the model
|
|
tokenized_inputs = processor(
|
|
prompts,
|
|
return_tensors="pt",
|
|
padding=True,
|
|
truncation=True,
|
|
max_length=max_truncation,
|
|
# TODO Check impact on idefics
|
|
# add_end_of_utterance_token=False, # Already taken care of inside the prompts, so bypassing the processor's handling of this token
|
|
).to(device)
|
|
for _ in pb.requests:
|
|
input_len = tokenized_inputs["input_ids"].shape[1]
|
|
prefix_offsets.append(
|
|
input_len - 5
|
|
) # To decode without potential fallbacks errors
|
|
read_offsets.append(
|
|
input_len
|
|
) # To decode without potential fallbacks errors
|
|
|
|
input_lengths = tokenized_inputs["attention_mask"].sum(1)
|
|
max_input_length = input_lengths.max()
|
|
|
|
input_ids = tokenized_inputs["input_ids"]
|
|
pixel_values = tokenized_inputs.get("pixel_values", None)
|
|
image_hidden_states = None
|
|
# Allocate maximum attention_mask
|
|
attention_mask = input_ids.new_zeros(
|
|
(pb.size, max_input_length + padding_right_offset)
|
|
)
|
|
# Copy tokenizer attention_mask into fully allocated attention_mask
|
|
attention_mask[:, :max_input_length] = tokenized_inputs["attention_mask"]
|
|
# Do the same for image_attention_mask
|
|
if pixel_values is None:
|
|
image_attention_mask = None
|
|
else:
|
|
image_attention_mask = input_ids.new_zeros(
|
|
(
|
|
pb.size,
|
|
max_input_length + padding_right_offset,
|
|
pixel_values.size(1),
|
|
)
|
|
)
|
|
image_attention_mask[:, :max_input_length, :] = tokenized_inputs[
|
|
"image_attention_mask"
|
|
]
|
|
|
|
position_ids = tokenized_inputs["attention_mask"].long().cumsum(-1) - 1
|
|
position_ids.masked_fill_(tokenized_inputs["attention_mask"] == 0, 1)
|
|
all_input_ids = tokenized_inputs["input_ids"].T.split(
|
|
1, dim=1
|
|
) # It's input_ids but splitted into a tuple of tensors where each tensor is (seq_len, 1) size. It is then transformed into a list
|
|
|
|
max_tokens = len(inputs) * (max_input_length + max_decode_tokens)
|
|
|
|
return cls(
|
|
batch_id=pb.id,
|
|
requests=pb.requests,
|
|
requests_idx_mapping=requests_idx_mapping,
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
pixel_values=pixel_values,
|
|
image_hidden_states=image_hidden_states,
|
|
image_attention_mask=image_attention_mask,
|
|
past_key_values=None,
|
|
all_input_ids=list(all_input_ids),
|
|
input_lengths=input_lengths.tolist(),
|
|
prefix_offsets=prefix_offsets,
|
|
read_offsets=read_offsets,
|
|
next_token_choosers=next_token_choosers,
|
|
stopping_criterias=stopping_criterias,
|
|
max_input_length=max_input_length.item(),
|
|
padding_right_offset=padding_right_offset,
|
|
max_tokens=max_tokens,
|
|
)
|
|
|
|
@tracer.start_as_current_span("filter")
|
|
def filter(self, request_ids: List[int]) -> Optional["IdeficsCausalLMBatch"]:
|
|
# It deletes requests from the batch. For instance when client lost connection
|
|
if len(request_ids) == 0:
|
|
raise ValueError("Batch must have at least one request")
|
|
if len(request_ids) == len(self):
|
|
return self
|
|
|
|
keep_indices = []
|
|
|
|
# New values after filtering
|
|
requests_idx_mapping = {}
|
|
requests = []
|
|
input_lengths = []
|
|
prefix_offsets = []
|
|
read_offsets = []
|
|
all_input_ids = []
|
|
max_input_length = 0
|
|
|
|
next_token_choosers = []
|
|
stopping_criterias = []
|
|
|
|
total_remaining_decode_tokens = 0
|
|
new_padding_right_offset = 0
|
|
|
|
for i, request_id in enumerate(request_ids):
|
|
idx = self.requests_idx_mapping[request_id]
|
|
requests_idx_mapping[request_id] = i
