mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-04-24 16:32:12 +00:00
Quantized weights were loaded in the `Weights` class, but this was getting quite unwieldy, where every higher level method to load weights was a long conditional to cover all the different quantizers. This change moves loading of quantized weights out of the `Weights` class. This is done by defining a simple `WeightsLoader` interface that is implemented by `Exl2WeightsLoader`, `GPTQWeightsLoader`, and `MarlinWeightsLoader`. These implementations are in the quantizers' respective modules. The `Weights` class provides the low-level load operations (such as loading tensors or sharded tensors), but delegates loads that need quantizer-specific weight processing to a loader. The loaders still use the low-level functionality provided by `Weights`. I initially tried making a hierarchy where a class like `GPTQWeights` would inherit from `Weights`. But it is not very flexible (e.g. does not work well with the new weight storage mock used in tests) and the implicit indirections made the code harder to follow.
527 lines
16 KiB
Python
527 lines
16 KiB
Python
from dataclasses import dataclass
|
|
from typing import List, Optional, Tuple, Union
|
|
|
|
from text_generation_server.utils.weights import Weights, WeightsLoader
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
from text_generation_server.utils.import_utils import SYSTEM
|
|
|
|
try:
|
|
import marlin_kernels
|
|
except ImportError:
|
|
marlin_kernels = None
|
|
|
|
try:
|
|
major, _minor = torch.cuda.get_device_capability()
|
|
has_sm_8_0 = major >= 8
|
|
except Exception:
|
|
has_sm_8_0 = False
|
|
|
|
|
|
GPTQ_MARLIN_BITS = [4, 8]
|
|
GPTQ_MARLIN_GROUP_SIZES = [-1, 32, 64, 128]
|
|
MARLIN_TILE_SIZE = 16
|
|
|
|
|
|
class MarlinWeightsLoader(WeightsLoader):
|
|
"""Loader for Marlin-quantized weights."""
|
|
|
|
def __init__(self, *, bits: int, is_marlin_24: bool):
|
|
self.bits = bits
|
|
self.is_marlin_24 = is_marlin_24
|
|
|
|
def get_weights_col_packed(
|
|
self,
|
|
weights: Weights,
|
|
prefix: str,
|
|
block_sizes: Union[int, List[int]],
|
|
):
|
|
if self.is_marlin_24:
|
|
B = weights.get_packed_sharded(
|
|
f"{prefix}.B_24", dim=1, block_sizes=block_sizes
|
|
)
|
|
B_meta = weights.get_packed_sharded(
|
|
f"{prefix}.B_meta", dim=1, block_sizes=block_sizes
|
|
)
|
|
s = weights.get_packed_sharded(
|
|
f"{prefix}.s", dim=1, block_sizes=block_sizes
|
|
)
|
|
|
|
weight = GPTQMarlin24Weight(B=B, B_meta=B_meta, s=s, bits=self.bits)
|
|
else:
|
|
B = weights.get_packed_sharded(
|
|
f"{prefix}.B", dim=1, block_sizes=block_sizes
|
|
)
|
|
s = weights.get_packed_sharded(
|
|
f"{prefix}.s", dim=1, block_sizes=block_sizes
|
|
)
|
|
weight = MarlinWeight(B=B, s=s)
|
|
|
|
return weight
|
|
|
|
def get_multi_weights_col(self, weights: Weights, prefixes: List[str], dim: int):
|
|
is_marlin_24 = getattr(self, "gptq_checkpoint_format", None) == "marlin_24"
|
|
if is_marlin_24:
|
|
try:
|
|
B = torch.cat(
|
|
[weights.get_sharded(f"{p}.B_24", dim=1) for p in prefixes], dim=1
|
|
)
|
|
except RuntimeError:
|
|
raise RuntimeError(
|
|
f"Cannot load `marlin` weight, make sure the model is already quantized"
|
|
)
|
|
|
|
B_meta = torch.cat(
|
|
[weights.get_sharded(f"{p}.B_meta", dim=1) for p in prefixes], dim=1
|
|
)
|
|
|
|
s = torch.cat(
|
|
[weights.get_sharded(f"{p}.s", dim=1) for p in prefixes], dim=1
|
|
)
|
|
|
|
weight = GPTQMarlin24Weight(B=B, B_meta=B_meta, s=s, bits=self.bits)
|
|
else:
|
|
try:
|
|
B = torch.cat(
|
|
[weights.get_sharded(f"{p}.B", dim=1) for p in prefixes], dim=1
|
|
)
|
|
except RuntimeError:
|
|
raise RuntimeError(
|
|
f"Cannot load `marlin` weight, make sure the model is already quantized"
|
|
)
|
|
s = torch.cat(
|
|
[weights.get_sharded(f"{p}.s", dim=1) for p in prefixes], dim=1
|
|
)
|
|
|
|
weight = MarlinWeight(B=B, s=s)
|
|
|
|
return weight
|
|
|
|
def get_weights_row(self, weights: Weights, prefix: str):
|
|
is_marlin_24 = getattr(self, "gptq_checkpoint_format", None) == "marlin_24"
|
|
if is_marlin_24:
|
|
try:
|
|
B = weights.get_sharded(f"{prefix}.B_24", dim=0)
|
|
except RuntimeError:
|
|
raise RuntimeError(
|
|
"Cannot load `marlin` 2:4 sparsity weight, make sure the model is already quantized."
