text-generation-inference/router/src/validation.rs
Wang, Yi 97f7a22f0b
add trust_remote_code in tokenizer to fix baichuan issue (#2725)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2024-11-07 14:43:38 +01:00

1234 lines
40 KiB
Rust

/// Payload validation logic
use crate::config::Config;
use crate::validation::ValidationError::{BestOfSampling, BestOfSeed, EmptyInput};
use crate::{
GenerateParameters, GenerateRequest, GrammarType, HubPreprocessorConfig, Idefics2Preprocessor,
TokenizerTrait,
};
use crate::{PyTokenizer, Tokenizer};
use base64::{engine::general_purpose::STANDARD, Engine};
use image::{ImageFormat, ImageReader};
use jsonschema::{Draft, JSONSchema};
use rand::{thread_rng, Rng};
use serde_json::Value;
use std::io::Cursor;
use std::iter;
use std::sync::Arc;
use thiserror::Error;
use tokio::sync::mpsc;
use tokio::sync::oneshot;
use tracing::{instrument, Span};
use {once_cell::sync::Lazy, regex::Regex};
/// Validation
#[derive(Debug, Clone)]
pub struct Validation {
/// Validation parameters
max_best_of: usize,
max_stop_sequences: usize,
max_top_n_tokens: u32,
max_input_length: usize,
max_total_tokens: usize,
disable_grammar_support: bool,
/// Channel to communicate with the background tokenization task
sender: mpsc::UnboundedSender<TokenizerRequest>,
}
impl Validation {
#[allow(clippy::too_many_arguments)]
pub(crate) fn new(
workers: usize,
tokenizer: Tokenizer,
config: Option<Config>,
preprocessor_config: Option<HubPreprocessorConfig>,
max_best_of: usize,
max_stop_sequences: usize,
max_top_n_tokens: u32,
max_input_length: usize,
max_total_tokens: usize,
disable_grammar_support: bool,
) -> Self {
let workers = if let Tokenizer::Python { .. } = &tokenizer {
1
} else {
workers
};
// If we have a fast tokenizer
let sender = {
// Create round robin channel
let (validation_sender, validation_round_robin_receiver) = mpsc::unbounded_channel();
let mut senders = Vec::with_capacity(workers);
// Create workers
for _ in 0..workers {
let tokenizer_clone = tokenizer.clone();
let config_clone = config.clone();
let preprocessor_config_clone = preprocessor_config.clone();
let (tokenizer_sender, tokenizer_receiver) = mpsc::unbounded_channel();
senders.push(tokenizer_sender);
// Spawn worker
tokio::task::spawn_blocking(move || {
tokenizer_worker(
tokenizer_clone,
config_clone,
preprocessor_config_clone,
tokenizer_receiver,
)
});
}
// Create tokenization round robin task
tokio::spawn(round_robin_task(validation_round_robin_receiver, senders));
validation_sender
};
Self {
max_best_of,
sender,
max_stop_sequences,
max_top_n_tokens,
max_input_length,
max_total_tokens,
disable_grammar_support,
}
}
#[instrument(skip(self, inputs))]
pub async fn tokenize(
&self,
inputs: String,
add_special_tokens: bool,
truncate: Option<usize>,
) -> Result<(tokenizers::Encoding, Vec<Chunk>), ValidationError> {
// If we have a fast tokenizer
// Create response channel
let (response_sender, response_receiver) = oneshot::channel();
// Send request to the background validation task
// Unwrap is safe here
let _ = &self
.sender
.send((
(inputs, add_special_tokens, truncate),
response_sender,
Span::current(),
))
.unwrap();
// Await on response channel
// Unwrap is safe here
let encoding = response_receiver.await.unwrap()?;
Ok(encoding)
}
#[allow(clippy::type_complexity)]
#[instrument(skip(self, inputs))]
async fn validate_input(
&self,
inputs: String,
add_special_tokens: bool,
truncate: Option<usize>,
max_new_tokens: Option<u32>,
) -> Result<(Vec<Chunk>, Option<Vec<u32>>, usize, u32), ValidationError> {
// If we have a fast tokenizer
let (encoding, inputs) = self
.tokenize(inputs.clone(), add_special_tokens, truncate)
.await?;
// Create response channel
let input_length = if let Some(truncate) = truncate {
std::cmp::min(encoding.len(), truncate)
} else {
encoding.len()
};
// Get total tokens
let max_new_tokens: u32 = if let Some(max_new_tokens) = max_new_tokens {
