text-generation-inference/server/text_generation_server/models/causal_lm.py
2024-01-15 21:05:27 +01:00

749 lines
28 KiB
Python

import os
import tempfile
import itertools
import time
import glob
from text_generation_server.utils.tokens import batch_top_tokens
import torch
from dataclasses import dataclass
from opentelemetry import trace
from transformers import AutoTokenizer, AutoModelForCausalLM, PreTrainedTokenizerBase, AutoConfig
from typing import Optional, Tuple, List, Type, Dict
from habana_frameworks.torch.hpu import wrap_in_hpu_graph
import habana_frameworks.torch as htorch
from contextlib import nullcontext
from optimum.habana.utils import HabanaProfile, to_gb_rounded
from optimum.habana.transformers.generation import MODELS_OPTIMIZED_WITH_STATIC_SHAPES
from optimum.habana.checkpoint_utils import (
get_repo_root,
model_on_meta,
write_checkpoints_json,
)
from text_generation_server.models import Model
from text_generation_server.models.types import (
Batch,
PrefillTokens,
Generation,
GeneratedText,
TopTokens,
)
from text_generation_server.pb import generate_pb2
from text_generation_server.utils import HeterogeneousNextTokenChooser, StoppingCriteria, Sampling
from loguru import logger
tracer = trace.get_tracer(__name__)
if 'GRAPH_VISUALIZATION' in os.environ:
for f in glob.glob('.graph_dumps/*'):
os.remove(f)
BATCH_BUCKET_SIZE = int(os.environ.get('BATCH_BUCKET_SIZE', 8))
PREFILL_BATCH_BUCKET_SIZE = int(os.environ.get('PREFILL_BATCH_BUCKET_SIZE', 4))
DBG_TRACE_FILENAME = os.environ.get('DBG_TRACE_FILENAME')
START_TS = None
def count_hpu_graphs():
return len(glob.glob('.graph_dumps/*PreGraph*'))
def dbg_trace(tag, txt):
global START_TS
if DBG_TRACE_FILENAME is not None and int(os.getenv("RANK", 0)) == 0:
if START_TS is None:
START_TS = time.perf_counter()
time_offset = time.perf_counter() - START_TS
mem_stats = htorch.hpu.memory.memory_stats()
mem_used = to_gb_rounded(mem_stats['InUse'])
max_mem_used = to_gb_rounded(mem_stats['MaxInUse'])
print(f'ts:{time_offset:.3f}s g:{count_hpu_graphs()} mu:{mem_used:.1f}GB '
f'mmu:{max_mem_used:.1f}GB | {tag} | {txt}', flush=True, file=open(DBG_TRACE_FILENAME, 'a'))
def round_up(number, k):
return (number + k - 1) // k * k
def batch_alloc(new_bs, tensor):
return tensor.new_empty((new_bs,) + tensor.shape[1:])
def move_data(dst_tensor, chunk_size, indices, src_tensors):
batch_dim = 0
bs = dst_tensor.size(batch_dim)
assert bs % chunk_size == 0, 'Batch dim must be divisible by chunk size!'
