mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-04-23 16:02:10 +00:00
* (backend) use parking_lot crate for RwLock fairness * (docker) let's put rust in the TRTLLM folder when building * (docker) build ompi with SLURM support * (launcher) default new server::run parameters to false for now * (chore) fmt ... why?
331 lines
13 KiB
Rust
331 lines
13 KiB
Rust
use std::future::Future;
|
|
use std::path::Path;
|
|
use std::pin::{pin, Pin};
|
|
use std::str::FromStr;
|
|
use std::sync::atomic::{AtomicBool, Ordering};
|
|
use std::sync::{Arc, OnceLock};
|
|
use std::task::{Context, Poll};
|
|
use std::time::Duration;
|
|
|
|
use async_trait::async_trait;
|
|
use cxx::UniquePtr;
|
|
use log::{error, warn};
|
|
use tokenizers::Tokenizer;
|
|
use tokio::sync::mpsc::{unbounded_channel, UnboundedSender};
|
|
use tokio::time::{sleep, Instant};
|
|
use tokio_stream::wrappers::UnboundedReceiverStream;
|
|
use tokio_stream::{Stream, StreamExt};
|
|
use tracing::{instrument, span, Level};
|
|
|
|
// use tokio::sync::RwLock;
|
|
use parking_lot::RwLock;
|
|
use text_generation_router::infer::{Backend, GeneratedText, InferError, InferStreamResponse};
|
|
use text_generation_router::validation::ValidationError::UnsupportedModality;
|
|
use text_generation_router::validation::{Chunk, ValidGenerateRequest, ValidationError};
|
|
use text_generation_router::{FinishReason, Token};
|
|
|
|
use crate::errors::TensorRtLlmBackendError;
|
|
use crate::ffi::{create_tensorrt_llm_backend, GenerationStep, TensorRtLlmBackendImpl};
|
|
|
|
// Value used to poll the state of the generation stream
|
|
static POLLING_INTERVAL_US: OnceLock<u64> = OnceLock::new();
|
|
|
|
type InferResult<T> = Result<T, InferError>;
|
|
|
|
pub(crate) struct Generation {
|
|
executor: Arc<RwLock<UniquePtr<TensorRtLlmBackendImpl>>>,
|
|
done: Arc<AtomicBool>,
|
|
}
|
|
|
|
/// Holds the user provided input to be executed along with a channel allowing
|
|
/// to bubble up all the generated tokens for that tokens the to end stream.
|
|
pub struct GenerationContext {
|
|
sender: UnboundedSender<InferResult<InferStreamResponse>>,
|
|
tokenizer: Arc<Tokenizer>,
|
|
tokens: Vec<u32>,
|
|
done: Arc<AtomicBool>,
|
|
queued: Instant,
|
|
start: Option<Instant>,
|
|
}
|
|
|
|
impl Stream for Generation {
|
|
type Item = usize;
|
|
|
|
fn poll_next(self: Pin<&mut Self>, ctx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
|
|
let interval = POLLING_INTERVAL_US.get_or_init(|| {
|
|
u64::from_str(option_env!("TRTLLM_BACKEND_POLLING_INTERVAL_US").unwrap_or("100"))
|
|
.expect("Invalid value provided for envvar POLLING_INTERVAL_US")
|
|
});
|
|
|
|
if !self.done.load(Ordering::Relaxed) {
|
|
let backend = pin!(self.executor.read());
|
|
let status = match backend.poll(ctx) {
|
|
Poll::Ready(executor_r) => {
|
|
let ready = executor_r.num_responses_ready();
|
|
if ready == 0 {
|
|
Poll::Pending
|
|
} else {
|
|
Poll::Ready(Some(ready))
|
|
}
|
|
}
|
|
Poll::Pending => Poll::Pending,
|
|
};
|
|
|
|
let waker = ctx.waker().clone();
|
|
tokio::spawn(async {
|
|
sleep(Duration::from_micros(*interval)).await;
|
|
waker.wake();