max_new_tokens
} else {
self.max_total_tokens.saturating_sub(input_length) as u32
};
let total_tokens = input_length + max_new_tokens as usize;
// Validate MaxTotalTokens
if total_tokens > self.max_total_tokens {
return Err(ValidationError::MaxTotalTokens(
self.max_total_tokens,
input_length,
max_new_tokens,
));
}
// Validate InputLength
if input_length > self.max_input_length {
return Err(ValidationError::InputLength(
self.max_input_length,
input_length,
));
}
let ids = encoding.get_ids();
let input_ids = ids[ids.len().saturating_sub(input_length)..].to_owned();
metrics::histogram!("tgi_request_input_length").record(input_length as f64);
Ok((inputs, Some(input_ids), input_length, max_new_tokens))
}
/// Validate a payload and get the number of tokens in the input
#[instrument(skip_all)]
pub(crate) async fn validate(
&self,
request: GenerateRequest,
) -> Result<ValidGenerateRequest, ValidationError> {
let GenerateParameters {
best_of,
temperature,
repetition_penalty,
frequency_penalty,
top_k,
top_p,
typical_p,
do_sample,
max_new_tokens,
stop: stop_sequences,
truncate,
seed,
watermark,
decoder_input_details,
top_n_tokens,
grammar,
adapter_id,
..
} = request.parameters;
// sampling must be true when best_of > 1
let best_of = best_of.unwrap_or(1);
let sampling = do_sample
|| temperature.is_some()
|| top_k.is_some()
|| top_p.is_some()
|| typical_p.is_some();
if best_of > 1 && !sampling {
return Err(BestOfSampling);
}
let temperature = temperature.unwrap_or(1.0);
if temperature <= 0.0 {
return Err(ValidationError::Temperature);
}
let repetition_penalty = repetition_penalty.unwrap_or(1.0);
if repetition_penalty <= 0.0 {
return Err(ValidationError::RepetitionPenalty);
}
let frequency_penalty = frequency_penalty.unwrap_or(0.0);
if !(-2.0..=2.0).contains(&frequency_penalty) {
return Err(ValidationError::FrequencyPenalty);
}
// Different because the proto default value is not a valid value
// for the user
let top_p = top_p
.map(|value| {
if value <= 0.0 || value >= 1.0 {
return Err(ValidationError::TopP);
}
Ok(value)
})
.unwrap_or(Ok(1.0))?;
let typical_p = typical_p
.map(|value| {
if value <= 0.0 || value >= 1.0 {
return Err(ValidationError::TypicalP);
}
Ok(value)
})
.unwrap_or(Ok(1.0))?;
let top_k: u32 = top_k
.map(|value| {
if value <= 0 {
return Err(ValidationError::TopK);
}
Ok(value as u32)
})
.unwrap_or(Ok(0))?;
if max_new_tokens == Some(0) {
return Err(ValidationError::NegativeMaxNewTokens);
}
if stop_sequences.len() > self.max_stop_sequences {
return Err(ValidationError::StopSequence(
self.max_stop_sequences,
stop_sequences.len(),
));
}
// If seed is None, assign a random one
let seed = match seed {
None => thread_rng().gen(),
Some(seed) => {
if best_of > 1 {
return Err(BestOfSeed);
}
seed
}
};
let top_n_tokens = top_n_tokens
.map(|value| {
if value > self.max_top_n_tokens {
return Err(ValidationError::TopNTokens(self.max_top_n_tokens, value));
}
Ok(value)
})
.unwrap_or(Ok(0))?;
// Check if inputs is empty
if request.inputs.is_empty() {
return Err(EmptyInput);
}
// Check if truncate is strictly positive and less than max_input_length
let truncate = truncate
.map(|value| {
if value == 0 || value > self.max_input_length {
return Err(ValidationError::Truncate(self.max_input_length, value));
}
Ok(Some(value))
})
.unwrap_or(Ok(None))?;
// Validate inputs
let (inputs, input_ids, input_length, max_new_tokens) = self
.validate_input(
request.inputs,
request.add_special_tokens,
truncate,
max_new_tokens,
)
.await?;
// TODO: we should build the FSM here and pass the compiled FSM instead of the grammar
// NOTE: this is currently difficult because we need the tokenizer in Python to build
// the FSM and we'd have to load a copy of the tokenizer into our Pyo3 instance which
// may be slow and memory intensive. Best case is to have a Rust implementation of the FSM
// compiler and use that to build the FSM here.
