mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-04-20 14:22:08 +00:00
# What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil -->
1219 lines
47 KiB
Python
1219 lines
47 KiB
Python
# coding=utf-8
|
|
# Copyright 2018 Mesh TensorFlow authors, T5 Authors and HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" PyTorch T5 model."""
|
|
|
|
import copy
|
|
import math
|
|
import warnings
|
|
from typing import Optional, Tuple, Union
|
|
|
|
from loguru import logger
|
|
|
|
import torch
|
|
import torch.distributed
|
|
from torch import nn
|
|
from torch.nn import CrossEntropyLoss
|
|
|
|
from transformers.activations import ACT2FN
|
|
from transformers.modeling_outputs import (
|
|
BaseModelOutput,
|
|
BaseModelOutputWithPastAndCrossAttentions,
|
|
Seq2SeqLMOutput,
|
|
)
|
|
from transformers.modeling_utils import PreTrainedModel
|
|
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
|
|
from transformers.utils import (
|
|
is_torch_fx_proxy,
|
|
)
|
|
from transformers import T5Config
|
|
from text_generation_server.layers import (
|
|
TensorParallelColumnLinear,
|
|
TensorParallelEmbedding,
|
|
TensorParallelRowLinear,
|
|
SpeculativeHead,
|
|
)
|
|
|
|
|
|
class PartialTPEmbedding(nn.Module):
|
|
def __init__(self, prefix: str, weights):
|
|
super().__init__()
|
|
weight = weights.get_sharded(f"{prefix}.weight", dim=1)
|
|
self.weight = nn.Parameter(weight)
|
|
|
|
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
|
return torch.nn.functional.embedding(input, self.weight)
|
|
|
|
|
|
@torch.jit.script
|
|
def layer_norm(hidden_states, weight, epsilon):
|
|
# T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean
|
|
# Square Layer Normalization https://arxiv.org/abs/1910.07467 thus varience is calculated
|
|
# w/o mean and there is no bias. Additionally we want to make sure that the accumulation for
|
|
# half-precision inputs is done in fp32
|
|
|
|
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
|
|
hidden_states = hidden_states * torch.rsqrt(variance + epsilon)
|
|
|
|
# convert into half-precision if necessary
|
|
if weight.dtype in [torch.float16, torch.bfloat16]:
|
|
hidden_states = hidden_states.to(weight.dtype)
|
|
|
|
return weight * hidden_states
|
|
|
|
|
|
class T5LayerNorm(nn.Module):
|
|
def __init__(self, prefix, weights, eps=1e-6):
|
|
"""
|
|
Construct a layernorm module in the T5 style. No bias and no subtraction of mean.
|
|
"""
|
|
super().__init__()
|
|
weight = weights.get_tensor(f"{prefix}.weight")
|
|
self.weight = nn.Parameter(weight)
|
|
self.variance_epsilon = torch.tensor(eps)
|
|
|
|
def forward(self, hidden_states):
|
|
return layer_norm(hidden_states, self.weight, self.variance_epsilon)
|
|
|
|
|
|
try:
|
|
from apex.normalization import FusedRMSNorm
|
|
|
|
T5LayerNorm = FusedRMSNorm # noqa
|
|
|
|
logger.info(
|
|
"Discovered apex.normalization.FusedRMSNorm - will use it instead of T5LayerNorm"
|
|
)
|
|
except ImportError:
|
|
# using the normal T5LayerNorm
|
|
pass
|
|
except Exception:
|
|
logger.warning("discovered apex but it failed to load, falling back to T5LayerNorm")
|
|
pass
|
|
|
|
ALL_LAYERNORM_LAYERS.append(T5LayerNorm)
|
|
|
|
|
|
class T5DenseActDense(nn.Module):
|
|
def __init__(self, config: T5Config, prefix, weights):
|
|
super().__init__()
|
|
self.wi = TensorParallelColumnLinear.load(
|
|
config, prefix=f"{prefix}.wi", weights=weights, bias=False
|
|
)
