mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-04-26 20:42:06 +00:00
* wip
wip
refacto
refacto
Initial setup for CXX binding to TRTLLM
Working FFI call for TGI and TRTLLM backend
Remove unused parameters annd force tokenizer name to be set
Overall build TRTLLM and deps through CMake build system
Enable end to end CMake build
First version loading engines and making it ready for inference
Remembering to check how we can detect support for chunked context
Move to latest TensorRT-LLM version
Specify which default log level to use depending on CMake build type
make leader executor mode working
unconditionally call InitializeBackend on the FFI layer
bind to CUDA::nvml to retrieve compute capabilities at runtime
updated logic and comment to detect cuda compute capabilities
implement the Stream method to send new tokens through a callback
use spdlog release 1.14.1 moving forward
update trtllm to latest version a96cccafcf6365c128f004f779160951f8c0801c
correctly tell cmake to build dependent tensorrt-llm required libraries
create cmake install target to put everything relevant in installation folder
add auth_token CLI argument to provide hf hub authentification token
allow converting huggingface::tokenizers error to TensorRtLlmBackendError
use correct include for spdlog
include guard to build example in cmakelists
working setup of the ffi layer
remove fmt import
use external fmt lib
end to end ffi flow working
make sure to track include/ffi.h to trigger rebuild from cargo
impl the rust backend which currently cannot move the actual computation in background thread
expose shutdown function at ffi layer
impl RwLock scenario for TensorRtLllmBackend
oops missing c++ backend definitions
compute the number of maximum new tokens for each request independently
make sure the context is not dropped in the middle of the async decoding.
remove unnecessary log
add all the necessary plumbery to return the generated content
update invalid doc in cpp file
correctly forward back the log probabilities
remove unneeded scope variable for now
refactor Stream impl for Generation to factorise code
expose the internal missing start/queue timestamp
forward tgi parameters rep/freq penalty
add some more validation about grammar not supported
define a shared struct to hold the result of a decoding step
expose information about potential error happening while decoding
remove logging
add logging in case of decoding error
make sure executor_worker is provided
add initial Dockerfile for TRTLLM backend
add some more information in CMakeLists.txt to correctly install executorWorker
add some more information in CMakeLists.txt to correctly find and install nvrtc wrapper
simplify prebuilt trtllm libraries name definition
do the same name definition stuff for tensorrt_llm_executor_static
leverage pkg-config to probe libraries paths and reuse new install structure from cmake
fix bad copy/past missing nvinfer linkage direction
align all the linker search dependency
add missing pkgconfig folder for MPI in Dockerfile
correctly setup linking search path for runtime layer
fix missing / before tgi lib path
adding missing ld_library_path for cuda stubs in Dockerfile
update tgi entrypoint
commenting out Python part for TensorRT installation
refactored docker image
move to TensorRT-LLM v0.11.0
make docker linter happy with same capitalization rule
fix typo
refactor the compute capabilities detection along with num gpus
update TensorRT-LLM to latest version
update TensorRT install script to latest
update build.rs to link to cuda 12.5
add missing dependant libraries for linking
clean up a bit
install to decoder_attention target
add some custom stuff for nccl linkage
fix envvar CARGO_CFG_TARGET_ARCH set at runtime vs compile time
use std::env::const::ARCH
make sure variable live long enough...
look for cuda 12.5
add some more basic info in README.md
* Rebase.
* Fix autodocs.
* Let's try to enable trtllm backend.
* Ignore backends/v3 by default.
* Fixing client.
* Fix makefile + autodocs.
* Updating the schema thing + redocly.
* Fix trtllm lint.
* Adding pb files ?
* Remove cargo fmt temporarily.
* ?
* Tmp.
* Remove both check + clippy ?
* Backporting telemetry.
* Backporting 457fb0a1
* Remove PB from git.
