text-generation-inference/server/text_generation_server/layers/attention/ipex.py
Nicolas Patry b80bd724e1 Move to FlashDecoding instead of PagedAttention kernel. (#1940)
* Using flash decoding

Conditional flashdecoding.

Fix max_q.

Working kvcache

Working version with flash decoding.

Make it work for mistral.

Fix after rebase..

Less intrusive.

REvert changes in modeling.

Speedup flashdecoding.

HHachweew
Hack to make other models work.

Fixing non flash decoding llama path.

Router logic knows about page size.

Missing 2 models.

Missing cohere.

Fixing cohere flash decoding.

Revamped all this architecture.

Fix cohere.

Fixing falcon.

Enabling custom block size schedule.

Update router/src/infer.rs

Not sending preallocated output.

* Making it work on non flash decoding.

* Fix Cohere.

* Fix non decoding paths.

* Rebased.

* No need for cache_manager anymore.

* Update?

* "ipex" -> "cpu"

* These do not belong.

* Factoring cu_seqlen_qk for better abstracting over every model.

* Fixing non flash tests/imports.

* Changing return everywhere.

* Update mistral past.

* Fixing Mi{s,x}tral (non functional in Flash Decoding mode though).

* Fixup mistral clamping (had issues with cuda graphs).

* No need to recreate anything actually.
2024-09-24 03:58:13 +00:00

75 lines
1.5 KiB
Python

import intel_extension_for_pytorch as ipex
import torch
from text_generation_server.models.flash_causal_lm import BLOCK_SIZE
SUPPORTS_WINDOWING = False
def attention(
q,
k,
v,
out,
cu_seqlens,
max_s,
softmax_scale,
window_size_left=-1,
causal=True,
):
# We do not need to check window_size_left (not supported) here, so it is already checked ahead of time at model load.
return ipex.llm.functional.varlen_attention(
q,
k,
v,
out,
cu_seqlens,
cu_seqlens,
max_s,
max_s,
0.0,
softmax_scale,
False,
causal,
False,
None,
)
def reshape_and_cache(
key: torch.Tensor,
value: torch.Tensor,
key_cache: torch.Tensor,
value_cache: torch.Tensor,
slots: torch.Tensor,
):
ipex.llm.modules.PagedAttention.reshape_and_cache(
key, value, key_cache, value_cache, slots
)
def paged_attention(
out: torch.Tensor,
query: torch.Tensor,
key_cache: torch.Tensor,
value_cache: torch.Tensor,
kv_head_mapping: torch.Tensor,
softmax_scale: float,
block_tables: torch.Tensor,
cu_seqlen_q: torch.Tensor,
cu_seqlen_k: torch.Tensor,
max_s: int,
):
return ipex.llm.modules.PagedAttention.single_query_cached_kv_attention(
out,
query,
key_cache,
value_cache,
kv_head_mapping,
softmax_scale,
block_tables,
cu_seqlen_q,
BLOCK_SIZE,
max_s,
None,
)