|
|
|
|
### XXX: T5 models do not handle well both f16 and quantization.
|
|
### Overidding specifically this layer for that reason.
|
|
### https://github.com/huggingface/transformers/blob/main/src/transformers/models/t5/modeling_t5.py#L316
|
|
### https://github.com/huggingface/transformers/issues/20287
|
|
_q = config.quantize
|
|
_dtype = weights.dtype
|
|
weights.dtype = torch.float32
|
|
config.quantize = None
|
|
self.wo_cast = (torch.float32, _dtype)
|
|
self.wo = TensorParallelRowLinear.load(
|
|
config, prefix=f"{prefix}.wo", weights=weights, bias=False
|
|
)
|
|
weights.dtype = _dtype
|
|
config.quantize = _q
|
|
|
|
self.dropout = nn.Dropout(config.dropout_rate)
|
|
self.act = (
|
|
ACT2FN[config.dense_act_fn]
|
|
if "gelu" not in config.dense_act_fn
|
|
else lambda x: torch.nn.functional.gelu(x, approximate="tanh")
|
|
)
|
|
|
|
def forward(self, hidden_states):
|
|
hidden_states = self.wi(hidden_states)
|
|
hidden_states = self.act(hidden_states)
|
|
hidden_states = self.dropout(hidden_states)
|
|
|
|
hidden_states = hidden_states.to(dtype=self.wo_cast[0])
|
|
hidden_states = self.wo(hidden_states)
|
|
# XXX: Recasting is already done within the layer norm.
|
|
# Casting back to float16 here modifies results
|
|
# hidden_states = hidden_states.to(dtype=self.wo_cast[1])
|
|
return hidden_states
|
|
|
|
|
|
class T5DenseGatedActDense(nn.Module):
|
|
def __init__(self, config: T5Config, prefix, weights):
|
|
super().__init__()
|
|
self.wi_0 = TensorParallelColumnLinear.load(
|
|
config, prefix=f"{prefix}.wi_0", weights=weights, bias=False
|
|
)
|
|
self.wi_1 = TensorParallelColumnLinear.load(
|
|
config, prefix=f"{prefix}.wi_1", weights=weights, bias=False
|
|
)
|
|
### XXX: T5 models do not handle well both f16 and quantization.
|
|
### Overidding specifically this layer for that reason.
|
|
### https://github.com/huggingface/transformers/blob/main/src/transformers/models/t5/modeling_t5.py#L316
|
|
### https://github.com/huggingface/transformers/issues/20287
|
|
_q = config.quantize
|
|
_dtype = weights.dtype
|
|
weights.dtype = torch.float32
|
|
config.quantize = None
|
|
self.wo_cast = (torch.float32, _dtype)
|
|
self.wo = TensorParallelRowLinear.load(
|
|
config, prefix=f"{prefix}.wo", weights=weights, bias=False
|
|
)
|
|
weights.dtype = _dtype
|
|
config.quantize = _q
|
|
|
|
self.dropout = nn.Dropout(config.dropout_rate)
|
|
self.act = (
|
|
ACT2FN[config.dense_act_fn]
|
|
if "gelu" not in config.dense_act_fn
|
|
else lambda x: torch.nn.functional.gelu(x, approximate="tanh")
|
|
)
|
|
|
|
def forward(self, hidden_states):
|
|
hidden_gelu = self.act(self.wi_0(hidden_states))
|
|
hidden_linear = self.wi_1(hidden_states)
|
|
hidden_states = hidden_gelu * hidden_linear
|
|
hidden_states = self.dropout(hidden_states)
|
|
|
|
hidden_states = hidden_states.to(dtype=self.wo_cast[0])
|
|
hidden_states = self.wo(hidden_states)