|
|
)
|
|
|
|
B_meta = weights.get_sharded(f"{prefix}.B_meta", dim=0)
|
|
num_groups = weights._get_slice(f"{prefix}.s").get_shape()[0]
|
|
if num_groups == 1:
|
|
# The number of groups is 1 when groupsize == -1. share
|
|
# scales between all shards in this case.
|
|
s = weights.get_tensor(f"{prefix}.s")
|
|
else:
|
|
s = weights.get_sharded(f"{prefix}.s", dim=0)
|
|
|
|
weight = GPTQMarlin24Weight(B=B, B_meta=B_meta, s=s, bits=self.bits)
|
|
else:
|
|
try:
|
|
B = weights.get_sharded(f"{prefix}.B", dim=0)
|
|
except RuntimeError:
|
|
raise RuntimeError(
|
|
"Cannot load `marlin` weight, make sure the model is already quantized."
|
|
)
|
|
|
|
num_groups = weights._get_slice(f"{prefix}.s").get_shape()[0]
|
|
if num_groups == 1:
|
|
# The number of groups is 1 when groupsize == -1. share
|
|
# scales between all shards in this case.
|
|
s = weights.get_tensor(f"{prefix}.s")
|
|
else:
|
|
s = weights.get_sharded(f"{prefix}.s", dim=0)
|
|
weight = MarlinWeight(B=B, s=s)
|
|
|
|
return weight
|
|
|
|
|
|
def can_use_gptq_marlin(
|
|
*, bits: int, groupsize: int, quant_method: str, quantize: str, sym: bool
|
|
) -> bool:
|
|
return (
|
|
SYSTEM == "cuda"
|
|
and marlin_kernels is not None
|
|
and has_sm_8_0
|
|
and quantize == "gptq"
|
|
and quant_method == "gptq"
|
|
and bits in GPTQ_MARLIN_BITS
|
|
and groupsize in GPTQ_MARLIN_GROUP_SIZES
|
|
and sym
|
|
)
|
|
|
|
|
|
def _check_marlin_kernels():
|
|
if not (SYSTEM == "cuda" and has_sm_8_0):
|
|
raise NotImplementedError(
|
|
"Using quantized Marlin models requires a GPU with CUDA capability 8.0 or later."
|
|
)
|
|
|
|
if marlin_kernels is None:
|
|
raise NotImplementedError(
|
|
"marlin is not installed, install it with: pip install server/marlin"
|
|
)
|
|
|
|
|
|
def _check_valid_shape(in_features: int, out_features: int):
|
|
if (in_features % 128 != 0 or out_features % 64 != 0) and (
|
|
in_features % 64 != 0 or out_features % 128 != 0
|
|
):
|
|
raise ValueError(
|
|
f"The GPTQ Marlin kernel does not have a valid thread configuration for weight matrix with shape ({out_features}, {in_features})."
|
|
" The shape elements must be divisible by (128, 64) or (64, 128)."