|
|
keep_indices.append(idx)
|
|
|
|
requests.append(self.requests[idx])
|
|
prefix_offsets.append(self.prefix_offsets[idx])
|
|
read_offsets.append(self.read_offsets[idx])
|
|
all_input_ids.append(self.all_input_ids[idx])
|
|
|
|
request_input_length = self.input_lengths[idx]
|
|
input_lengths.append(request_input_length)
|
|
max_input_length = max(max_input_length, request_input_length)
|
|
|
|
next_token_choosers.append(self.next_token_choosers[idx])
|
|
stopping_criteria = self.stopping_criterias[idx]
|
|
stopping_criterias.append(stopping_criteria)
|
|
remaining_decode_tokens = (
|
|
stopping_criteria.max_new_tokens - stopping_criteria.current_tokens
|
|
)
|
|
total_remaining_decode_tokens += remaining_decode_tokens
|
|
new_padding_right_offset = max(
|
|
new_padding_right_offset, remaining_decode_tokens
|
|
)
|
|
|
|
# Apply indices to input_ids, attention mask, past key values and other items that need to be cached
|
|
input_ids = self.input_ids[keep_indices]
|
|
position_ids = self.position_ids[keep_indices]
|
|
self.attention_mask = self.attention_mask[
|
|
keep_indices,
|
|
-(self.padding_right_offset + max_input_length) : (
|
|
self.attention_mask.shape[1] - self.padding_right_offset
|
|
)
|
|
+ new_padding_right_offset,
|
|
]
|
|
# Do the same for pixel_values and image_attention_mask
|
|
pixel_values = self.pixel_values[keep_indices]
|
|
self.image_attention_mask = self.image_attention_mask[
|
|
keep_indices,
|
|
-(self.padding_right_offset + max_input_length) : (
|
|
self.image_attention_mask.shape[1] - self.padding_right_offset
|
|
)
|
|
+ new_padding_right_offset,
|
|
:,
|
|
]
|
|
if self.image_hidden_states is None:
|
|
image_hidden_states = None
|
|
else:
|
|
image_hidden_states = self.image_hidden_states[keep_indices]
|
|
|
|
# Ensure that past_key_values tensors can be updated in-place
|
|
if type(self.past_key_values[0]) is tuple:
|
|
self.past_key_values = [list(layer) for layer in self.past_key_values]
|
|
|
|
# Update tensors in-place to allow incremental garbage collection
|
|
past_kv_length = max_input_length - 1
|
|
for layer in self.past_key_values:
|
|
past_keys, past_values = layer
|
|
if len(past_keys.shape) == 3:
|
|
# Force past to be of dim [self_size, num_heads, ...] for easy indexing
|
|
past_keys = past_keys.view(len(self), -1, *past_keys.shape[-2:])
|
|
past_values = past_values.view(len(self), -1, *past_values.shape[-2:])
|
|
if self.keys_head_dim_last:
|
|
layer[0] = past_keys[keep_indices, :, -past_kv_length:, :]
|
|
else:
|
|
layer[0] = past_keys[keep_indices, :, :, -past_kv_length:]
|
|
del past_keys
|
|
layer[1] = past_values[keep_indices, :, -past_kv_length:, :]
|
|
del past_values
|
|
|
|
max_tokens = len(request_ids) * max_input_length + total_remaining_decode_tokens
|
|
|
|
self.requests = requests
|
|
self.requests_idx_mapping = requests_idx_mapping
|
|
self.input_ids = input_ids
|
|
self.pixel_values = pixel_values
|
|
self.image_hidden_states = image_hidden_states
|
|
self.position_ids = position_ids
|
|
self.all_input_ids = all_input_ids
|
|
self.input_lengths = input_lengths
|
|
self.prefix_offsets = prefix_offsets
|
|
self.read_offsets = read_offsets
|
|
self.next_token_choosers = next_token_choosers
|
|
self.stopping_criterias = stopping_criterias
|
|
self.max_input_length = max_input_length
|
|
self.padding_right_offset = new_padding_right_offset
|
|
self.max_tokens = max_tokens
|
|
|
|
return self
|
|
|
|
@classmethod
|
|
@tracer.start_as_current_span("concatenate")