// Validate grammar and unpack the grammar and type for the proto message
let grammar = match grammar {
Some(grammar) => {
// Ensure that grammar is not set if it's not supported
if self.disable_grammar_support {
return Err(ValidationError::Grammar);
}
let valid_grammar = match grammar {
GrammarType::Json(json) => {
let json = match json {
// if value is a string, we need to parse it again to make sure its
// a valid json
Value::String(s) => serde_json::from_str(&s)
.map_err(|e| ValidationError::InvalidGrammar(e.to_string())),
Value::Object(_) => Ok(json),
_ => Err(ValidationError::Grammar),
}?;
// Check if the json is a valid JSONSchema
JSONSchema::options()
.with_draft(Draft::Draft202012)
.compile(&json)
.map_err(|e| ValidationError::InvalidGrammar(e.to_string()))?;
// The schema can be valid but lack properties.
// We need properties for the grammar to be successfully parsed in Python.
// Therefore, we must check and throw an error if properties are missing.
json.get("properties")
.ok_or(ValidationError::InvalidGrammar(
"Grammar must have a 'properties' field".to_string(),
))?;
// Serialize json to string
ValidGrammar::Json(
serde_json::to_string(&json)
.map_err(|e| ValidationError::InvalidGrammar(e.to_string()))?,
)
}
GrammarType::Regex(regex) => ValidGrammar::Regex(regex),
};
Some(valid_grammar)
}
None => None,
};
let parameters = ValidParameters {
temperature,
repetition_penalty,
frequency_penalty,
top_k,
top_p,
typical_p,
do_sample,
seed,
watermark,
grammar,
};
let stopping_parameters = ValidStoppingParameters {
max_new_tokens,
stop_sequences,
ignore_eos_token: false,
};
metrics::histogram!("tgi_request_max_new_tokens").record(max_new_tokens as f64);
Ok(ValidGenerateRequest {
inputs,
input_ids: input_ids.map(Arc::new),
add_special_tokens: request.add_special_tokens,
decoder_input_details,
input_length: input_length as u32,
truncate: truncate.unwrap_or(self.max_input_length) as u32,
parameters,
stopping_parameters,
top_n_tokens,
adapter_id,
})
}
/// Validate the best_of parameter
#[instrument(skip_all)]
pub(crate) fn validate_best_of(&self, best_of: usize) -> Result<usize, ValidationError> {
if self.max_best_of == 1 && best_of != 1 {
return Err(ValidationError::BestOfDisabled);
}
if best_of > self.max_best_of {
return Err(ValidationError::BestOf(self.max_best_of, best_of));
}
Ok(best_of)
}
}
/// Round robin tokenization task
async fn round_robin_task(
mut receiver: mpsc::UnboundedReceiver<TokenizerRequest>,
senders: Vec<mpsc::UnboundedSender<TokenizerRequest>>,
) {
loop {
for sender in &senders {
match receiver.recv().await {
None => return,
Some(request) => sender.send(request).unwrap(),
};
}
}
}
/// Start tokenization workers
fn tokenizer_worker(
tokenizer: Tokenizer,
config: Option<Config>,
preprocessor_config: Option<HubPreprocessorConfig>,
mut receiver: mpsc::UnboundedReceiver<TokenizerRequest>,
) {
match tokenizer {
Tokenizer::Python {
tokenizer_name,
revision,
trust_remote_code,
} => {
pyo3::Python::with_gil(|py| -> pyo3::PyResult<()> {
let tokenizer =
PyTokenizer::from_py(py, tokenizer_name, revision, trust_remote_code)?;
// Loop over requests
while let Some(((inputs, add_special_tokens, truncate), response_tx, parent_span)) =
receiver.blocking_recv()
{
parent_span.in_scope(|| {
response_tx
.send(prepare_input(
inputs,
truncate,
add_special_tokens,
&tokenizer,
config.as_ref(),
preprocessor_config.as_ref(),
))
.unwrap_or(())
})
}
Ok(())
})
.expect("Failure in python tokenizer worker");
}
Tokenizer::Rust(tokenizer) => {