|
|
)
|
|
|
|
|
|
# https://github.com/IST-DASLab/marlin/blob/2f6d7c10e124b3c5fa29ff8d77d568bd7af3274c/marlin/__init__.py#L40C1-L68C54
|
|
def _get_perms() -> Tuple[List[int], List[int]]:
|
|
scale_perm = []
|
|
for i in range(8):
|
|
scale_perm.extend([i + 8 * j for j in range(8)])
|
|
scale_perm_single = []
|
|
for i in range(4):
|
|
scale_perm_single.extend([2 * i + j for j in [0, 1, 8, 9, 16, 17, 24, 25]])
|
|
return scale_perm, scale_perm_single
|
|
|
|
|
|
_scale_perm, _scale_perm_single = _get_perms()
|
|
|
|
|
|
def permute_scales(scales: torch.Tensor):
|
|
out_features = scales.shape[1]
|
|
if scales.shape[0] == 1:
|
|
scales = scales.reshape((-1, len(_scale_perm_single)))[:, _scale_perm_single]
|
|
else:
|
|
scales = scales.reshape((-1, len(_scale_perm)))[:, _scale_perm]
|
|
return scales.reshape((-1, out_features)).contiguous()
|
|
|
|
|
|
@dataclass
|
|
class GPTQMarlinWeight:
|
|
"""
|
|
Repacked GPTQ Marlin weights.
|
|
"""
|
|
|
|
qweight: torch.Tensor
|
|
scales: torch.Tensor
|
|
g_idx: torch.Tensor
|
|
perm: torch.Tensor
|
|
bits: int
|
|
is_full_k: bool
|
|
|
|
def __post_init__(self):
|
|
assert self.qweight.dtype == torch.int32
|
|
assert self.scales.dtype == torch.float16
|
|
assert self.g_idx.dtype == torch.int32
|
|
assert self.perm.dtype == torch.int32
|
|
|
|
|
|
def repack_gptq_for_marlin(
|
|
*,
|
|
qweight: torch.Tensor,
|
|
scales: torch.Tensor,
|
|
g_idx: torch.Tensor,
|
|
bits: int,
|
|
desc_act: bool,
|
|
groupsize: int,
|
|
sym: bool,
|
|
sharded_infeatures: bool,
|
|
) -> GPTQMarlinWeight:
|
|
"""Convert GPTQ weights to a layout that's compatible with GPTQ-Marlin kernels."""
|
|
_check_marlin_kernels()
|
|
assert marlin_kernels is not None
|
|
|
|
if bits not in GPTQ_MARLIN_BITS:
|
|
supported_bits = ", ".join(str(b) for b in GPTQ_MARLIN_BITS)
|
|
raise RuntimeError(
|
|
f"Repacking {bits}-bit GPTQ weights as Marlin is not supported, must be one of: {supported_bits}"
|
|
)
|
|
|
|
if groupsize not in GPTQ_MARLIN_GROUP_SIZES:
|
|
supported_sizes = ", ".join(str(b) for b in GPTQ_MARLIN_GROUP_SIZES)
|
|
raise RuntimeError(
|
|
f"Repacking GPTQ weights with group size {groupsize} as Marlin is not supported, must be one of: {supported_sizes}"
|
|
)
|
|
if not sym:
|
|
raise RuntimeError(
|
|
"Repacking GPTQ weights with asymmetric quantization as Marlin is not supported."
|
|
)
|
|
|
|
weights_per_int = 32 // bits
|
|
in_features = qweight.shape[0] * weights_per_int
|
|
out_features = qweight.shape[1]
|
|
|
|
if in_features % groupsize != 0:
|
|
raise ValueError(
|
|
f"Number of input features ({in_features}) not divisible by group size ({groupsize})"
|
|
)
|
|
|
|
if desc_act and groupsize != -1:
|
|
perm = torch.argsort(g_idx).to(torch.int)
|
|
g_idx = g_idx[perm]
|
|
else:
|
|
perm = torch.empty(0, dtype=torch.int, device=qweight.device)
|
|
g_idx = torch.empty(0, dtype=torch.int, device=qweight.device)
|
|
|
|
repacked = marlin_kernels.gptq_marlin_repack(
|
|
qweight, perm, in_features, out_features, bits
|
|
)
|
|
|
|
scales = permute_scales(scales)
|
|
|
|
is_full_k = not (desc_act and sharded_infeatures)
|
|
|
|
return GPTQMarlinWeight(
|
|
qweight=repacked,
|
|
scales=scales,
|
|
g_idx=g_idx,
|
|
perm=perm,
|
|
bits=bits,