|
|
def concatenate(
|
|
cls, batches: List["IdeficsCausalLMBatch"]
|
|
) -> "IdeficsCausalLMBatch":
|
|
# It adds new requests to the batch
|
|
# Used for padding
|
|
total_batch_size = 0
|
|
max_input_length = 0
|
|
max_num_images = 0
|
|
padding_right_offset = 0
|
|
for batch in batches:
|
|
total_batch_size += len(batch)
|
|
max_input_length = max(max_input_length, batch.max_input_length)
|
|
max_num_images = max(max_num_images, batch.pixel_values.size(1))
|
|
padding_right_offset = max(padding_right_offset, batch.padding_right_offset)
|
|
|
|
# Batch attributes
|
|
requests = []
|
|
requests_idx_mapping = {}
|
|
input_lengths = []
|
|
prefix_offsets = []
|
|
read_offsets = []
|
|
all_input_ids = []
|
|
next_token_choosers = []
|
|
stopping_criterias = []
|
|
max_tokens = 0
|
|
|
|
# Batch tensors
|
|
input_ids = None
|
|
attention_mask = None
|
|
position_ids = None
|
|
pixel_values = None
|
|
image_hidden_states = None
|
|
image_attention_mask = None
|
|
past_key_values = []
|
|
|
|
# Used for slicing correctly inside the tensors
|
|
# Equivalent to a cumsum on batch sizes
|
|
start_index = 0
|
|
for i, batch in enumerate(batches):
|
|
requests.extend(batch.requests)
|
|
input_lengths.extend(batch.input_lengths)
|
|
prefix_offsets.extend(batch.prefix_offsets)
|
|
read_offsets.extend(batch.read_offsets)
|
|
all_input_ids.extend(batch.all_input_ids)
|
|
next_token_choosers.extend(batch.next_token_choosers)
|
|
stopping_criterias.extend(batch.stopping_criterias)
|
|
|
|
if i == 0:
|
|
requests_idx_mapping = batch.requests_idx_mapping
|
|
else:
|
|
# We need to offset the mapping for each batch by the cumulative batch size
|
|
for k, v in batch.requests_idx_mapping.items():
|
|
requests_idx_mapping[k] = v + start_index
|
|
|
|
# Slicing end index for this batch
|
|
end_index = start_index + len(batch)
|
|
|
|
# We only concatenate batches that did at least one step
|
|
if batch.past_key_values is None:
|
|
raise ValueError("only concatenate prefilled batches")
|
|
|
|
# Create empty tensor
|
|
# input_ids is always of shape [batch_size, 1]
|
|
# We do not need to pad it
|
|
if input_ids is None:
|
|
input_ids = batch.input_ids.new_empty((total_batch_size, 1))
|
|
# Copy to correct indices
|
|
input_ids[start_index:end_index] = batch.input_ids
|
|
|
|
# Create padded tensor
|
|
if attention_mask is None:
|
|
attention_mask = batch.attention_mask.new_zeros(
|
|
(total_batch_size, max_input_length + padding_right_offset),
|
|
)
|
|
|
|
curr_batch_max_num_images = batch.pixel_values.size(1)
|
|
if pixel_values is None:
|
|
pixel_values = batch.pixel_values.new_zeros(
|
|
(total_batch_size, max_num_images, 3, 224, 224)
|
|
)
|
|
pixel_values[start_index:end_index, :curr_batch_max_num_images] = (
|
|
batch.pixel_values
|
|
)
|
|
|
|
if image_attention_mask is None:
|
|
image_attention_mask = batch.image_attention_mask.new_zeros(
|
|
(
|
|
total_batch_size,
|
|
max_input_length + padding_right_offset,
|
|
max_num_images,
|
|
)
|
|
)
|
|
|
|
# We need to slice the attention mask to remove padding from previous steps
|
|
# and to remove unused allocated space
|
|
left_offset = max_input_length - batch.max_input_length
|
|
batch_left_offset = (
|
|
batch.attention_mask.shape[1]
|
|
- batch.max_input_length
|
|
- batch.padding_right_offset
|
|
)
|
|
attention_mask[
|
|
start_index:end_index,
|
|
left_offset:-padding_right_offset,
|
|
] = batch.attention_mask[
|
|
:,
|
|
batch_left_offset : -batch.padding_right_offset,
