text-generation-inference/server/text_generation_server/models/custom_modeling/vlm.py
2025-03-12 09:25:51 +01:00

70 lines
2.6 KiB
Python

def load_text_model(prefix, config, weights, name=None):
if config.model_type == "llama":
from text_generation_server.models.custom_modeling.flash_llama_modeling import (
FlashLlamaForCausalLM,
)
return FlashLlamaForCausalLM(prefix, config, weights, name=name)
elif config.model_type == "mistral":
from text_generation_server.models.custom_modeling.flash_mistral_modeling import (
FlashMistralForCausalLM,
)
return FlashMistralForCausalLM(prefix, config, weights, name=name)
elif config.model_type == "gemma":
from text_generation_server.models.custom_modeling.flash_gemma_modeling import (
FlashGemmaForCausalLM,
)
return FlashGemmaForCausalLM(prefix, config, weights, causal=False)
elif config.model_type == "gemma2":
from text_generation_server.models.custom_modeling.flash_gemma2_modeling import (
FlashGemma2ForCausalLM,
)
return FlashGemma2ForCausalLM(prefix, config, weights)
elif config.model_type == "gemma3" or config.model_type == "gemma3_text":
from text_generation_server.models.custom_modeling.flash_gemma3_modeling import (
FlashGemma3ForCausalLM,
)
return FlashGemma3ForCausalLM(prefix, config, weights)
elif config.model_type == "paligemma":
from text_generation_server.models.custom_modeling.flash_gemma_modeling import (
FlashGemmaForCausalLM,
)
return FlashGemmaForCausalLM(prefix, config, weights)
else:
raise RuntimeError(f"Unsupported model type {config.model_type}")
def load_vision_model(prefix, config, weights):
if config.model_type == "clip_vision_model":
from text_generation_server.models.custom_modeling.clip import (
CLIPVisionTransformer,
)
return CLIPVisionTransformer(
prefix=f"{prefix}.vision_model", config=config, weights=weights
)
if (
config.model_type == "siglip_vision_model"
or config.model_type == "gemma3_vision"
):
from text_generation_server.models.custom_modeling.siglip import (
SiglipVisionTransformer,
)
# TODO: ensure that using the prefix doesn't break any existing models
# that rely on the old prefix (update the old models if necessary)
return SiglipVisionTransformer(
# prefix="vision_model.vision_model", config=config, weights=weights
prefix=f"{prefix}.vision_model",
config=config,
weights=weights,
)
else:
raise RuntimeError(f"Unsupported model type {config.model_type}")