|
|
is_full_k=is_full_k,
|
|
)
|
|
|
|
|
|
class GPTQMarlinLinear(nn.Module):
|
|
"""
|
|
Linear layer for GPTQ weights that were converted for the GPTQ-Marlin
|
|
kernels.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
*,
|
|
weight: GPTQMarlinWeight,
|
|
bias: Optional[torch.Tensor],
|
|
):
|
|
super().__init__()
|
|
|
|
_check_marlin_kernels()
|
|
assert marlin_kernels is not None
|
|
|
|
in_features = weight.qweight.shape[0] * MARLIN_TILE_SIZE
|
|
out_features = weight.scales.shape[1]
|
|
_check_valid_shape(in_features=in_features, out_features=out_features)
|
|
|
|
self.bits = weight.bits
|
|
self.is_full_k = weight.is_full_k
|
|
|
|
self.qweight = weight.qweight
|
|
self.scales = weight.scales
|
|
self.g_idx = weight.g_idx
|
|
self.perm = weight.perm
|
|
if bias is not None:
|
|
self.bias = bias
|
|
else:
|
|
self.bias = None
|
|
|
|
self.workspace = torch.zeros(
|
|
out_features // 64 * 16, dtype=torch.int, device=weight.qweight.device
|
|
)
|
|
|
|
def forward(self, A: torch.Tensor) -> torch.Tensor:
|
|
assert marlin_kernels is not None
|
|
|
|
A_flat = A.view(-1, A.shape[-1])
|
|
C = marlin_kernels.gptq_marlin_gemm(
|
|
A_flat,
|
|
self.qweight,
|
|
self.scales,
|
|
self.g_idx,
|
|
self.perm,
|
|
self.workspace,
|
|
self.bits,
|
|
A_flat.shape[0],
|
|
self.scales.shape[1],
|
|
A_flat.shape[1],
|
|
self.is_full_k,
|
|
)
|
|
C = C.reshape(A.shape[:-1] + (self.scales.shape[1],))
|
|
|
|
if self.bias is not None:
|
|
C += self.bias
|
|
|
|
return C
|
|
|
|
|
|
GPTQ_MARLIN_24_MIN_THREAD_N = 128
|
|
GPTQ_MARLIN_24_MIN_THREAD_K = 128
|
|
GPTQ_MARLIN_24_MAX_PARALLEL = 64
|
|
GPTQ_MARLIN_24_SUPPORTED_NUM_BITS = [4, 8]
|
|
GPTQ_MARLIN_24_SUPPORTED_GROUP_SIZES = [-1, 128]
|
|
|
|
|
|
@dataclass
|
|
class GPTQMarlin24Weight:
|
|
"""
|
|
GPTQ-Marlin 2:4 weights.
|
|
|
|
Attributes:
|
|
B (torch.Tensor): int4-quantized weights packed into int32.
|
|
B_meta (torch.Tensor): metadata for 2:4 sparsity.
|
|
s (torch.Tensor): float16 scales.
|
|
bits: quantized weight size.
|
|
"""
|
|
|
|
B: torch.Tensor
|
|
B_meta: torch.Tensor
|
|
s: torch.Tensor
|
|
bits: int
|
|
|
|
def __post_init__(self):
|
|
assert self.B.dtype == torch.int32
|
|
assert self.B_meta.dtype == torch.int16
|
|
assert self.s.dtype == torch.float16
|
|
|
|
|
|
class GPTQMarlin24Linear(nn.Module):
|
|
def __init__(self, *, weight: GPTQMarlin24Weight, bias: Optional[torch.Tensor]):
|
|
super().__init__()
|
|
|
|
_check_marlin_kernels()
|
|
assert marlin_kernels is not None
|
|
|
|
if weight.bits not in GPTQ_MARLIN_BITS:
|
|
supported_bits = ", ".join(str(b) for b in GPTQ_MARLIN_BITS)
|
|
raise RuntimeError(
|
|
f"{weight.bits}-bit GPTQ Sparse 2:4 Marlin is not supported, must be one of: {supported_bits}"
|
|
)
|
|
|
|
in_features = weight.B.shape[0] * MARLIN_TILE_SIZE * 2
|
|
out_features = weight.s.shape[1]
|
|
groupsize = -1 if weight.s.shape[0] == 1 else in_features // weight.s.shape[0]
|
|
|
|
if groupsize not in GPTQ_MARLIN_24_SUPPORTED_GROUP_SIZES:
|
|
supported_sizes = ", ".join(
|
|
str(b) for b in GPTQ_MARLIN_24_SUPPORTED_GROUP_SIZES
|
|
)
|
|
raise RuntimeError(
|
|
f"Group size {groupsize} is not supported, must be one of: {supported_sizes}"
|
|
)
|
|
|
|
self.bits = weight.bits
|
|