|
|
# XXX: Recasting is already done within the layer norm.
|
|
# Casting back to float16 here modifies results
|
|
# hidden_states = hidden_states.to(dtype=self.wo_cast[1])
|
|
return hidden_states
|
|
|
|
|
|
class T5LayerFF(nn.Module):
|
|
def __init__(self, config: T5Config, prefix, weights):
|
|
super().__init__()
|
|
if config.is_gated_act:
|
|
self.DenseReluDense = T5DenseGatedActDense(
|
|
config, prefix=f"{prefix}.DenseReluDense", weights=weights
|
|
)
|
|
else:
|
|
self.DenseReluDense = T5DenseActDense(
|
|
config, prefix=f"{prefix}.DenseReluDense", weights=weights
|
|
)
|
|
|
|
self.layer_norm = T5LayerNorm(
|
|
prefix=f"{prefix}.layer_norm",
|
|
weights=weights,
|
|
eps=config.layer_norm_epsilon,
|
|
)
|
|
self.dropout = nn.Dropout(config.dropout_rate)
|
|
|
|
def forward(self, hidden_states):
|
|
forwarded_states = self.layer_norm(hidden_states)
|
|
forwarded_states = self.DenseReluDense(forwarded_states)
|
|
hidden_states = hidden_states + self.dropout(forwarded_states)
|
|
return hidden_states
|
|
|
|
|
|
class T5Attention(nn.Module):
|
|
def __init__(
|
|
self, config: T5Config, prefix, weights, has_relative_attention_bias=False
|
|
):
|
|
super().__init__()
|
|
self.is_decoder = config.is_decoder
|
|
self.has_relative_attention_bias = has_relative_attention_bias
|
|
self.relative_attention_num_buckets = config.relative_attention_num_buckets
|
|
self.relative_attention_max_distance = config.relative_attention_max_distance
|
|
self.d_model = config.d_model
|
|
self.key_value_proj_dim = config.d_kv
|
|
self.n_heads = config.num_heads
|
|
self.dropout = config.dropout_rate
|
|
self.inner_dim = self.n_heads * self.key_value_proj_dim
|
|
|
|
process_group = weights.process_group
|
|
# Mesh TensorFlow initialization to avoid scaling before softmax
|
|
assert self.n_heads % process_group.size() == 0
|
|
self.q = TensorParallelColumnLinear.load(
|
|
config, prefix=f"{prefix}.q", weights=weights, bias=False
|
|
)
|
|
self.k = TensorParallelColumnLinear.load(
|
|
config, prefix=f"{prefix}.k", weights=weights, bias=False
|
|
)
|
|
self.v = TensorParallelColumnLinear.load(
|
|
config, prefix=f"{prefix}.v", weights=weights, bias=False
|
|
)
|
|
self.o = TensorParallelRowLinear.load(
|
|
config, prefix=f"{prefix}.o", weights=weights, bias=False
|
|
)
|
|
if self.n_heads % weights.process_group.size() != 0:
|
|
raise ValueError(
|
|
f"`n_heads` must be divisible by `num_shards` (got `n_heads`: {self.n_heads} "
|
|
f"and `num_shards`: {weights.process_group.size()}"
|
|
)
|
|
self.n_heads = self.n_heads // process_group.size()
|
|
self.inner_dim = self.inner_dim // process_group.size()
|
|
|
|
if self.has_relative_attention_bias:
|
|
self.relative_attention_bias = PartialTPEmbedding(
|
|
prefix=f"{prefix}.relative_attention_bias", weights=weights
|
|
)
|
|
|
|
@staticmethod
|
|
def _relative_position_bucket(
|
|
relative_position, bidirectional=True, num_buckets=32, max_distance=128
|
|
):
|
|
"""
|
|
Adapted from Mesh Tensorflow:
|
|
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
|
|
|
|
Translate relative position to a bucket number for relative attention. The relative position is defined as
|
|
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
|
|
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
|
|
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
|
|
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
|
|
This should allow for more graceful generalization to longer sequences than the model has been trained on
|
|
|
|
Args:
|
|
relative_position: an int32 Tensor
