text-generation-inference/server/text_generation_server/models/flash_phi.py
Daniël de Kok f1f28404e7 Add support for GPTQ Marlin (#2052)
Add support for GPTQ Marlin kernels

GPTQ Marlin extends the Marlin kernels to support common GPTQ
configurations:

- bits: 4 or 8
- groupsize: -1, 32, 64, or 128
- desc_act: true/false

Using the GPTQ Marlin kernels requires repacking the parameters in the
Marlin quantizer format.

The kernels were contributed by Neural Magic to VLLM. We vendor them
here for convenience.
2024-09-24 03:43:30 +00:00

103 lines
3.5 KiB
Python

import torch
import torch.distributed
from opentelemetry import trace
from transformers import AutoConfig, AutoTokenizer
from typing import Optional
from text_generation_server.models import FlashCausalLM
from text_generation_server.models.custom_modeling.flash_phi_modeling import (
FlashPhiForCausalLM,
)
from text_generation_server.utils import (
initialize_torch_distributed,
weight_files,
Weights,
)
tracer = trace.get_tracer(__name__)
class FlashPhi(FlashCausalLM):
def __init__(
self,
model_id: str,
revision: Optional[str] = None,
quantize: Optional[str] = None,
speculator: Optional[str] = None,
dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False,
):
self.process_group, rank, world_size = initialize_torch_distributed()
if torch.cuda.is_available():
device = torch.device(f"cuda:{rank}")
dtype = torch.float16 if dtype is None else dtype
else:
raise NotImplementedError("FlashPhi is only available on GPU")
tokenizer = AutoTokenizer.from_pretrained(
model_id,
revision=revision,
padding_side="left",
truncation_side="left",
trust_remote_code=trust_remote_code,
)
config = AutoConfig.from_pretrained(
model_id, revision=revision, trust_remote_code=trust_remote_code
)
config.quantize = quantize
config.speculator = speculator
torch.distributed.barrier(group=self.process_group)
filenames = weight_files(model_id, revision=revision, extension=".safetensors")
weights = Weights(filenames, device, dtype, process_group=self.process_group)
if config.quantize in ["gptq", "awq", "marlin"]:
weights._set_gptq_params(model_id, revision)
model = FlashPhiForCausalLM(config, weights)
if speculator:
from text_generation_server.utils.medusa import MedusaModel
from huggingface_hub import hf_hub_download
import json
import os
from pathlib import Path
is_local_model = (
Path(speculator).exists() and Path(speculator).is_dir()
) or os.getenv("WEIGHTS_CACHE_OVERRIDE", None) is not None
if not is_local_model:
medusa_config = hf_hub_download(
speculator, revision=revision, filename="config.json"
)
medusa_head = hf_hub_download(
speculator, revision=revision, filename="medusa_lm_head.pt"
)
else:
medusa_config = str(Path(speculator) / "config.json")
medusa_head = str(Path(speculator) / "medusa_lm_head.pt")
with open(medusa_config, "r") as f:
config = json.load(f)
medusa_sf = medusa_head[: -len(".pt")] + ".safetensors"
weights = Weights(
[medusa_sf], device, dtype, process_group=self.process_group
)
lm_head = model.lm_head
model.lm_head = MedusaModel(config, weights, lm_head)
torch.distributed.barrier(group=self.process_group)
super(FlashPhi, self).__init__(
model=model,
tokenizer=tokenizer,
num_layers=len(model.model.layers),
num_kv_heads=model.model.num_key_value_heads,
head_size=model.model.head_size,
dtype=dtype,
device=device,
rank=rank,
world_size=world_size,
)