result = dst_tensor
if chunk_size > 1:
dst_tensor = dst_tensor.view(bs // chunk_size, chunk_size, *dst_tensor.shape[1:])
htorch.core.mark_step()
for ind, src_t in zip(indices, src_tensors):
if chunk_size > 1:
src_t = src_t.view(bs // chunk_size, chunk_size, *src_t.shape[1:])
for dst_idx, src_idx in ind:
src_data = torch.index_select(src_t, batch_dim, src_idx)
dst_tensor.index_copy_(batch_dim, dst_idx, src_data)
htorch.core.mark_step()
return result
def shift(tensor, dim, offset):
shape = tensor.shape
elements = shape[dim]
if offset == 0 or abs(offset) > elements:
return tensor
htorch.core.mark_step()
indices = torch.arange(0, elements, dtype=torch.int32, device=tensor.device)
offset = torch.tensor(offset, dtype=torch.int32, device=tensor.device)
indices = torch.clamp(indices - offset, 0, elements - 1)
target_shape = [1,] * len(tensor.shape)
target_shape[dim] = elements
indices = indices.view(target_shape).expand(shape)
result = torch.gather(tensor, dim, indices)
htorch.core.mark_step()
return result
def shift_all(srcs, dim, offsets):
return [shift(src, dim, offset) for src, offset in zip(srcs, offsets)]
@dataclass
class CausalLMRequest:
idx: int
data: generate_pb2.Request
input_length: int
prefix_offset: int
read_offset: int
stopping_criteria: StoppingCriteria
all_input_ids: torch.Tensor
@classmethod
def from_pb(cls, idx: int, data: generate_pb2.Request, tokenizer: PreTrainedTokenizerBase):
return cls(
idx=idx,
data=data,
input_length=None,
prefix_offset=None,
read_offset=None,
stopping_criteria=StoppingCriteria.from_pb(data.stopping_parameters, tokenizer),
all_input_ids=None,)
def update_idx(self, new_idx):
prev = self.idx
self.idx = new_idx
return (new_idx, prev)
@dataclass
class CausalLMBatch(Batch):
batch_id: int
requests: List[CausalLMRequest]
# Decoder values
input_ids: torch.Tensor
attention_mask: torch.Tensor
position_ids: torch.Tensor
past_key_values: Optional[List[Tuple]]
# Generation helpers
next_token_chooser: HeterogeneousNextTokenChooser
top_n_tokens: List[int]
top_n_tokens_tensor: torch.Tensor
# Maximum number of tokens this batch will grow to
max_tokens: int
input_length: int
right_padding: int
def to_pb(self) -> generate_pb2.CachedBatch:
return generate_pb2.CachedBatch(
id=self.batch_id,
request_ids=[r.data.id for r in self.requests],
size=len(self),
max_tokens=self.max_tokens,
)
@classmethod
def recombine(cls, batches: List["CausalLMBatch"], req_ids: List[List[int]], is_optimized_for_gaudi: bool = False) -> "CausalLMBatch":
new_bs = round_up(sum([len(reqs) for reqs in req_ids]), BATCH_BUCKET_SIZE)
batch_id = batches[0].batch_id
device = batches[0].input_ids.device
# TODO: for now use consecutive indices. This could be optimized to reuse existing batch memory and only overwrite
# indices that are no longer used instead of allocating new memory
free_indices = itertools.count(0)
to_tensors = lambda ind: (torch.tensor(ind[0], device=device), torch.tensor(ind[1], device=device))
requests = [[req for req in batch.requests if req.data.id in ids] for batch, ids in zip(batches, req_ids)]
indices = [[to_tensors(req.update_idx(next(free_indices))) for req in batch_reqs] for batch_reqs in requests]
requests = list(itertools.chain(*requests))
# TODO: Add support for changing max seq len, i.e. due to output length bucketing
# FIXME: max_seq_len for non optimized code
max_input_length = max(req.input_length for req in requests)
offsets = [(max_input_length - b.input_length) for b in batches]
scenario = 'CONCAT' if len(batches) > 1 else 'FILTER'
dbg_trace(scenario, f'bs:{[b.input_ids.size(0) for b in batches]}->{new_bs} num_reqs:{[len(b.requests) for b in batches]}->{len(requests)} offsets:{offsets}')
max_seq_len = batches[0].attention_mask.size(1)
input_length = max(r.input_length for r in requests)
right_padding = max_seq_len - input_length
max_tokens = len(requests) * max_seq_len