|
|
});
|
|
|
|
status
|
|
} else {
|
|
Poll::Ready(None) // end of stream
|
|
}
|
|
}
|
|
|
|
fn size_hint(&self) -> (usize, Option<usize>) {
|
|
(1, None)
|
|
}
|
|
}
|
|
|
|
unsafe impl Send for TensorRtLlmBackendImpl {}
|
|
unsafe impl Sync for TensorRtLlmBackendImpl {}
|
|
|
|
/// Implements the logic to execute generation with TensorRT-LLM executor API in background
|
|
pub struct TensorRtLlmBackend {
|
|
tokenizer: Arc<Tokenizer>,
|
|
|
|
// Backing the backend behind a RwLock to allow concurrent read access to retrieve
|
|
// the number of available tokens (read only) in the Generation stream
|
|
backend: Arc<RwLock<UniquePtr<TensorRtLlmBackendImpl>>>,
|
|
}
|
|
|
|
impl TensorRtLlmBackend {
|
|
pub fn new<P: AsRef<Path> + Send + 'static, PP: AsRef<Path> + Send + 'static>(
|
|
tokenizer: Tokenizer,
|
|
engine_folder: P,
|
|
executor_worker_path: PP,
|
|
) -> Result<Self, TensorRtLlmBackendError> {
|
|
Ok(TensorRtLlmBackend {
|
|
tokenizer: Arc::new(tokenizer),
|
|
backend: Arc::new(RwLock::new(create_tensorrt_llm_backend(
|
|
engine_folder.as_ref().to_str().unwrap(),
|
|
executor_worker_path.as_ref().to_str().unwrap(),
|
|
))),
|
|
})
|
|
}
|
|
|
|
fn validate(request: &ValidGenerateRequest) -> InferResult<&String> {
|
|
if request.top_n_tokens > 1 {
|
|
return Err(InferError::ValidationError(
|
|
ValidationError::TopNTokensDisabled,
|
|
));
|
|
}
|
|
|
|
// TODO: Is it really needed? How can it be validated before?
|
|
if request.parameters.grammar.is_some() {
|
|
return Err(InferError::ValidationError(ValidationError::Grammar));
|
|
}
|
|
|
|
match request.inputs.len() {
|
|
0 => Err(InferError::ValidationError(ValidationError::EmptyInput)),
|
|
2.. => Err(InferError::GenerationError(
|
|
"TensorRT-LLM backend don't support multi-chunk".into(),
|
|
)),
|
|
1 => match request.inputs.first().expect("Single item-chunk") {
|
|
Chunk::Text(text) => Ok(text),
|
|
Chunk::Image(_) => Err(InferError::ValidationError(UnsupportedModality("image"))),
|
|
},
|
|
}
|
|
}
|
|
|
|
fn generate(
|
|
&self,
|
|
sender: UnboundedSender<InferResult<InferStreamResponse>>,
|
|
tokens: Vec<u32>,
|
|
top_k: u32,
|
|
top_p: f32,
|
|
temperature: f32,
|
|
repetition_penalty: f32,
|
|
frequency_penalty: f32,
|
|
seed: u64,
|
|
) {
|
|
let tokenizer = Arc::clone(&self.tokenizer);
|
|
let executor = Arc::clone(&self.backend);
|
|
|
|
// Let's push this in async context
|
|
tokio::spawn(async move {
|
|
// Define the generation state
|
|
let mut generation = Generation {
|
|
executor: executor.clone(),
|
|
done: Arc::new(AtomicBool::new(false)),
|
|
};
|
|
|
|
// Define the context over the generation
|
|
// TODO(asap): Do we really need so many shared-ownership?
|
|
let ctx = Box::new(GenerationContext {
|
|
sender: sender.clone(),
|
|
tokenizer,
|
|
tokens: vec![],
|
|
done: Arc::clone(&generation.done),
|
|
start: None,
|
|
queued: Instant::now(),
|
|
});
|
|
|
|
// We are leaking the context on-purpose to avoid the box being dropped while there are
|
|
// still computation ongoing
|
|
// TODO(asap): Can we achieve the same with an Arc<Box<T>> without the need to go unsafe?