|
|
bidirectional: a boolean - whether the attention is bidirectional
|
|
num_buckets: an integer
|
|
max_distance: an integer
|
|
|
|
Returns:
|
|
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
|
|
"""
|
|
relative_buckets = 0
|
|
if bidirectional:
|
|
num_buckets //= 2
|
|
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
|
|
relative_position = torch.abs(relative_position)
|
|
else:
|
|
relative_position = -torch.min(
|
|
relative_position, torch.zeros_like(relative_position)
|
|
)
|
|
# now relative_position is in the range [0, inf)
|
|
|
|
# half of the buckets are for exact increments in positions
|
|
max_exact = num_buckets // 2
|
|
is_small = relative_position < max_exact
|
|
|
|
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
|
|
relative_position_if_large = max_exact + (
|
|
torch.log(relative_position.float() / max_exact)
|
|
/ math.log(max_distance / max_exact)
|
|
* (num_buckets - max_exact)
|
|
).to(torch.long)
|
|
relative_position_if_large = torch.min(
|
|
relative_position_if_large,
|
|
torch.full_like(relative_position_if_large, num_buckets - 1),
|
|
)
|
|
|
|
relative_buckets += torch.where(
|
|
is_small, relative_position, relative_position_if_large
|
|
)
|
|
return relative_buckets
|
|
|
|
def compute_bias(self, query_length, key_length, device=None):
|
|
"""Compute binned relative position bias"""
|
|
if device is None:
|
|
device = self.relative_attention_bias.weight.device
|
|
context_position = torch.arange(query_length, dtype=torch.long, device=device)[
|
|
:, None
|
|
]
|
|
memory_position = torch.arange(key_length, dtype=torch.long, device=device)[
|
|
None, :
|
|
]
|
|
relative_position = (
|
|
memory_position - context_position
|
|
) # shape (query_length, key_length)
|
|
relative_position_bucket = self._relative_position_bucket(
|
|
relative_position, # shape (query_length, key_length)
|
|
bidirectional=(not self.is_decoder),
|
|
num_buckets=self.relative_attention_num_buckets,
|
|
max_distance=self.relative_attention_max_distance,
|
|
)
|
|
values = self.relative_attention_bias(
|
|
relative_position_bucket
|
|
) # shape (query_length, key_length, num_heads)
|
|
values = values.permute([2, 0, 1]).unsqueeze(
|
|
0
|
|
) # shape (1, num_heads, query_length, key_length)
|
|
return values
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states,
|
|
mask=None,
|
|
key_value_states=None,
|
|
position_bias=None,
|
|
past_key_value=None,
|
|
layer_head_mask=None,
|
|
query_length=None,
|
|
use_cache=False,
|
|
output_attentions=False,
|
|
):
|
|
"""
|
|
Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states).
|
|
"""
|
|
# Input is (batch_size, seq_length, dim)
|
|
# Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length)
|
|
# past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head)
|
|
|
|
batch_size, seq_length = hidden_states.shape[:2]
|
|
|
|
real_seq_length = seq_length
|
|
|
|
if past_key_value is not None:
|
|
assert (
|
|
len(past_key_value) == 2
|
|
), f"past_key_value should have 2 past states: keys and values. Got {len(past_key_value)} past states"
|
|
real_seq_length += (
|
|
past_key_value[0].shape[2] if query_length is None else query_length
|
|
)
|
|
|
|
key_length = (
|
|
real_seq_length if key_value_states is None else key_value_states.shape[1]
|
|
)
|
|
|
|
def shape(states):
|
|
"""projection"""
|
|
return states.view(
|
|
batch_size, -1, self.n_heads, self.key_value_proj_dim
|
|
).transpose(1, 2)
|
|
|
|
def unshape(states):
|
|
"""reshape"""
|
|
return (
|
|
states.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim)