while let Some(((inputs, add_special_tokens, truncate), response_tx, parent_span)) =
receiver.blocking_recv()
{
parent_span.in_scope(|| {
response_tx
.send(prepare_input(
inputs,
truncate,
add_special_tokens,
&tokenizer,
config.as_ref(),
preprocessor_config.as_ref(),
))
.unwrap_or(())
})
}
}
}
}
fn format_from_mimetype(mimetype: &str) -> Option<ImageFormat> {
match mimetype {
"image/png" => Some(ImageFormat::Png),
"image/jpeg" => Some(ImageFormat::Jpeg),
"image/jpg" => Some(ImageFormat::Jpeg),
"image/gif" => Some(ImageFormat::Gif),
"image/webp" => Some(ImageFormat::WebP),
"image/tiff" => Some(ImageFormat::Tiff),
// "image/pnm"=>Some(ImageFormat::Pnm),
// "image/tga"=>Some(ImageFormat::Tga),
// "image/dds"=>Some(ImageFormat::Dds),
// "image/bmp"=>Some(ImageFormat::Bmp),
// "image/ico"=>Some(ImageFormat::Ico),
// "image/x-exr"=>Some(ImageFormat::OpenExr),
_ => None,
}
}
fn format_to_mimetype(format: ImageFormat) -> String {
match format {
ImageFormat::Png => "image/png",
ImageFormat::Jpeg => "image/jpeg",
ImageFormat::Gif => "image/gif",
ImageFormat::WebP => "image/webp",
ImageFormat::Tiff => "image/tiff",
_ => "application/octet-stream",
}
.to_string()
}
fn fetch_image(input: &str) -> Result<(Vec<u8>, String, usize, usize), ValidationError> {
if input.starts_with("![](http://") || input.starts_with("![](https://") {
let url = &input["![](".len()..input.len() - 1];
let data = reqwest::blocking::get(url)?.bytes()?;
let format = image::guess_format(&data)?;
// TODO Remove this clone
let img = ImageReader::with_format(Cursor::new(data.clone()), format).decode()?;
let height: usize = img.height().try_into()?;
let width: usize = img.width().try_into()?;
let mimetype = format_to_mimetype(format);
Ok((data.to_vec(), mimetype, height, width))
} else if input.starts_with("![](data:") {
// Remove ![](....)
let content = &input["![](data:".len()..input.len() - 1];
let tokens: Vec<_> = content.split(';').collect();
if tokens.len() != 2 {
return Err(ValidationError::InvalidImageContent(content.to_string()));
}
let mimetype = tokens[0];
let content = tokens[1];
if !content.starts_with("base64,") {
return Err(ValidationError::InvalidImageContent(content.to_string()));
}
let data = STANDARD.decode(content["base64,".len()..].as_bytes())?;
let img = if let Some(format) = format_from_mimetype(mimetype) {
ImageReader::with_format(Cursor::new(&data), format).decode()?
} else {
ImageReader::new(Cursor::new(&data))
.with_guessed_format()
.map_err(|_io_error| ValidationError::InvalidImageContent(content.to_string()))?
.decode()?
};
let height: usize = img.height().try_into()?;
let width: usize = img.width().try_into()?;
Ok((data, mimetype.to_string(), height, width))
} else {
Err(ValidationError::InvalidImageContent(input.to_string()))
}
}
fn image_tokens(
config: &Config,
preprocessor_config: Option<&HubPreprocessorConfig>,
height: usize,
width: usize,
) -> String {
use Config::*;
use HubPreprocessorConfig::*;
match config {
Idefics => "<image>".to_string(),
Mllama => "<|image|>".to_string(),
Idefics2(config) => {
const FAKE: &str = "<fake_token_around_image>";
const IMAGE: &str = "<image>";
let slots = config.get_number_of_features(height, width);
let mut image_string = String::with_capacity(2 * FAKE.len() + slots * IMAGE.len());
image_string.push_str(FAKE);
image_string.extend(iter::repeat(IMAGE).take(slots));
image_string.push_str(FAKE);
if matches!(
preprocessor_config,
Some(Idefics2Processor(Idefics2Preprocessor {
do_image_splitting: true,
..
