text-generation-inference/server/text_generation_server/layers/medusa.py
Nicolas Patry e3d765645a
MLPSpeculator. (#1865)
# What does this PR do?

<!--
Congratulations! You've made it this far! You're not quite done yet
though.

Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.

Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.

Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->

<!-- Remove if not applicable -->

Fixes # (issue)


## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
      Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
      to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?


## Who can review?

Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.

<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @


@OlivierDehaene OR @Narsil

 -->

---------

Co-authored-by: Joshua Rosenkranz <joshua.rosenkranz@gmail.com>
2024-05-14 12:33:18 +02:00

190 lines
6.2 KiB
Python

import torch
from torch import nn
from typing import Tuple, Optional
from text_generation_server.utils.speculate import get_speculate
from text_generation_server.layers.linear import FastLinear
from text_generation_server.layers.tensor_parallel import (
TensorParallelHead,
TensorParallelColumnLinear,
)
class ResBlock(torch.nn.Module):
def __init__(self, config, prefix, weights):
super().__init__()
self.linear = FastLinear.load(
config, prefix=f"{prefix}.linear", weights=weights, bias=True
)
self.act = torch.nn.SiLU()
def forward(self, x):
return x + self.act(self.linear(x))
class MedusaModel(torch.nn.Module):
def __init__(self, config, medusa_config, weights):
super().__init__()
self.heads = torch.nn.ModuleList(
[
MedusaHead(config, medusa_config, prefix=f"{i}", weights=weights)
for i in range(get_speculate())
]
)
def forward(self, x):
speculative_logits = torch.stack([head(x) for head in self.heads], dim=1)
return speculative_logits
class MedusaHead(torch.nn.Module):
def __init__(self, config, medusa_config, prefix, weights):
super().__init__()
self.blocks = torch.nn.ModuleList(
[
ResBlock(config, prefix=f"{prefix}.{i}", weights=weights)
for i in range(medusa_config["medusa_num_layers"])
]
)
n = len(self.blocks)
self.out = FastLinear.load(
config, prefix=f"{prefix}.{n}", weights=weights, bias=False
)
def forward(self, x):
for block in self.blocks:
x = block(x)
x = self.out(x)
return x
class MedusaHeadV1(nn.Module):
def __init__(self, lm_head, medusa):
super().__init__()
self.lm_head = lm_head
self.medusa = medusa
@staticmethod
def load(config, prefix: str, weights):
from pathlib import Path
from safetensors import safe_open
import json
speculator = config.speculator
path = speculator["path"]
medusa_config = str(Path(path) / "config.json")
for fname in speculator["model_paths"]:
filename = str(Path(path) / fname)
with open(medusa_config, "r") as f:
medusa_config = json.load(f)
routing = weights.routing
with safe_open(filename, framework="pytorch") as f:
for k in f.keys():
if k in routing and routing[k] != filename:
raise RuntimeError(
f"Key {k} was found in multiple files: {filename} and {routing[k]}"
)
routing[k] = filename
medusa = MedusaModel(config, medusa_config, weights)
lm_head = TensorParallelHead.load(config, prefix, weights)
return MedusaHeadV1(lm_head, medusa)
def forward(
self, input: torch.Tensor
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
logits = self.lm_head(input)
# If we have too many tokens, we skip speculative logits
if input.shape[0] > 128:
return logits, None
speculative_logits = self.medusa(input)
return logits, speculative_logits
class MedusaHeadV2(nn.Module):
def __init__(self, config, prefix, weights):
super().__init__()
from pathlib import Path
from safetensors import safe_open
import json
speculator = config.speculator
medusa_config = str(Path(speculator) / "config.json")
filename = str(Path(speculator) / "medusa_lm_head.safetensors")
with open(medusa_config, "r") as f:
medusa_config = json.load(f)
routing = weights.routing
with safe_open(filename, framework="pytorch") as f:
for k in f.keys():
if k in routing and routing[k] != filename:
raise RuntimeError(
f"Key {k} was found in multiple files: {filename} and {routing[k]}"
)
routing[k] = filename
self.n_medusa_heads = get_speculate()
assert medusa_config["medusa_num_layers"] == 1
self.linear = TensorParallelColumnLinear.load_multi(
config,
prefixes=[f"{i}.0.linear" for i in range(self.n_medusa_heads)],
dim=0,
weights=weights,
bias=True,
)
self.process_group = weights.process_group
self.world_size = self.process_group.size()
self.rank = self.process_group.rank()
self.act = torch.nn.SiLU()
self.lm_head = TensorParallelHead.load(config, prefix, weights)
def forward(self, x):
# If we have too many tokens, we skip speculative logits
if x.shape[0] > 128:
logits = self.lm_head(x)
return logits, None
size = x.shape[-1]
block_size = (size + self.world_size - 1) // self.world_size
start = self.rank * block_size
stop = (self.rank + 1) * block_size
x_block = x[:, start:stop]
# Compute all medusa heads at the same time, then reshape and move the n_medusa_heads dim to dim 1
medusa_res = self.act(self.linear(x)).reshape(
*x_block.shape[:-1], self.n_medusa_heads, x_block.shape[-1]
)
# Apply all residual medusa heads
output = x[:, start:stop].unsqueeze(-2) + medusa_res
# Gather medusa heads
world_output = [
torch.empty_like(output) for _ in range(self.process_group.size())
]
torch.distributed.all_gather(world_output, output, group=self.process_group)
world_output = torch.cat(world_output, dim=-1)
# Stack x and medusa residual x
stacked_x = torch.cat([x.unsqueeze(-2), world_output], dim=-2)
# Compute lm head on x + medusa residual x
logits = self.lm_head(stacked_x)
# Finally, split logits from speculative logits
logits, speculative_logits = torch.split(
logits, [1, self.n_medusa_heads], dim=-2
)
# Squeeze added dimension
logits = logits.squeeze(-2)
return logits, speculative_logits