|
|
)
|
|
|
|
def project(hidden_states, proj_layer, key_value_states, past_key_value):
|
|
"""projects hidden states correctly to key/query states"""
|
|
if key_value_states is None:
|
|
# self-attn
|
|
# (batch_size, n_heads, seq_length, dim_per_head)
|
|
hidden_states = shape(proj_layer(hidden_states))
|
|
elif past_key_value is None:
|
|
# cross-attn
|
|
# (batch_size, n_heads, seq_length, dim_per_head)
|
|
hidden_states = shape(proj_layer(key_value_states))
|
|
|
|
if past_key_value is not None:
|
|
if key_value_states is None:
|
|
# self-attn
|
|
# (batch_size, n_heads, key_length, dim_per_head)
|
|
hidden_states = torch.cat([past_key_value, hidden_states], dim=2)
|
|
elif past_key_value.shape[2] != key_value_states.shape[1]:
|
|
# checking that the `sequence_length` of the `past_key_value` is the same as
|
|
# the provided `key_value_states` to support prefix tuning
|
|
# cross-attn
|
|
# (batch_size, n_heads, seq_length, dim_per_head)
|
|
hidden_states = shape(proj_layer(key_value_states))
|
|
else:
|
|
# cross-attn
|
|
hidden_states = past_key_value
|
|
return hidden_states
|
|
|
|
# get query states
|
|
query_states = shape(
|
|
self.q(hidden_states)
|
|
) # (batch_size, n_heads, seq_length, dim_per_head)
|
|
|
|
# get key/value states
|
|
key_states = project(
|
|
hidden_states,
|
|
self.k,
|
|
key_value_states,
|
|
past_key_value[0] if past_key_value is not None else None,
|
|
)
|
|
value_states = project(
|
|
hidden_states,
|
|
self.v,
|
|
key_value_states,
|
|
past_key_value[1] if past_key_value is not None else None,
|
|
)
|
|
|
|
# compute scores
|
|
scores = torch.matmul(
|
|
query_states, key_states.transpose(3, 2)
|
|
) # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9
|
|
|
|
if position_bias is None:
|
|
if not self.has_relative_attention_bias:
|
|
position_bias = torch.zeros(
|
|
(1, self.n_heads, real_seq_length, key_length),
|
|
device=scores.device,
|
|
dtype=scores.dtype,
|
|
)
|
|
else:
|
|
position_bias = self.compute_bias(
|
|
real_seq_length, key_length, device=scores.device
|
|
)
|
|
|
|
# if key and values are already calculated
|
|
# we want only the last query position bias
|
|
if past_key_value is not None:
|
|
position_bias = position_bias[:, :, -hidden_states.size(1) :, :]
|
|
|
|
if mask is not None:
|
|
position_bias = (
|
|
position_bias + mask
|
|
) # (batch_size, n_heads, seq_length, key_length)
|
|
|
|
position_bias_masked = position_bias
|
|
|
|
scores += position_bias_masked
|
|
attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as(
|
|
scores
|
|
) # (batch_size, n_heads, seq_length, key_length)
|
|
attn_weights = nn.functional.dropout(
|
|
attn_weights, p=self.dropout, training=self.training
|
|
) # (batch_size, n_heads, seq_length, key_length)
|
|
|
|
# Mask heads if we want to
|
|
if layer_head_mask is not None:
|
|
attn_weights = attn_weights * layer_head_mask
|
|
|
|
attn_output = unshape(
|
|
torch.matmul(attn_weights, value_states)
|
|
) # (batch_size, seq_length, dim)
|
|
attn_output = self.o(attn_output)
|
|
|
|
present_key_value_state = (
|
|
(key_states, value_states) if (self.is_decoder and use_cache) else None
|
|
)
|
|
outputs = (attn_output,) + (present_key_value_state,) + (position_bias,)
|
|
|
|
if output_attentions:
|
|
outputs = outputs + (attn_weights,)
|
|
return outputs
|
|
|
|
|
|
class T5LayerSelfAttention(nn.Module):
|
|
def __init__(self, config, prefix, weights, has_relative_attention_bias=False):
|
|
super().__init__()
|
|
self.SelfAttention = T5Attention(
|
|
config,
|
|