chunk_size = batches[0].past_key_values[0][0].size(0) // batches[0].input_ids.size(0)
num_layers = len(batches[0].past_key_values)
past_key_values_type = type(batches[0].past_key_values)
seq_dim = 1
if batches[0].past_key_values[0][0].size(-1) != batches[0].past_key_values[0][1].size(-1):
# Case for Bloom
key_dim = -1
else:
key_dim = -2
value_dim = -2
for b in batches:
b.past_key_values = list(b.past_key_values)
src = [b.input_ids for b in batches]
for b in batches:
del b.input_ids
src = shift_all(src, seq_dim, offsets)
input_ids = batch_alloc(new_bs, src[0])
input_ids = move_data(input_ids, 1, indices, src)
src = [b.attention_mask for b in batches]
for b in batches:
del b.attention_mask
src = shift_all(src, seq_dim, offsets)
attention_mask = batch_alloc(new_bs, src[0])
attention_mask = move_data(attention_mask, 1, indices, src)
src = [b.position_ids for b in batches]
for b in batches:
del b.position_ids
src = shift_all(src, seq_dim, offsets)
position_ids = batch_alloc(new_bs, src[0])
position_ids = move_data(position_ids, 1, indices, src)
past_key_values = []
for layer_num in range(num_layers):
src = [b.past_key_values[layer_num][0] for b in batches]
src = shift_all(src, key_dim, offsets)
updated_key = batch_alloc(new_bs * chunk_size, src[0])
updated_key = move_data(updated_key, chunk_size, indices, src)
src = [b.past_key_values[layer_num][1] for b in batches]
src = shift_all(src, value_dim, offsets)
updated_value = batch_alloc(new_bs * chunk_size, src[0])
updated_value = move_data(updated_value, chunk_size, indices, src)
past_key_values.append((updated_key, updated_value))
for b in batches:
b.past_key_values[layer_num] = None
past_key_values = past_key_values_type(past_key_values)
top_n_tokens = [r.data.top_n_tokens for r in requests]
top_n_tokens_tensor = torch.tensor(top_n_tokens, device=device, dtype=torch.int64)
next_token_chooser = HeterogeneousNextTokenChooser.from_pb(
[r.data.parameters for r in requests],
batches[0].next_token_chooser.device,
batches[0].next_token_chooser.dtype
)
htorch.core.mark_step()
return cls(
batch_id=batch_id,
requests=requests,
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
next_token_chooser=next_token_chooser,
top_n_tokens=top_n_tokens,
top_n_tokens_tensor=top_n_tokens_tensor,
max_tokens=max_tokens,
input_length=input_length,
right_padding=right_padding
)
@classmethod
def from_pb(
cls,
pb: generate_pb2.Batch,
tokenizer: PreTrainedTokenizerBase,
dtype: torch.dtype,
device: torch.device,
is_optimized_for_gaudi: bool = False,
) -> "CausalLMBatch":
dbg_trace('FROM_PB', f'num_reqs:{len(pb.requests)}')
requests = [CausalLMRequest.from_pb(idx, req, tokenizer) for idx, req in enumerate(pb.requests)]
max_input_length = max(r.data.truncate for r in requests)
max_new_tokens = max(r.stopping_criteria.max_new_tokens for r in requests)
# TODO: Add support for sparse batches
top_n_tokens = [r.top_n_tokens for r in pb.requests]
top_n_tokens_tensor = torch.tensor(top_n_tokens, device=device, dtype=torch.int64)
next_token_chooser = HeterogeneousNextTokenChooser.from_pb([r.parameters for r in pb.requests], dtype, device)
# TODO: this should be set to rust side `max_total_tokens`,
# (see https://github.com/huggingface/text-generation-inference/blob/main/launcher/src/main.rs#L177)
# but TGI does not offer an API to expose this variable to python, as this variable
# is handled by the client but it appears the model is initialized by the server.
# An alternative could be to initialize the buffers during warmup.
# Dummy
max_total_tokens = int(os.getenv("MAX_TOTAL_TOKENS", "0"))
logger.info("MAX_TOTAL_TOKENS = {}".format(max_total_tokens))
# TODO: by tokenizing all inputs at once we loose information on actual input lengths
# this means that we cannot shift inputs to the left after a long input sequence
# was filtered out
new_bs = round_up(len(requests), PREFILL_BATCH_BUCKET_SIZE)