}))
) {
image_string = image_string.repeat(5);
};
image_string
}
Paligemma(config) => "<image>".repeat(config.get_number_of_features(height, width)),
LlavaNext(config) => "<image>".repeat(config.get_number_of_features(height, width)),
Qwen2Vl(config) => format!(
"<|vision_start|>{:?}<|vision_end|>",
"<|image_pad|>".repeat(config.get_number_of_features(height, width))
),
_ => unimplemented!("Images tokens are not supported for this model configuration"),
}
}
fn image_tokens_fixup(config: &Config, text: String) -> String {
match config {
Config::Idefics2(_) => {
const FAKE: &str = "<fake_token_around_image>";
text.replace(&format!("{FAKE}{FAKE}"), FAKE)
}
_ => text,
}
}
/// Get input length and optionally truncate it
fn prepare_input<T: TokenizerTrait>(
inputs: String,
_truncate: Option<usize>,
add_special_tokens: bool,
tokenizer: &T,
config: Option<&Config>,
preprocessor_config: Option<&HubPreprocessorConfig>,
) -> Result<(tokenizers::Encoding, Vec<Chunk>), ValidationError> {
use Config::*;
static RE: Lazy<Regex> = Lazy::new(|| Regex::new(r"!\[\]\([^\)]*\)").unwrap());
let (tokenizer_query, input_chunks) = match config {
Some(
config @ (Idefics | Mllama | Idefics2(_) | Paligemma(_) | LlavaNext(_) | Qwen2Vl(_)),
) => {
let mut input_chunks = Vec::new();
let mut tokenizer_query = String::with_capacity(inputs.len());
let mut start = 0;
for chunk in RE.find_iter(&inputs) {
let chunk_start = chunk.start();
let chunk_end = chunk.end();
if chunk_start != start {
input_chunks.push(Chunk::Text(inputs[start..chunk_start].to_string()));
tokenizer_query.push_str(&inputs[start..chunk_start]);
}
let (data, mimetype, height, width) = fetch_image(&inputs[chunk_start..chunk_end])?;
input_chunks.push(Chunk::Image(Image { data, mimetype }));
tokenizer_query.push_str(&image_tokens(config, preprocessor_config, height, width));
start = chunk_end;
}
if start != inputs.len() {
input_chunks.push(Chunk::Text(inputs[start..].to_string()));
tokenizer_query.push_str(&inputs[start..]);
}
tokenizer_query = image_tokens_fixup(config, tokenizer_query);
(tokenizer_query, input_chunks)
}
_ => (inputs.clone(), vec![Chunk::Text(inputs)]),
};
// Get the number of tokens in the input
let encoding = tokenizer
.encode_trait(tokenizer_query, add_special_tokens)
.map_err(|err| ValidationError::Tokenizer(err.to_string()))?;
Ok((encoding, input_chunks))
}
type TokenizerRequest = (
(String, bool, Option<usize>),
oneshot::Sender<Result<(tokenizers::Encoding, Vec<Chunk>), ValidationError>>,
Span,
);
#[derive(Debug, Clone, Eq, PartialEq)]
pub struct Image {
pub data: Vec<u8>,
pub mimetype: String,
}
#[derive(Debug, Clone, Eq, PartialEq)]
pub enum Chunk {
Text(String),
Image(Image),
}
/// Convert input chunks to a stringly-typed input for backwards
/// compat for backends that haven't implemented chunked inputs.
pub trait ChunksToString {
/// Convert chunks to string.
fn chunks_to_string(&self) -> String;
}
impl ChunksToString for Vec<Chunk> {
fn chunks_to_string(&self) -> String {
let mut output = String::new();
self.iter().for_each(|c| match &c {
Chunk::Text(text) => output.push_str(text),
Chunk::Image(Image { data, mimetype }) => {
let encoded = STANDARD.encode(data);
output.push_str(&format!("![](data:{};base64,{})", mimetype, encoded))
}
});
output
}
}
#[derive(Debug, Clone)]
pub enum ValidGrammar {
Json(String),
Regex(String),
}
#[derive(Debug, Clone)]
pub struct ValidParameters {
/// / exponential scaling output probability distribution
pub temperature: f32,
/// / restricting to the k highest probability elements
pub top_k: u32,
/// / restricting to top tokens summing to prob_cut_off <= prob_cut_off
pub top_p: f32,