prefix=f"{prefix}.SelfAttention",
|
|
weights=weights,
|
|
has_relative_attention_bias=has_relative_attention_bias,
|
|
)
|
|
self.layer_norm = T5LayerNorm(
|
|
prefix=f"{prefix}.layer_norm",
|
|
weights=weights,
|
|
eps=config.layer_norm_epsilon,
|
|
)
|
|
self.dropout = nn.Dropout(config.dropout_rate)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states,
|
|
attention_mask=None,
|
|
position_bias=None,
|
|
layer_head_mask=None,
|
|
past_key_value=None,
|
|
use_cache=False,
|
|
output_attentions=False,
|
|
):
|
|
normed_hidden_states = self.layer_norm(hidden_states)
|
|
attention_output = self.SelfAttention(
|
|
normed_hidden_states,
|
|
mask=attention_mask,
|
|
position_bias=position_bias,
|
|
layer_head_mask=layer_head_mask,
|
|
past_key_value=past_key_value,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
)
|
|
hidden_states = hidden_states + self.dropout(attention_output[0])
|
|
outputs = (hidden_states,) + attention_output[
|
|
1:
|
|
] # add attentions if we output them
|
|
return outputs
|
|
|
|
|
|
class T5LayerCrossAttention(nn.Module):
|
|
def __init__(self, config, prefix, weights):
|
|
super().__init__()
|
|
self.EncDecAttention = T5Attention(
|
|
config,
|
|
prefix=f"{prefix}.EncDecAttention",
|
|
weights=weights,
|
|
has_relative_attention_bias=False,
|
|
)
|
|
self.layer_norm = T5LayerNorm(
|
|
prefix=f"{prefix}.layer_norm",
|
|
weights=weights,
|
|
eps=config.layer_norm_epsilon,
|
|
)
|
|
self.dropout = nn.Dropout(config.dropout_rate)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states,
|
|
key_value_states,
|
|
attention_mask=None,
|
|
position_bias=None,
|
|
layer_head_mask=None,
|
|
past_key_value=None,
|
|
use_cache=False,
|
|
query_length=None,
|
|
output_attentions=False,
|
|
):
|
|
normed_hidden_states = self.layer_norm(hidden_states)
|
|
attention_output = self.EncDecAttention(
|
|
normed_hidden_states,
|
|
mask=attention_mask,
|
|
key_value_states=key_value_states,
|
|
position_bias=position_bias,
|
|
layer_head_mask=layer_head_mask,
|
|
past_key_value=past_key_value,
|
|
use_cache=use_cache,
|
|
query_length=query_length,
|
|
output_attentions=output_attentions,
|
|
)
|
|
layer_output = hidden_states + self.dropout(attention_output[0])
|
|
outputs = (layer_output,) + attention_output[
|
|
1:
|
|
] # add attentions if we output them
|
|
return outputs
|
|
|
|
|
|
class T5Block(nn.Module):
|
|
def __init__(self, config, prefix, weights, has_relative_attention_bias: bool):
|
|
super().__init__()
|
|
self.is_decoder = config.is_decoder
|
|
self.layer = nn.ModuleList()
|
|
self.layer.append(
|
|
T5LayerSelfAttention(
|
|
config,
|
|
prefix=f"{prefix}.layer.0",
|
|
weights=weights,
|
|
has_relative_attention_bias=has_relative_attention_bias,
|
|
)
|
|
)
|
|
if self.is_decoder:
|
|
i = 2
|
|
self.layer.append(
|
|
T5LayerCrossAttention(
|
|
config, prefix=f"{prefix}.layer.1", weights=weights
|
|
)
|
|
)
|
|
else:
|
|
i = 1
|
|
|
|
self.layer.append(
|
|
T5LayerFF(config, prefix=f"{prefix}.layer.{i}", weights=weights)
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states,
|
|
attention_mask=None,
|
|
position_bias=None,
|
|
encoder_hidden_states=None,
|
|
encoder_attention_mask=None,
|
|
encoder_decoder_position_bias=None,
|
|
layer_head_mask=None,
|
|
cross_attn_layer_head_mask=None,
|
|
past_key_value=None,
|
|
use_cache=False,
|
|
output_attentions=False,
|
|
return_dict=True,
|
|
):
|
|
if past_key_value is not None:
|
|
if not self.is_decoder:
|
|
logger.warning(
|
|
"`past_key_values` is passed to the encoder. Please make sure this is intended."