dummy_inputs = ["?"] * (new_bs - len(requests))
tokenized_inputs = tokenizer(
[r.data.inputs for r in requests] + dummy_inputs,
return_tensors="pt",
padding="max_length",
return_token_type_ids=False,
truncation=True,
max_length=max_input_length,
)
input_len = tokenized_inputs["input_ids"].shape[1]
extra_padding = 0
if is_optimized_for_gaudi and max_total_tokens > 0:
extra_padding = max(extra_padding, max_total_tokens - max_input_length - max_new_tokens)
for r in requests:
r.input_length = input_len
r.prefix_offset = input_len - 5
r.read_offset = input_len
#max_tokens = new_bs * max_total_tokens
max_tokens = len(requests) * max_total_tokens
input_ids = tokenized_inputs["input_ids"]
attention_mask = tokenized_inputs["attention_mask"]
if is_optimized_for_gaudi:
input_ids = torch.nn.functional.pad(
input_ids, (0, max_new_tokens + extra_padding), value=tokenizer.pad_token_id
)
attention_mask = torch.nn.functional.pad(
attention_mask, (0, max_new_tokens + extra_padding), value=0)
all_input_ids = input_ids.T.split(1, dim=1)
else:
all_input_ids = input_ids.clone().T.split(1, dim=1)
for r in requests:
r.all_input_ids = all_input_ids[r.idx]
input_ids = input_ids.to(device)
attention_mask = attention_mask.to(device)
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
htorch.core.mark_step()
return cls(
batch_id=pb.id,
requests=requests,
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=None,
next_token_chooser=next_token_chooser,
top_n_tokens=top_n_tokens,
top_n_tokens_tensor=top_n_tokens_tensor,
max_tokens=max_tokens,
input_length=max_input_length,
right_padding=max_new_tokens + extra_padding if is_optimized_for_gaudi else 0
)
@tracer.start_as_current_span("filter")
def filter(self, request_ids: List[int], is_optimized_for_gaudi: bool = False) -> Optional["CausalLMBatch"]:
return self.__class__.recombine([self], [request_ids], is_optimized_for_gaudi)
@classmethod
@tracer.start_as_current_span("concatenate")
def concatenate(cls, batches: List["CausalLMBatch"], is_optimized_for_gaudi: bool = False) -> "CausalLMBatch":
return cls.recombine(batches, [[req.data.id for req in b.requests] for b in batches], is_optimized_for_gaudi)
def __len__(self):
return len(self.requests)
class CausalLM(Model):
def __init__(
self,
model_id: str,
revision: Optional[str] = None,
dtype: Optional[torch.dtype] = None,
):
device = torch.device("hpu")
dtype = torch.bfloat16 if dtype is None else dtype
from optimum.habana.transformers.modeling_utils import adapt_transformers_to_gaudi
adapt_transformers_to_gaudi()
tokenizer = AutoTokenizer.from_pretrained(
model_id,
revision=revision,
padding_side="left",
truncation_side="left",
)
model_kwargs = {
"revision": revision,
}
world_size = int(os.getenv("WORLD_SIZE", "1"))
rank = int(os.getenv("RANK"), 0)
self.enable_hpu_graph = os.getenv("ENABLE_HPU_GRAPH", "true").lower() == "true"
self.limit_hpu_graph = os.getenv("LIMIT_HPU_GRAPH", "true").lower() == "true"
if world_size > 1:
import habana_frameworks.torch.hpu as torch_hpu
# Get world size, rank and local rank
from habana_frameworks.torch.distributed.hccl import initialize_distributed_hpu
world_size, rank, local_rank = initialize_distributed_hpu()
import deepspeed
# Initialize process(es) for DeepSpeed
deepspeed.init_distributed(dist_backend="hccl")
logger.info(
"DeepSpeed is enabled. world_size {} rank {} local_rank {}".format(world_size, rank, local_rank)
)
config = AutoConfig.from_pretrained(model_id, **model_kwargs)
load_to_meta = model_on_meta(config)
if load_to_meta:
# Construct model with fake meta tensors, later will be replaced on devices during ds-inference ckpt load
with deepspeed.OnDevice(dtype=dtype, device="meta"):
model = AutoModelForCausalLM.from_config(config, torch_dtype=dtype)
else:
get_repo_root(model_id, local_rank=os.getenv("LOCAL_RANK"))