|
|
]
|
|
image_attention_mask[
|
|
start_index:end_index,
|
|
left_offset:-padding_right_offset,
|
|
:curr_batch_max_num_images,
|
|
] = batch.image_attention_mask[
|
|
:, batch_left_offset : -batch.padding_right_offset, :
|
|
]
|
|
|
|
# Create empty tensor
|
|
# position_ids is always of shape [batch_size, 1]
|
|
if position_ids is None:
|
|
position_ids = batch.position_ids.new_empty((total_batch_size, 1))
|
|
position_ids[start_index:end_index] = batch.position_ids
|
|
|
|
# Shenanigans to get dimensions because BLOOM outputs a past with a different shape
|
|
# BLOOM Keys: [batch_size * num_heads, head_dim, seq_length]
|
|
# BLOOM Values: [batch_size * num_heads, seq_length, head_dim]
|
|
# And ensure that we can update tensors in-place
|
|
if isinstance(batch.past_key_values[0], tuple):
|
|
batch.past_key_values = [
|
|
[t.view(len(batch), -1, *t.shape[-2:]) for t in layer]
|
|
for layer in batch.past_key_values
|
|
]
|
|
elif len(batch.past_key_values[0][0].shape) == 3:
|
|
for layer in batch.past_key_values:
|
|
for k, t in enumerate(layer):
|
|
layer[k] = t.view(len(batch), -1, *t.shape[-2:])
|
|
|
|
# Add eventual padding tokens that were added while concatenating
|
|
max_tokens += batch.max_tokens + (
|
|
max_input_length - batch.max_input_length
|
|
) * len(batch)
|
|
|
|
start_index = end_index
|
|
|
|
first_past_kvs = batches[0].past_key_values
|
|
_, num_heads, padded_sequence_length, head_dim = first_past_kvs[0][1].shape
|
|
|
|
padded_past_values_shape = (
|
|
total_batch_size,
|
|
num_heads,
|
|
max_input_length - 1,
|
|
head_dim,
|
|
)
|
|
|
|
if batches[0].keys_head_dim_last:
|
|
padded_past_keys_shape = padded_past_values_shape
|
|
else:
|
|
# seq_length is last for BLOOM
|
|
padded_past_keys_shape = (
|
|
total_batch_size,
|
|
num_heads,
|
|
head_dim,
|
|
max_input_length - 1,
|
|
)
|
|
|
|
# Iterate over attention layers
|
|
# Concatenate past key values layer by layer to allow incremental garbage collection
|
|
for j in range(len(first_past_kvs)):
|
|
padded_past_keys = first_past_kvs[j][0].new_zeros(padded_past_keys_shape)
|
|
start_index = 0
|
|
for batch in batches:
|
|
past_keys = batch.past_key_values[j][0]
|
|
# Clear reference to the original tensor
|
|
batch.past_key_values[j][0] = None
|
|
|
|
# Slicing end index for this batch
|
|
end_index = start_index + len(batch)
|
|
# We slice the keys to remove the padding from previous batches
|
|
past_seq_len = batch.max_input_length - 1
|
|
if batch.keys_head_dim_last:
|
|
padded_past_keys[start_index:end_index, :, -past_seq_len:, :] = (
|
|
past_keys[:, :, -past_seq_len:, :]
|
|
)
|
|
else:
|
|
# BLOOM case
|
|
padded_past_keys[start_index:end_index, :, :, -past_seq_len:] = (
|
|
past_keys[:, :, :, -past_seq_len:]
|
|
)
|
|
del past_keys
|
|
|
|
start_index = end_index
|
|
|
|
padded_past_values = first_past_kvs[j][1].new_zeros(
|
|
padded_past_values_shape
|
|
)
|
|
start_index = 0
|
|
for batch in batches:
|
|
past_values = batch.past_key_values[j][1]
|
|
# Clear reference to the original tensor
|
|
batch.past_key_values[j][1] = None
|
|
|
|
# Slicing end index for this batch
|
|
end_index = start_index + len(batch)
|
|
# We slice the past values to remove the padding from previous batches
|
|
past_seq_len = batch.max_input_length - 1
|
|
padded_past_values[start_index:end_index, :, -past_seq_len:, :] = (
|
|
past_values[:, :, -past_seq_len:, :]
|
|
)
|
|
del past_values
|
|
|
|
# Update values
|
|
start_index = end_index
|