* Fixing PB with default member backends/client
* update TensorRT-LLM to latest version
* provided None for api_key
* link against libtensorrt_llm and not libtensorrt-llm
---------
Co-authored-by: OlivierDehaene <23298448+OlivierDehaene@users.noreply.github.com>
Co-authored-by: Morgan Funtowicz <morgan@huggingface.co>
221 lines
6.7 KiB
Plaintext
221 lines
6.7 KiB
Plaintext
# Rust builder
|
|
FROM lukemathwalker/cargo-chef:latest-rust-1.79 AS chef
|
|
WORKDIR /usr/src
|
|
|
|
ARG CARGO_REGISTRIES_CRATES_IO_PROTOCOL=sparse
|
|
|
|
FROM chef AS planner
|
|
COPY Cargo.lock Cargo.lock
|
|
COPY Cargo.toml Cargo.toml
|
|
COPY rust-toolchain.toml rust-toolchain.toml
|
|
COPY proto proto
|
|
COPY benchmark benchmark
|
|
COPY router router
|
|
COPY backends backends
|
|
COPY launcher launcher
|
|
RUN cargo chef prepare --recipe-path recipe.json
|
|
|
|
FROM chef AS builder
|
|
|
|
RUN PROTOC_ZIP=protoc-21.12-linux-x86_64.zip && \
|
|
curl -OL https://github.com/protocolbuffers/protobuf/releases/download/v21.12/$PROTOC_ZIP && \
|
|
unzip -o $PROTOC_ZIP -d /usr/local bin/protoc && \
|
|
unzip -o $PROTOC_ZIP -d /usr/local 'include/*' && \
|
|
rm -f $PROTOC_ZIP
|
|
|
|
COPY --from=planner /usr/src/recipe.json recipe.json
|
|
RUN cargo chef cook --profile release-opt --recipe-path recipe.json
|
|
|
|
ARG GIT_SHA
|
|
ARG DOCKER_LABEL
|
|
|
|
COPY Cargo.toml Cargo.toml
|
|
COPY rust-toolchain.toml rust-toolchain.toml
|
|
COPY proto proto
|
|
COPY benchmark benchmark
|
|
COPY router router
|
|
COPY backends backends
|
|
COPY launcher launcher
|
|
RUN cargo build --profile release-opt
|
|
|
|
# Text Generation Inference base image for RoCm
|
|
FROM rocm/dev-ubuntu-22.04:6.1.1_hip_update AS base
|
|
|
|
RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends \
|
|
build-essential \
|
|
ca-certificates \
|
|
ccache \
|
|
curl \
|
|
git \
|
|
make \
|
|
libssl-dev \
|
|
g++ \
|
|
# Needed to build VLLM & flash.
|
|
rocthrust-dev \
|
|
hipsparse-dev \
|
|
hipblas-dev \
|
|
hipblaslt-dev \
|
|
rocblas-dev \
|
|
hiprand-dev \
|
|
rocrand-dev \
|
|
miopen-hip-dev \
|
|
hipfft-dev \
|
|
hipcub-dev \
|
|
hipsolver-dev \
|
|
rccl-dev \
|
|
cmake \
|
|
python3-dev && \
|
|
rm -rf /var/lib/apt/lists/*
|
|
|
|
# Keep in sync with `server/pyproject.toml
|
|
ARG MAMBA_VERSION=23.1.0-1
|
|
ARG PYTORCH_VERSION='2.3.0'
|
|
ARG ROCM_VERSION='6.0.2'
|
|
ARG PYTHON_VERSION='3.10.10'
|
|
# Automatically set by buildx
|
|
ARG TARGETPLATFORM
|
|
ENV PATH /opt/conda/bin:$PATH
|
|
|
|
# TGI seem to require libssl.so.1.1 instead of libssl.so.3 so we can't use ubuntu 22.04. Ubuntu 20.04 has python==3.8, and TGI requires python>=3.9, hence the need for miniconda.
|
|
# Install mamba
|
|
# translating Docker's TARGETPLATFORM into mamba arches
|
|
RUN case ${TARGETPLATFORM} in \
|
|
"linux/arm64") MAMBA_ARCH=aarch64 ;; \
|
|
*) MAMBA_ARCH=x86_64 ;; \
|
|
esac && \
|
|
curl -fsSL -v -o ~/mambaforge.sh -O "https://github.com/conda-forge/miniforge/releases/download/${MAMBA_VERSION}/Mambaforge-${MAMBA_VERSION}-Linux-${MAMBA_ARCH}.sh"
|
|
RUN chmod +x ~/mambaforge.sh && \
|
|
bash ~/mambaforge.sh -b -p /opt/conda && \
|
|
mamba init && \
|
|
rm ~/mambaforge.sh
|
|
|
|
# Install flash-attention, torch dependencies
|
|
RUN pip install numpy einops ninja --no-cache-dir
|
|
|
|
RUN conda install intel::mkl-static intel::mkl-include
|
|
RUN pip uninstall -y triton && \
|
|
git clone --depth 1 --single-branch https://github.com/ROCm/triton.git && \
|
|
cd triton/python && \
|
|
pip install .
|
|
|
|
RUN git clone --depth 1 --recursive --single-branch --branch 2.3-patched https://github.com/fxmarty/pytorch.git pytorch && cd pytorch && pip install -r requirements.txt --no-cache-dir
|
|
|
|
ARG _GLIBCXX_USE_CXX11_ABI="1"
|
|
ARG CMAKE_PREFIX_PATH="/opt/conda"
|
|
ARG PYTORCH_ROCM_ARCH="gfx90a;gfx942"
|
|
ARG BUILD_CAFFE2="0" \
|
|
BUILD_CAFFE2_OPS="0" \
|
|
USE_CUDA="0" \
|
|
USE_ROCM="1" \
|
|
BUILD_TEST="0" \
|
|
USE_FBGEMM="0" \
|
|
USE_NNPACK="0" \
|
|
USE_QNNPACK="0" \
|
|
USE_XNNPACK="0" \
|
|
USE_FLASH_ATTENTION="1" \
|
|
USE_MEM_EFF_ATTENTION="0"