/// / restricting to top tokens summing to prob_cut_off <= prob_cut_off
pub typical_p: f32,
/// / apply sampling on the logits
pub do_sample: bool,
/// / random seed for sampling
pub seed: u64,
/// / repetition penalty
pub repetition_penalty: f32,
/// / frequency penalty
pub frequency_penalty: f32,
/// / token watermarking using "A Watermark for Large Language Models"
pub watermark: bool,
/// / grammar (applied if not empty)
pub grammar: Option<ValidGrammar>,
}
#[derive(Debug, Clone)]
pub struct ValidStoppingParameters {
/// / Maximum number of generated tokens
pub max_new_tokens: u32,
/// / Optional stopping sequences
pub stop_sequences: Vec<String>,
/// / Ignore end of sequence token
/// / used for benchmarking
pub ignore_eos_token: bool,
}
#[derive(Debug, Clone)]
pub struct ValidGenerateRequest {
pub inputs: Vec<Chunk>,
pub input_ids: Option<Arc<Vec<u32>>>,
pub input_length: u32,
pub truncate: u32,
pub add_special_tokens: bool,
pub decoder_input_details: bool,
pub parameters: ValidParameters,
pub stopping_parameters: ValidStoppingParameters,
pub top_n_tokens: u32,
pub adapter_id: Option<String>,
}
#[derive(Error, Debug)]
pub enum ValidationError {
#[error("`best_of` must be > 0 and <= {0}. Given: {1}")]
BestOf(usize, usize),
#[error("`best_of` != 1 is not allowed for this endpoint")]
BestOfDisabled,
#[error("you must use sampling when `best_of` is > 1")]
BestOfSampling,
#[error("`seed` must not be set when `best_of` > 1")]
BestOfSeed,
#[error("`best_of` != 1 is not supported when streaming tokens")]
BestOfStream,
#[error("`top_n_tokens` must be >= 0 and <= {0}. Given: {1}")]
TopNTokens(u32, u32),
#[error("`top_n_tokens` != 0 is not allowed for this endpoint")]
TopNTokensDisabled,
#[error("`decoder_input_details` == true is not supported when streaming tokens")]
PrefillDetailsStream,
#[error("`temperature` must be strictly positive")]
Temperature,
#[error("`repetition_penalty` must be strictly positive")]
RepetitionPenalty,
#[error("`frequency_penalty` must be >= -2.0 and <= 2.0")]
FrequencyPenalty,
#[error("`top_p` must be > 0.0 and < 1.0")]
TopP,
#[error("`top_k` must be strictly positive")]
TopK,
#[error("`truncate` must be strictly positive and less than {0}. Given: {1}")]
Truncate(usize, usize),
#[error("`typical_p` must be > 0.0 and < 1.0")]
TypicalP,
#[error("one of `max_new_tokens` or `truncate` must be set if a fast tokenizer is not in use")]
UnsetMaxNewTokens,
#[error("`max_new_tokens` must be strictly positive")]
NegativeMaxNewTokens,
#[error("`max_new_tokens` must be <= {0}. Given: {1}")]
MaxNewTokens(usize, u32),
#[error("`inputs` tokens + `max_new_tokens` must be <= {0}. Given: {1} `inputs` tokens and {2} `max_new_tokens`")]
MaxTotalTokens(usize, usize, u32),
#[error("`inputs` must have less than {0} tokens. Given: {1}")]
InputLength(usize, usize),
#[error("`inputs` cannot be empty")]
EmptyInput,
#[error("`stop` supports up to {0} stop sequences. Given: {1}")]
StopSequence(usize, usize),
#[error("tokenizer error {0}")]
Tokenizer(String),
#[error("grammar is not supported")]
Grammar,
#[error("grammar is not valid: {0}")]
InvalidGrammar(String),
#[error("base64 encoding is invalid: {0}")]
InvalidBase64(#[from] base64::DecodeError),
#[error("invalid image: {0}")]
InvalidImage(#[from] image::ImageError),
#[error("invalid integer: {0}")]
InvalidInt(#[from] core::num::TryFromIntError),
#[error("invalid image content: {0}")]
InvalidImageContent(String),
#[error("Could not fetch image: {0}")]
FailedFetchImage(#[from] reqwest::Error),
#[error("{0} modality is not supported")]
UnsupportedModality(&'static str),
}
#[cfg(test)]
mod tests {
use super::*;