|
|
|
past_key_values.append([padded_past_keys, padded_past_values])
|
|
|
|
return cls(
|
|
batch_id=batches[0].batch_id,
|
|
requests=requests,
|
|
requests_idx_mapping=requests_idx_mapping,
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
pixel_values=pixel_values,
|
|
image_hidden_states=image_hidden_states,
|
|
image_attention_mask=image_attention_mask,
|
|
past_key_values=past_key_values,
|
|
all_input_ids=all_input_ids,
|
|
input_lengths=input_lengths,
|
|
prefix_offsets=prefix_offsets,
|
|
read_offsets=read_offsets,
|
|
next_token_choosers=next_token_choosers,
|
|
stopping_criterias=stopping_criterias,
|
|
max_input_length=max_input_length,
|
|
padding_right_offset=padding_right_offset,
|
|
keys_head_dim_last=batches[0].keys_head_dim_last,
|
|
max_tokens=max_tokens,
|
|
)
|
|
|
|
def __len__(self):
|
|
return len(self.requests)
|
|
|
|
|
|
class IdeficsCausalLM(Model):
|
|
def __init__(
|
|
self,
|
|
model_id: str,
|
|
revision: Optional[str] = None,
|
|
quantize: Optional[str] = None,
|
|
speculator: Optional[str] = None,
|
|
dtype: Optional[torch.dtype] = None,
|
|
trust_remote_code: bool = False,
|
|
):
|
|
self.quantize = quantize
|
|
self.process_group, rank, world_size = initialize_torch_distributed()
|
|
if torch.cuda.is_available():
|
|
device = torch.device(f"cuda:{rank}")
|
|
# 9b seems to work correctly enough in float16, but 80b seems
|
|
# to be really saturating for f16.
|
|
dtype = torch.float16 if dtype is None else dtype
|
|
elif SYSTEM == "ipex":
|
|
if hasattr(torch, "xpu") and torch.xpu.is_available():
|
|
device = torch.device(f"xpu:{rank}")
|
|
dtype = torch.float16 if dtype is None else dtype
|
|
else:
|
|
device = torch.device("cpu")
|
|
# Float16 doesn't exist on target.
|
|
dtype = torch.bfloat16 if dtype is None else dtype
|
|
else:
|
|
device = torch.device("cpu")
|
|
dtype = torch.float32 if dtype is None else dtype
|
|
self.device, self.dtype = device, dtype
|
|
|
|
config = AutoConfig.from_pretrained(
|
|
model_id,
|
|
revision=revision,
|
|
trust_remote_code=trust_remote_code,
|
|
)
|
|
config.quantize = quantize
|
|
config.speculator = speculator
|
|
config.vision_config.quantize = quantize
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
model_id,
|
|
revision=revision,
|
|
padding_side="left",
|
|
truncation_side="left",
|
|
trust_remote_code=trust_remote_code,
|
|
)
|
|
self.processor = AutoProcessor.from_pretrained(
|
|
model_id,
|
|
revision=revision,
|
|
padding_side="left",
|
|
truncation_side="left",
|
|
trust_remote_code=trust_remote_code,
|
|
)
|
|
|
|
weights_loader = get_loader(
|
|
quantize=quantize, model_id=model_id, revision=revision
|
|
)
|
|
torch.distributed.barrier(group=self.process_group)
|
|
filenames = weight_files(model_id, revision=revision, extension=".safetensors")
|
|
weights = Weights(
|
|
filenames,
|
|
device=device,
|
|
dtype=dtype,
|
|
process_group=self.process_group,
|
|
weights_loader=weights_loader,
|
|
)
|
|
|
|
model = IdeficsForVisionText2Text(config, weights)
|
|
|
|
self.config = config
|
|
|
|
torch.distributed.barrier(group=self.process_group)
|
|
super().__init__(
|
|
model_id=model_id,
|
|
model=model,
|
|
tokenizer=tokenizer,
|
|
requires_padding=True,
|
|
dtype=dtype,
|
|
device=device,
|
|
rank=rank,
|
|
world_size=world_size,
|
|
)
|
|
|
|
@property
|
|
def batch_type(self) -> Type[IdeficsCausalLMBatch]:
|
|
return IdeficsCausalLMBatch
|
|
|
|
def forward(
|
|
self,
|
|
input_ids,
|
|
attention_mask,
|
|
position_ids,