|
|
|
|
RUN cd pytorch && python tools/amd_build/build_amd.py && python setup.py install
|
|
|
|
# Set AS recommended: https://github.com/ROCm/triton/wiki/A-script-to-set-program-execution-environment-in-ROCm
|
|
ENV HIP_FORCE_DEV_KERNARG=1
|
|
|
|
# On MI250 and MI300, performances for flash with Triton FA are slightly better than CK.
|
|
# However, Triton requires a tunning for each prompt length, which is prohibitive.
|
|
ENV ROCM_USE_FLASH_ATTN_V2_TRITON=0
|
|
|
|
FROM base AS kernel-builder
|
|
|
|
# # Build vllm kernels
|
|
FROM kernel-builder AS vllm-builder
|
|
WORKDIR /usr/src
|
|
|
|
COPY server/Makefile-vllm Makefile
|
|
|
|
# Build specific version of vllm
|
|
RUN make build-vllm-rocm
|
|
|
|
# Build Flash Attention v2 kernels
|
|
FROM kernel-builder AS flash-att-v2-builder
|
|
WORKDIR /usr/src
|
|
|
|
COPY server/Makefile-flash-att-v2 Makefile
|
|
|
|
# Build specific version of flash attention v2
|
|
RUN make build-flash-attention-v2-rocm
|
|
|
|
# Build Transformers CUDA kernels (gpt-neox and bloom)
|
|
FROM kernel-builder AS custom-kernels-builder
|
|
WORKDIR /usr/src
|
|
COPY server/custom_kernels/ .
|
|
RUN python setup.py build
|
|
|
|
# Build exllama kernels
|
|
FROM kernel-builder AS exllama-kernels-builder
|
|
WORKDIR /usr/src
|
|
COPY server/exllama_kernels/ .
|
|
|
|
RUN python setup.py build
|
|
|
|
# Build exllama v2 kernels
|
|
FROM kernel-builder AS exllamav2-kernels-builder
|
|
WORKDIR /usr/src
|
|
COPY server/exllamav2_kernels/ .
|
|
|
|
RUN python setup.py build
|
|
|
|
FROM base AS base-copy
|
|
|
|
# Text Generation Inference base env
|
|
ENV HUGGINGFACE_HUB_CACHE=/data \
|
|
HF_HUB_ENABLE_HF_TRANSFER=1 \
|
|
PORT=80
|
|
|
|
# Copy builds artifacts from vllm builder
|
|
COPY --from=vllm-builder /usr/src/vllm/build/lib.linux-x86_64-cpython-310 /opt/conda/lib/python3.10/site-packages
|
|
|
|
# Copy build artifacts from flash attention v2 builder
|
|
COPY --from=flash-att-v2-builder /usr/src/flash-attention-v2/build/lib.linux-x86_64-cpython-310 /opt/conda/lib/python3.10/site-packages
|
|
|
|
# Copy build artifacts from custom kernels builder
|
|
COPY --from=custom-kernels-builder /usr/src/build/lib.linux-x86_64-cpython-310 /opt/conda/lib/python3.10/site-packages
|
|
|
|
# Copy build artifacts from exllama kernels builder
|
|
COPY --from=exllama-kernels-builder /usr/src/build/lib.linux-x86_64-cpython-310 /opt/conda/lib/python3.10/site-packages
|
|
|
|
# Copy build artifacts from exllamav2 kernels builder
|
|
COPY --from=exllamav2-kernels-builder /usr/src/build/lib.linux-x86_64-cpython-310 /opt/conda/lib/python3.10/site-packages
|
|
|
|
# Install server
|
|
COPY proto proto
|
|
COPY server server
|
|
COPY server/Makefile server/Makefile
|
|
RUN cd server && \
|
|
make gen-server && \
|
|
pip install -r requirements_rocm.txt && \
|
|
pip install ".[accelerate, peft, outlines]" --no-cache-dir
|
|
|
|
# Install benchmarker
|
|
COPY --from=builder /usr/src/target/release-opt/text-generation-benchmark /usr/local/bin/text-generation-benchmark
|
|
# Install router
|
|
COPY --from=builder /usr/src/target/release-opt/text-generation-router /usr/local/bin/text-generation-router
|
|
# Install launcher
|
|
COPY --from=builder /usr/src/target/release-opt/text-generation-launcher /usr/local/bin/text-generation-launcher
|
|
|
|
# AWS Sagemaker compatible image
|
|
FROM base AS sagemaker
|
|
|
|
COPY sagemaker-entrypoint.sh entrypoint.sh
|
|
RUN chmod +x entrypoint.sh
|
|
|
|
ENTRYPOINT ["./entrypoint.sh"]
|
|
|
|
# Final image
|
|
FROM base-copy
|
|
|
|
COPY ./tgi-entrypoint.sh /tgi-entrypoint.sh
|
|
RUN chmod +x /tgi-entrypoint.sh
|
|
|
|
ENTRYPOINT ["/tgi-entrypoint.sh"]
|
|
CMD ["--json-output"]
|