use crate::config::{Idefics2, PaliTextConfig, Paligemma};
use crate::default_parameters;
use crate::tests::get_tokenizer;
#[tokio::test]
async fn test_validation_max_new_tokens() {
let tokenizer = get_tokenizer();
let max_best_of = 2;
let max_stop_sequence = 3;
let max_top_n_tokens = 4;
let max_input_length = 5;
let max_total_tokens = 6;
let workers = 1;
let disable_grammar_support = true;
let config = None;
let validation = Validation::new(
workers,
tokenizer,
config,
None,
max_best_of,
max_stop_sequence,
max_top_n_tokens,
max_input_length,
max_total_tokens,
disable_grammar_support,
);
let max_new_tokens = 10;
match validation
.validate_input("Hello".to_string(), true, None, Some(max_new_tokens))
.await
{
Err(ValidationError::MaxTotalTokens(6, 1, 10)) => (),
// Ok((_s, _, 0, 10)) => (),
r => panic!("Unexpected not max new tokens: {r:?}"),
}
}
#[tokio::test]
async fn test_validation_input_length() {
let tokenizer = get_tokenizer();
let max_best_of = 2;
let max_stop_sequence = 3;
let max_top_n_tokens = 4;
let max_input_length = 5;
let max_total_tokens = 6;
let disable_grammar_support = true;
let workers = 1;
let config = None;
let validation = Validation::new(
workers,
tokenizer,
config,
None,
max_best_of,
max_stop_sequence,
max_top_n_tokens,
max_input_length,
max_total_tokens,
disable_grammar_support,
);
let max_new_tokens = 10;
match validation
.validate_input("Hello".to_string(), true, None, Some(max_new_tokens))
.await
{
Err(ValidationError::MaxTotalTokens(6, 1, 10)) => (),
_ => panic!("Unexpected not max new tokens"),
}
}
#[tokio::test]
async fn test_validation_best_of_sampling() {
let tokenizer = get_tokenizer();
let max_best_of = 2;
let max_stop_sequence = 3;
let max_top_n_tokens = 4;
let max_input_length = 5;
let max_total_tokens = 6;
let workers = 1;
let disable_grammar_support = true;
let config = None;
let validation = Validation::new(
workers,
tokenizer,
config,
None,
max_best_of,
max_stop_sequence,
max_top_n_tokens,
max_input_length,
max_total_tokens,
disable_grammar_support,
);
match validation
.validate(GenerateRequest {
inputs: "Hello".to_string(),
add_special_tokens: true,
parameters: GenerateParameters {
best_of: Some(2),
do_sample: false,
..default_parameters()
},
})
.await
{
Err(ValidationError::BestOfSampling) => (),
_ => panic!("Unexpected not best of sampling"),
}
}
#[tokio::test]
async fn test_validation_top_p() {
let tokenizer = get_tokenizer();
let max_best_of = 2;
let max_stop_sequence = 3;
let max_top_n_tokens = 4;
let max_input_length = 5;
let max_total_tokens = 106;
let workers = 1;
let disable_grammar_support = true;
let config = None;
let validation = Validation::new(
workers,
tokenizer,
config,
None,
max_best_of,
max_stop_sequence,
max_top_n_tokens,
max_input_length,
max_total_tokens,
disable_grammar_support,
);
match validation
.validate(GenerateRequest {
inputs: "Hello".to_string(),
add_special_tokens: true,
parameters: GenerateParameters {
top_p: Some(1.0),
max_new_tokens: Some(5),
..default_parameters()
},
})
.await
{
Err(ValidationError::TopP) => (),
_ => panic!("Unexpected top_p"),
}
match validation
.validate(GenerateRequest {
inputs: "Hello".to_string(),
add_special_tokens: true,
parameters: GenerateParameters {
top_p: Some(0.99),
max_new_tokens: Some(5),
..default_parameters()
},
})
.await
{
Ok(_) => (),
_ => panic!("Unexpected top_p error"),
}
let valid_request = validation
.validate(GenerateRequest {
inputs: "Hello".to_string(),
add_special_tokens: true,
parameters: GenerateParameters {
top_p: None,
max_new_tokens: Some(5),
..default_parameters()
},
})
.await
.unwrap();
// top_p == 1.0 is invalid for users to ask for but it's the default resolved value.