|
|
pixel_values,
|
|
image_hidden_states,
|
|
image_attention_mask,
|
|
past_key_values: Optional = None,
|
|
) -> Tuple[torch.Tensor, List[Tuple[torch.Tensor, torch.Tensor]]]:
|
|
# Model Forward
|
|
kwargs = {
|
|
"input_ids": input_ids,
|
|
"attention_mask": attention_mask,
|
|
"pixel_values": pixel_values,
|
|
"image_hidden_states": image_hidden_states,
|
|
"image_attention_mask": image_attention_mask,
|
|
"past_key_values": past_key_values,
|
|
"use_cache": True,
|
|
"return_dict": True,
|
|
}
|
|
if self.has_position_ids:
|
|
kwargs["position_ids"] = position_ids
|
|
|
|
outputs, speculative_logits = self.model.forward(**kwargs)
|
|
return (
|
|
outputs.logits,
|
|
speculative_logits,
|
|
outputs.past_key_values,
|
|
outputs.image_hidden_states,
|
|
)
|
|
|
|
@tracer.start_as_current_span("generate_token")
|
|
def generate_token(
|
|
self, batch: IdeficsCausalLMBatch
|
|
) -> Tuple[List[Generation], Optional[IdeficsCausalLMBatch], Tuple[int, int]]:
|
|
start = time.time_ns()
|
|
# slice the attention mask to the correct shape
|
|
attention_mask = batch.attention_mask[:, : -batch.padding_right_offset]
|
|
if batch.image_attention_mask is None:
|
|
image_attention_mask = None
|
|
else:
|
|
if batch.input_ids.size(1) == 1:
|
|
# THIS is a hack: when calling idefics.generate, the first time, we need the whole image_attention_mask (size bs x max_seq_len x max_num_images),
|
|
# but the subsequent times, we only need the last attention mask along the `max_seq_len` dimension
|
|
# this is due to the nature IDEFICS: it's an encoder decoder, and so when decoding, only the currently generated
|
|
# token need to attend to the encoder hidden states (i.e. the vision encoder)
|
|
# Also see seq2seq_lm.Seq2SeqLM.generate_token which has roughly the same logic
|
|
image_attention_mask = batch.image_attention_mask[
|
|
:, -(batch.padding_right_offset + 1)
|
|
].unsqueeze(1)
|
|
else:
|
|
image_attention_mask = batch.image_attention_mask[
|
|
:, : -batch.padding_right_offset
|
|
]
|
|
|
|
logits, speculative_logits, past, image_hidden_states = self.forward(
|
|
input_ids=batch.input_ids,
|
|
attention_mask=attention_mask,
|
|
position_ids=batch.position_ids,
|
|
pixel_values=batch.pixel_values,
|
|
image_hidden_states=batch.image_hidden_states,
|
|
image_attention_mask=image_attention_mask,
|
|
past_key_values=batch.past_key_values,
|
|
)
|
|
# Hardcoded remove image tokens
|
|
logits[:, 32000:32001] = torch.finfo(logits.dtype).min
|
|
|
|
start_decode = time.time_ns()
|
|
|
|
# Results
|
|
generations: List[Generation] = []
|
|
stopped = True
|
|
|
|
# Zipped iterator
|
|
iterator = zip(
|
|
batch.requests,
|
|
batch.input_lengths,
|
|
batch.prefix_offsets,
|
|
batch.read_offsets,
|
|
logits,
|
|
batch.next_token_choosers,
|
|
batch.stopping_criterias,
|
|
batch.all_input_ids,
|
|
)
|
|
|
|
# For each member of the batch
|
|
for i, (
|
|
request,
|
|
input_length,
|
|
prefix_offset,
|
|
read_offset,
|
|
logits,
|
|
next_token_chooser,
|
|
stopping_criteria,
|
|
all_input_ids,
|
|
) in enumerate(iterator):
|
|
# Select next token
|
|
next_token_id, logprobs = next_token_chooser(
|
|
all_input_ids.view(1, -1), logits[-1:, :]
|
|
)
|
|
|
|
# Append next token to all tokens
|
|
all_input_ids = torch.cat([all_input_ids, next_token_id])
|
|
new_input_length = input_length + 1
|
|
|
|
# Generated token
|
|
next_token_logprob = logprobs[-1, next_token_id]
|
|
next_token_id_squeezed = next_token_id.squeeze()
|
|
