mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-04-22 15:32:08 +00:00
Deepseek V2 is a MoE model from Deepseek. Relevant variations compared to other models: - Grouped top-K in expert selection. - mscale in yarn is calculated using the `mscale` and `mscale_all_dim` configuration options. - `mscale_all_dim` is also used in scaling attention softmax. - Permuting of the query/key representations before applying rotary embeddings. - Some projections cannot be sharded (`q_a_proj`, `kv_a_proj_with_mqa`). So, we need weight loads that supports quantized weights. To this end `{Weights,WeightLoader}.get_weight` was added. - The query/key head dimensionality differs from that of the value, so we need to pad during attention. - Heads with size 192, needs an extension to our paged attention fork and we need to ensure that the KV cache is allocated with the correct size. - Shared experts. |
||
---|---|---|
.. | ||
adapters | ||
layers | ||
models | ||
pb | ||
utils | ||
__init__.py | ||
cache.py | ||
cli.py | ||
interceptor.py | ||
server.py | ||
tracing.py |