weights_per_int32 = 32 // self.bits
|
|
|
|
assert (
|
|
out_features % GPTQ_MARLIN_24_MIN_THREAD_N == 0
|
|
), f"Number of output features ({out_features}) not divisable by {GPTQ_MARLIN_24_MIN_THREAD_N} threads"
|
|
assert (
|
|
out_features % weights_per_int32 == 0
|
|
), f"Number of output features ({out_features}) not divisable by weights per int32 ({weights_per_int32})"
|
|
|
|
assert (
|
|
in_features % GPTQ_MARLIN_24_MIN_THREAD_K == 0
|
|
), f"Number of output features ({out_features}) not divisable by {GPTQ_MARLIN_24_MIN_THREAD_K} threads"
|
|
if groupsize != -1 and in_features % groupsize != 0:
|
|
raise ValueError(
|
|
f"Number of input features ({in_features}) not divisable by group size ({groupsize})"
|
|
)
|
|
|
|
self.B = weight.B
|
|
self.B_meta = weight.B_meta
|
|
self.s = weight.s
|
|
if bias is not None:
|
|
self.bias = bias
|
|
else:
|
|
self.bias = None
|
|
|
|
self.workspace = torch.zeros(
|
|
(out_features // GPTQ_MARLIN_24_MIN_THREAD_N) * GPTQ_MARLIN_24_MAX_PARALLEL,
|
|
dtype=torch.int,
|
|
device=weight.B.device,
|
|
)
|
|
|
|
def forward(self, A: torch.Tensor) -> torch.Tensor:
|
|
assert marlin_kernels is not None
|
|
|
|
C = marlin_kernels.gptq_marlin_24_gemm(
|
|
A.view(-1, A.shape[-1]),
|
|
self.B,
|
|
self.B_meta,
|
|
self.s,
|
|
self.workspace,
|
|
self.bits,
|
|
A.shape[0],
|
|
self.s.shape[1],
|
|
A.shape[1],
|
|
)
|
|
|
|
C = C.reshape(A.shape[:-1] + (self.s.shape[1],))
|
|
|
|
if self.bias is not None:
|
|
C += self.bias
|
|
|
|
return C
|
|
|
|
|
|
@dataclass
|
|
class MarlinWeight:
|
|
"""
|
|
Marlin weights.
|
|
|
|
Attributes:
|
|
B (torch.Tensor): int4-quantized weights packed into int32.
|
|
s (torch.Tensor): float16 scales.
|
|
"""
|
|
|
|
B: torch.Tensor
|
|
s: torch.Tensor
|
|
|
|
def __post_init__(self):
|
|
assert self.B.dtype == torch.int32
|
|
assert self.s.dtype == torch.float16
|
|
|
|
|
|
class MarlinLinear(nn.Module):
|
|
def __init__(self, *, weight: MarlinWeight, bias: Optional[torch.Tensor]):
|
|
super().__init__()
|
|
|
|
_check_marlin_kernels()
|
|
assert marlin_kernels is not None
|
|
|
|
in_features = weight.B.shape[0] * MARLIN_TILE_SIZE
|
|
out_features = weight.s.shape[1]
|
|
assert (
|
|
in_features % 128 == 0
|
|
), f"Number of input features ({in_features}) not divisable by 128"
|
|
assert (
|
|
out_features % 256 == 0
|
|
), f"Number of output features ({out_features}) not divisable by 256"
|
|
|
|
groupsize = -1 if weight.s.shape[0] == 1 else in_features // weight.s.shape[0]
|
|
assert groupsize in {
|
|
-1,
|
|
128,
|
|
}, f"Group size must be -1 or 128, was {groupsize}"
|
|
|
|
self.B = weight.B
|
|
self.s = weight.s
|
|
if bias is not None:
|
|
self.bias = bias
|
|
else:
|
|
self.bias = None
|
|
|
|
self.workspace = torch.zeros(
|
|
out_features // 64 * 16, dtype=torch.int, device=weight.B.device
|
|
)
|
|
|
|
def forward(self, A: torch.Tensor) -> torch.Tensor:
|
|
assert marlin_kernels is not None
|
|
|
|
C = marlin_kernels.marlin_gemm(
|
|
A.view(-1, A.shape[-1]),
|
|
self.B,
|
|
self.s,
|
|
self.workspace,
|
|
A.shape[0],
|
|
self.s.shape[1],
|
|
A.shape[1],
|
|
)
|
|
C = C.reshape(A.shape[:-1] + (self.s.shape[1],))
|
|
|
|
if self.bias is not None:
|
|
C += self.bias
|
|
|
|
return C
|