next_token_text, prefix_offset, read_offset = self.decode_token(
|
|
all_input_ids[:, 0], prefix_offset, read_offset
|
|
)
|
|
|
|
# Evaluate stopping criteria
|
|
stop, reason = stopping_criteria(
|
|
next_token_id_squeezed,
|
|
next_token_text,
|
|
)
|
|
|
|
if not stop:
|
|
stopped = False
|
|
|
|
# Shard generations
|
|
# All generations will be appended in the rust sharded client
|
|
if i % self.world_size == self.rank:
|
|
if stop:
|
|
# Decode generated tokens
|
|
output_text, _, _ = self.decode_token(
|
|
all_input_ids[:, 0],
|
|
prefix_offset=len(all_input_ids)
|
|
- stopping_criteria.current_tokens
|
|
- 1,
|
|
read_offset=len(all_input_ids)
|
|
- stopping_criteria.current_tokens,
|
|
skip_special_tokens=True,
|
|
)
|
|
# Get seed
|
|
if isinstance(next_token_chooser.choice, Sampling):
|
|
seed = next_token_chooser.choice.seed
|
|
else:
|
|
seed = None
|
|
|
|
generated_text = GeneratedText(
|
|
output_text, stopping_criteria.current_tokens, reason, seed
|
|
)
|
|
else:
|
|
generated_text = None
|
|
|
|
# Prefill
|
|
if stopping_criteria.current_tokens == 1 and request.prefill_logprobs:
|
|
# Remove generated token to only have prefill and add nan for first prompt token
|
|
prefill_logprobs = [float("nan")] + torch.log_softmax(
|
|
logits, -1
|
|
).gather(1, all_input_ids[1:]).squeeze(1)[
|
|
-new_input_length:-1
|
|
].tolist()
|
|
prefill_token_ids = all_input_ids[-new_input_length:-1]
|
|
prefill_texts = self.tokenizer.batch_decode(
|
|
prefill_token_ids,
|
|
clean_up_tokenization_spaces=False,
|
|
skip_special_tokens=False,
|
|
)
|
|
prefill_tokens = Tokens(
|
|
prefill_token_ids,
|
|
prefill_logprobs,
|
|
prefill_texts,
|
|
is_special=[],
|
|
)
|
|
else:
|
|
prefill_tokens = None
|
|
|
|
top_tokens = None
|
|
|
|
generation = Generation(
|
|
request.id,
|
|
prefill_tokens,
|
|
Tokens(
|
|
[next_token_id_squeezed],
|
|
[next_token_logprob],
|
|
[next_token_text],
|
|
[next_token_id_squeezed.item() in self.all_special_ids],
|
|
),
|
|
generated_text,
|
|
top_tokens,
|
|
)
|
|
|
|
generations.append(generation)
|
|
|
|
# Update values
|
|
batch.next_token_choosers[i] = batch.next_token_choosers[i].advance_grammar(
|
|
next_token_id_squeezed.item()
|
|
)
|
|
batch.input_ids[i, 0] = next_token_id
|
|
batch.all_input_ids[i] = all_input_ids
|
|
batch.input_lengths[i] = new_input_length
|
|
batch.prefix_offsets[i] = prefix_offset
|
|
batch.read_offsets[i] = read_offset
|
|
batch.max_input_length = max(batch.max_input_length, new_input_length)
|
|
|
|
# We finished all generations in the batch; there is no next batch
|
|
if stopped:
|
|
forward_ns = start_decode - start
|
|
decode_ns = time.time_ns() - start_decode
|
|
return generations, None, (forward_ns, decode_ns)
|
|
|
|
# Slice unused values from prefill
|
|
batch.input_ids = batch.input_ids[:, :1]
|
|
|
|
# Update attention_mask as we added a new token to input_ids
|
|
batch.attention_mask[:, -batch.padding_right_offset] = 1
|
|
batch.image_attention_mask[:, -batch.padding_right_offset, :] = (
|
|
batch.image_attention_mask[:, -(batch.padding_right_offset + 1), :]
|
|
)
|
|
# Decrease right offset
|
|
batch.padding_right_offset -= 1
|
|
|
|
# Update position_ids
|
|
batch.position_ids = batch.position_ids[:, -1:] + 1
|
|
|
|
# Update past key values
|
|
batch.past_key_values = past
|
|
batch.image_hidden_states = image_hidden_states
|
|
|
|
forward_ns = start_decode - start
|
|
decode_ns = time.time_ns() - start_decode
|
|
return generations, batch, (forward_ns, decode_ns)
|