# TODO: revisit placement on CPU when auto-injection is possible
with deepspeed.OnDevice(dtype=dtype, device="cpu"):
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=dtype, **model_kwargs)
model = model.eval()
# Initialize the model
ds_inference_kwargs = {"dtype": dtype}
ds_inference_kwargs["tensor_parallel"] = {"tp_size": world_size}
ds_inference_kwargs["enable_cuda_graph"] = self.enable_hpu_graph
if load_to_meta:
# model loaded to meta is managed differently
checkpoints_json = tempfile.NamedTemporaryFile(suffix=".json", mode="+w")
write_checkpoints_json(model_id, local_rank, checkpoints_json)
ds_inference_kwargs["checkpoint"] = checkpoints_json.name
model = deepspeed.init_inference(model, **ds_inference_kwargs)
model = model.module
else:
get_repo_root(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
revision=revision,
torch_dtype=dtype,
)
model = model.eval().to(device)
#wrap in hpu_graph only if self.enable_hpu_graph is set
if self.enable_hpu_graph:
model = wrap_in_hpu_graph(model, disable_tensor_cache=True)
if model.config.model_type in MODELS_OPTIMIZED_WITH_STATIC_SHAPES:
self.is_optimized_for_gaudi = True
else:
self.is_optimized_for_gaudi = False
if tokenizer.pad_token_id is None:
if model.config.pad_token_id is not None:
tokenizer.pad_token_id = model.config.pad_token_id
elif model.config.eos_token_id is not None:
tokenizer.pad_token_id = model.config.eos_token_id
elif tokenizer.eos_token_id is not None:
tokenizer.pad_token_id = tokenizer.eos_token_id
else:
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
kwargs = {
"use_cache": True,
"return_dict": True,
}
if model.config.model_type == "llama":
kwargs["attn_softmax_bf16"] = True
kwargs["trim_logits"] = True
super(CausalLM, self).__init__(
model=model,
tokenizer=tokenizer,
requires_padding=True,
dtype=dtype,
device=device,
rank=rank,
kwargs=kwargs,
)
self.profiling_warmup_steps = int(os.getenv("PROF_WARMUPSTEP", "0"))
self.profiling_steps = int(os.getenv("PROF_STEP", "5"))
output_dir = os.getenv("PROF_PATH", "/tmp/hpu_profile")
self.hb_profer = HabanaProfile(
warmup=self.profiling_warmup_steps, active=self.profiling_steps, output_dir=output_dir
)
if self.profiling_warmup_steps > 0:
self.hb_profer_started = True
self.hb_profer.start()
else:
self.hb_profer = None
self.hb_profer_started = False
self.step = 0
@property
def batch_type(self) -> Type[CausalLMBatch]:
return CausalLMBatch
def decode(self, generated_ids: List[int]) -> str:
return self.tokenizer.decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
def forward(
self,
input_ids,
attention_mask,
position_ids,
token_idx: Optional = None,
past_key_values: Optional = None,
bypass_hpu_graph: Optional = None,
) -> Tuple[torch.Tensor, List[Tuple[torch.Tensor, torch.Tensor]]]:
# Model Forward
kwargs = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"past_key_values": past_key_values,
}
if self.is_optimized_for_gaudi:
kwargs["token_idx"] = token_idx
if self.has_position_ids:
kwargs["position_ids"] = position_ids
if bypass_hpu_graph != None:
kwargs["bypass_hpu_graphs"] = bypass_hpu_graph
kwargs.update(self.kwargs)
outputs = self.model.forward(**kwargs)
return outputs.logits, outputs.past_key_values
@tracer.start_as_current_span("generate_token")
def generate_token(self, batch: CausalLMBatch) -> Tuple[List[Generation], Optional[CausalLMBatch]]:
prefill = batch.past_key_values is None
scenario = 'PREFILL' if prefill else 'GENERATE'
dbg_trace(scenario, f'bs:{batch.input_ids.size(0)} num_reqs:{len(batch.requests)} seq_len:{batch.input_ids.shape[1]}')
self.step = self.step + 1
if self.hb_profer_started == True and self.step > self.profiling_warmup_steps + self.profiling_steps:
self.hb_profer.stop()
self.hb_profer_started = False
if self.is_optimized_for_gaudi:
token_idx = torch.tensor(batch.attention_mask.shape[-1] - batch.right_padding).to(self.device)
attention_mask = batch.attention_mask
else:
token_idx = None
# slice the attention mask to the correct shape
# TODO fix me!
attention_mask = batch.attention_mask[:, : -batch.padding_right_offset]
if batch.past_key_values:
if token_idx is not None:
input_ids = torch.index_select(batch.input_ids, 1, token_idx - 1)
else:
input_ids = batch.input_ids
logits, past = self.forward(
input_ids,
attention_mask,
batch.position_ids,
token_idx,
batch.past_key_values,
bypass_hpu_graph = prefill and self.limit_hpu_graph if self.enable_hpu_graph else None
)
# Results
generations: List[Generation] = []
stopped = True
# Select next token
input_length = batch.input_length
if self.is_optimized_for_gaudi and logits.shape[-2] > 1:
next_token_ids, next_token_logprobs, logprobs = batch.next_token_chooser(
batch.input_ids[:, :token_idx], logits[:, input_length - 1 : input_length, :].squeeze(-2)
)
else:
next_token_ids, next_token_logprobs, logprobs = batch.next_token_chooser(
batch.input_ids[:, :token_idx], logits.squeeze(-2)
)
batch_top_token_ids, batch_top_token_logprobs = batch_top_tokens(
batch.top_n_tokens,
batch.top_n_tokens_tensor,
logprobs,
)
next_token_logprobs = next_token_logprobs.tolist()
next_token_ids_cpu = next_token_ids.cpu()
htorch.core.mark_step()
for req in batch.requests:
i = req.idx
request = req.data
input_length = req.input_length
prefix_offset = req.prefix_offset
read_offset = req.read_offset
do_sample = batch.next_token_chooser.do_sample[i]
seed = batch.next_token_chooser.seeds[i]
stopping_criteria = req.stopping_criteria
all_input_ids = req.all_input_ids
top_n_tokens = batch.top_n_tokens[i]
next_token_id = next_token_ids_cpu[i]
next_token_logprob = next_token_logprobs[i]
top_token_ids = batch_top_token_ids[i]
top_token_logprobs = batch_top_token_logprobs[i]
# Append next token to all tokens
if self.is_optimized_for_gaudi:
all_input_ids[input_length] = next_token_id
else:
all_input_ids = torch.cat([all_input_ids, next_token_id])
new_input_length = input_length + 1
# Generated token
next_token_text, prefix_offset, read_offset = self.decode_token(
all_input_ids[0:new_input_length, 0], prefix_offset, read_offset
)
# Evaluate stopping criteria
stop, reason = stopping_criteria(
next_token_id,
next_token_text,
)
if not stop:
stopped = False
# Shard generations
# All generations will be appended in the rust sharded client
if i % self.world_size == self.rank:
if stop:
# Decode generated tokens
output_text = self.decode(
all_input_ids[new_input_length - stopping_criteria.current_tokens : new_input_length, 0]
)
generated_text = GeneratedText(
output_text,
stopping_criteria.current_tokens,
reason,
seed if do_sample else None,
)
else:
generated_text = None
# Prefill
if stopping_criteria.current_tokens == 1 and request.prefill_logprobs:
# Remove generated token to only have prefill and add nan for first prompt token
prefill_logprobs = [float("nan")] + next_token_logprobs
prefill_token_ids = all_input_ids[0 : new_input_length - 1]
prefill_texts = self.tokenizer.batch_decode(
prefill_token_ids,
clean_up_tokenization_spaces=False,
skip_special_tokens=False,
)
prefill_tokens = PrefillTokens(prefill_token_ids, prefill_logprobs, prefill_texts)
else:
prefill_tokens = None
if top_n_tokens > 0:
toptoken_texts = self.tokenizer.batch_decode(
top_token_ids,
clean_up_tokenization_spaces=False,
skip_special_tokens=False,
)
special_toptokens = [token_id in self.all_special_ids for token_id in top_token_ids]
top_tokens = TopTokens(
top_token_ids,
top_token_logprobs,
toptoken_texts,
special_toptokens,
)
else:
top_tokens = None
generation = Generation(
request.id,
prefill_tokens,
next_token_id,
next_token_logprob,
next_token_text,
next_token_id in self.all_special_ids,
generated_text,
top_tokens,
)
generations.append(generation)
req.all_input_ids = all_input_ids
req.input_length = new_input_length
req.prefix_offset = prefix_offset
req.read_offset = read_offset
htorch.core.mark_step()
if token_idx is None:
batch.input_ids[:, 0] = next_token_ids[:, 0]
else:
batch.input_ids.index_copy_(1, token_idx.cpu(), next_token_ids.unsqueeze(1))
# We finished all generations in the batch; there is no next batch
if stopped:
if self.hb_profer_started == True:
self.hb_profer.step()
return generations, None
# Slice unused values from prefill, use it to store next token
if token_idx is None:
batch.input_ids = batch.input_ids[:, :1]
# Update attention_mask as we added a new token to input_ids
if self.is_optimized_for_gaudi:
batch.attention_mask.index_fill_(1, token_idx, 1)
else:
batch.attention_mask[:, -batch.padding_right_offset] = 1
# Adjust lengths
batch.input_length += 1
if batch.right_padding > 0:
batch.right_padding -= 1
# Update position_ids
if prefill:
batch.position_ids = batch.position_ids[:, token_idx - 1 : token_idx] + 1
else:
batch.position_ids += 1
# Update past key values
batch.past_key_values = past
if self.hb_profer_started == True:
self.hb_profer.step()
htorch.core.mark_step()
return generations, batch