assert_eq!(valid_request.parameters.top_p, 1.0);
}
#[tokio::test]
async fn test_validation_top_n_tokens() {
let tokenizer = get_tokenizer();
let max_best_of = 2;
let max_stop_sequences = 3;
let max_top_n_tokens = 4;
let max_input_length = 5;
let max_total_tokens = 106;
let workers = 1;
let disable_grammar_support = true;
let config = None;
let validation = Validation::new(
workers,
tokenizer,
config,
None,
max_best_of,
max_stop_sequences,
max_top_n_tokens,
max_input_length,
max_total_tokens,
disable_grammar_support,
);
match validation
.validate(GenerateRequest {
inputs: "Hello".to_string(),
add_special_tokens: true,
parameters: GenerateParameters {
top_n_tokens: Some(5),
max_new_tokens: Some(5),
..default_parameters()
},
})
.await
{
Err(ValidationError::TopNTokens(4, 5)) => (),
_ => panic!("Unexpected top_n_tokens"),
}
validation
.validate(GenerateRequest {
inputs: "Hello".to_string(),
add_special_tokens: true,
parameters: GenerateParameters {
top_n_tokens: Some(4),
max_new_tokens: Some(5),
..default_parameters()
},
})
.await
.unwrap();
validation
.validate(GenerateRequest {
inputs: "Hello".to_string(),
add_special_tokens: true,
parameters: GenerateParameters {
top_n_tokens: Some(0),
max_new_tokens: Some(5),
..default_parameters()
},
})
.await
.unwrap();
let valid_request = validation
.validate(GenerateRequest {
inputs: "Hello".to_string(),
add_special_tokens: true,
parameters: GenerateParameters {
top_n_tokens: None,
max_new_tokens: Some(5),
..default_parameters()
},
})
.await
.unwrap();
assert_eq!(valid_request.top_n_tokens, 0);
}
static PIXEL_GIF: &str = "R0lGODdhAQABAIEAAP///wAAAAAAAAAAACwAAAAAAQABAAAIBAABBAQAOw==";
#[tokio::test]
async fn test_prepare_input_chunks() {
let pixel_data = STANDARD.decode(PIXEL_GIF).unwrap();
let tokenizer = get_tokenizer();
let max_best_of = 2;
let max_stop_sequence = 3;
let max_top_n_tokens = 4;
let max_input_length = 5;
let max_total_tokens = 6;
let disable_grammar_support = true;
let workers = 1;
let config = Config::Paligemma(Paligemma {
text_config: PaliTextConfig {
num_image_tokens: 1,
},
});
let validation = Validation::new(
workers,
tokenizer,
Some(config),
None,
max_best_of,
max_stop_sequence,
max_top_n_tokens,
max_input_length,
max_total_tokens,
disable_grammar_support,
);
let chunks = match validation
.tokenize(
format!("test![](data:image/gif;base64,{})", PIXEL_GIF),
true,
None,
)
.await
{
Ok((_encoding, chunks)) => chunks,
_ => panic!("Unexpected tokenization failure"),
};
assert!(
chunks
== vec![
Chunk::Text("test".to_string()).into(),
Chunk::Image(Image {
data: pixel_data.clone(),
mimetype: "image/gif".to_string()
})
.into()
],
"Failed to process images",
);
}
#[tokio::test]
async fn test_idefics2_correct_n_fake_tokens() {
let pixel_data = STANDARD.decode(PIXEL_GIF).unwrap();
let tokenizer = get_tokenizer();
let max_best_of = 2;
let max_stop_sequence = 3;
let max_top_n_tokens = 4;
let max_input_length = 5;
let max_total_tokens = 6;
let disable_grammar_support = true;
let workers = 1;
let config = Config::Idefics2(Idefics2 {});
let validation = Validation::new(
workers,
tokenizer,
Some(config),
Some(HubPreprocessorConfig::Idefics2Processor(
Idefics2Preprocessor {
do_image_splitting: true,
},
)),
max_best_of,
max_stop_sequence,
max_top_n_tokens,
max_input_length,
max_total_tokens,
disable_grammar_support,
);
let (encoding, chunks) = match validation
.tokenize(
format!(
"test![](data:image/gif;base64,{})![](data:image/gif;base64,{})",
PIXEL_GIF, PIXEL_GIF
),
true,
None,
)
.await
{
Ok((encoding, chunks)) => (encoding, chunks),
_ => panic!("Unexpected tokenization failure"),
};
assert!(
chunks
== vec![
Chunk::Text("test".to_string()).into(),
Chunk::Image(Image {
data: pixel_data.clone(),
mimetype: "image/gif".to_string()
})
.into(),
Chunk::Image(Image {
data: pixel_data.clone(),
mimetype: "image/gif".to_string()
})
.into()
],
"Failed to process images",
);
// Verify the number of fake tokens:
//
// - Two images surrounded/separated by a fake token = 3.
// - Both are split in 5 subimages, separated by a fake token: 2 * 4
//
// Fake tokens get split up by the testing tokenizer, but we don't care.
assert_eq!(
encoding
.get_tokens()
.iter()
.filter(|t| *t == "fake")
.count(),
11
);
}
}