|
|
let ctx_ = Box::leak(ctx);
|
|
|
|
// Submit the request to the batcher
|
|
let request_id = span!(Level::DEBUG, "submit")
|
|
.in_scope(|| async {
|
|
let mut handle = executor.write().await;
|
|
let request_id = handle.pin_mut().submit(
|
|
&tokens,
|
|
top_k as i32,
|
|
top_p,
|
|
temperature,
|
|
repetition_penalty,
|
|
frequency_penalty,
|
|
seed,
|
|
);
|
|
|
|
request_id
|
|
})
|
|
.await;
|
|
|
|
while let Some(_) = generation.next().await {
|
|
let mut executor_w = executor.write().await;
|
|
let executor = executor_w.pin_mut();
|
|
|
|
span!(Level::DEBUG, "decode")
|
|
.in_scope(|| async {
|
|
unsafe {
|
|
executor.stream_tokens(
|
|
request_id,
|
|
ctx_,
|
|
|ctx: *mut GenerationContext, step: GenerationStep| {
|
|
let inner_ctx = &mut *ctx;
|
|
|
|
// Update the timestamp at which the request started effectively
|
|
// Can be a bit off, would need to be before the callback, let's see
|
|
inner_ctx.start.get_or_insert(Instant::now());
|
|
inner_ctx.done.store(step.is_final, Ordering::Relaxed);
|
|
|
|
// Ensure we are not running into errors
|
|
let parcel = if !step.has_error {
|
|
// Insert the latest generated token to the tracker
|
|
inner_ctx.tokens.push(step.token_id);
|
|
|
|
// Decode the token
|
|
let text = inner_ctx
|
|
.tokenizer
|
|
.decode(&[step.token_id], true)
|
|
.expect("Failed to decode token");
|
|
|
|
let special = inner_ctx
|
|
.tokenizer
|
|
.get_added_vocabulary()
|
|
.is_special_token(&text);
|
|
|
|
// Create the structure holding the token
|
|
let token = Token {
|
|
id: step.token_id,
|
|
text,
|
|
logprob: step.log_prob,
|
|
special,
|
|
};
|
|
|
|
if step.is_final {
|
|
let generated_text = inner_ctx
|
|
.tokenizer
|
|
.decode(&inner_ctx.tokens, true)
|
|
.expect("Failed to decode generated_tokens");
|
|
|
|
Ok(InferStreamResponse::End {
|
|
token,
|
|
top_tokens: vec![],
|
|
generated_text: GeneratedText {
|
|
text: generated_text,
|
|
generated_tokens: inner_ctx.tokens.len() as u32,
|
|
finish_reason: FinishReason::EndOfSequenceToken,
|
|
seed: None,
|
|
},
|
|
start: inner_ctx.start.unwrap_or(Instant::now()),
|
|
queued: inner_ctx.queued,
|
|
})
|
|
} else {
|
|
Ok(InferStreamResponse::Intermediate {
|
|
token,
|
|
top_tokens: vec![],
|
|
})
|
|
}
|
|
} else {
|
|
error!("Error caught while decoding: {}", &step.error_msg);
|
|
Err(InferError::GenerationError(step.error_msg))
|
|
};
|
|
|
|
// Send the parcel to the client
|
|
inner_ctx
|
|
.sender
|
|
.send(parcel)
|
|
.expect("Failed to sent msg through the channel");
|
|
},
|
|
);
|
|
}
|
|
})
|
|
.await;
|
|
}
|
|
|
|
// "Properly" free the shared context...
|
|
// TODO: clean that piece of sh** asap
|
|
unsafe {
|
|
let _ = Box::from_raw(ctx_);
|
|
}
|
|
});
|
|
}
|
|
}
|
|
|
|
#[async_trait]
|
|
impl Backend for TensorRtLlmBackend {
|
|
#[instrument(skip_all)]
|
|
fn schedule(
|
|
&self,
|
|
request: ValidGenerateRequest,
|
|
) -> InferResult<UnboundedReceiverStream<InferResult<InferStreamResponse>>> {
|
|
// Let's add a few more validation
|
|
let input = TensorRtLlmBackend::validate(&request)?;
|
|
|
|
// Channel to stream the generated token as they come from the worker thread back to the transport layer
|
|
let (sender, receiver) = unbounded_channel();
|
|
|
|
// Unpack parameters
|
|
let params = &request.parameters;
|
|
|
|
// Preprocess the inputs to send to TRTLLM backend
|
|
let encoding = self
|
|
.tokenizer
|
|
.encode(input.as_str(), true)
|
|
.map_err(|e| InferError::GenerationError(e.to_string()))?;
|
|
|
|
// Generate the response
|
|
self.generate(
|
|
sender,
|
|
Vec::from(encoding.get_ids()),
|
|
params.top_k,
|
|
params.top_p,
|
|
params.temperature,
|
|
params.repetition_penalty,
|
|
params.frequency_penalty,
|
|
params.seed,
|
|
);
|
|
|
|
Ok(UnboundedReceiverStream::new(receiver))
|
|
}
|
|
|
|
async fn health(&self, _current_health: bool) -> bool {
|
|
true
|
|
}
|
|
}
|