|
|
)
|
|
expected_num_past_key_values = 2 if encoder_hidden_states is None else 4
|
|
|
|
if len(past_key_value) != expected_num_past_key_values:
|
|
raise ValueError(
|
|
f"There should be {expected_num_past_key_values} past states. "
|
|
f"{'2 (past / key) for cross attention. ' if expected_num_past_key_values == 4 else ''}"
|
|
f"Got {len(past_key_value)} past key / value states"
|
|
)
|
|
|
|
self_attn_past_key_value = past_key_value[:2]
|
|
cross_attn_past_key_value = past_key_value[2:]
|
|
else:
|
|
self_attn_past_key_value, cross_attn_past_key_value = None, None
|
|
|
|
self_attention_outputs = self.layer[0](
|
|
hidden_states,
|
|
attention_mask=attention_mask,
|
|
position_bias=position_bias,
|
|
layer_head_mask=layer_head_mask,
|
|
past_key_value=self_attn_past_key_value,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
)
|
|
hidden_states, present_key_value_state = self_attention_outputs[:2]
|
|
attention_outputs = self_attention_outputs[
|
|
2:
|
|
] # Keep self-attention outputs and relative position weights
|
|
|
|
# clamp inf values to enable fp16 training
|
|
if hidden_states.dtype == torch.float16:
|
|
clamp_value = torch.where(
|
|
torch.isinf(hidden_states).any(),
|
|
torch.finfo(hidden_states.dtype).max - 1000,
|
|
torch.finfo(hidden_states.dtype).max,
|
|
)
|
|
hidden_states = torch.clamp(
|
|
hidden_states, min=-clamp_value, max=clamp_value
|
|
)
|
|
|
|
do_cross_attention = self.is_decoder and encoder_hidden_states is not None
|
|
if do_cross_attention:
|
|
# the actual query length is unknown for cross attention
|
|
# if using past key value states. Need to inject it here
|
|
if present_key_value_state is not None:
|
|
query_length = present_key_value_state[0].shape[2]
|
|
else:
|
|
query_length = None
|
|
|
|
cross_attention_outputs = self.layer[1](
|
|
hidden_states,
|
|
key_value_states=encoder_hidden_states,
|
|
attention_mask=encoder_attention_mask,
|
|
position_bias=encoder_decoder_position_bias,
|
|
layer_head_mask=cross_attn_layer_head_mask,
|
|
past_key_value=cross_attn_past_key_value,
|
|
query_length=query_length,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
)
|
|
hidden_states = cross_attention_outputs[0]
|
|
|
|
# clamp inf values to enable fp16 training
|
|
if hidden_states.dtype == torch.float16:
|
|
clamp_value = torch.where(
|
|
torch.isinf(hidden_states).any(),
|
|
torch.finfo(hidden_states.dtype).max - 1000,
|
|
torch.finfo(hidden_states.dtype).max,
|
|
)
|
|
hidden_states = torch.clamp(
|
|
hidden_states, min=-clamp_value, max=clamp_value
|
|
)
|
|
|
|
# Combine self attn and cross attn key value states
|
|
if present_key_value_state is not None:
|
|
present_key_value_state = (
|
|
present_key_value_state + cross_attention_outputs[1]
|
|
)
|
|
|
|
# Keep cross-attention outputs and relative position weights
|
|
attention_outputs = attention_outputs + cross_attention_outputs[2:]
|
|
|
|
# Apply Feed Forward layer
|
|
hidden_states = self.layer[-1](hidden_states)
|
|
|
|
# clamp inf values to enable fp16 training
|
|
if hidden_states.dtype == torch.float16:
|
|
clamp_value = torch.where(
|
|
torch.isinf(hidden_states).any(),
|
|
torch.finfo(hidden_states.dtype).max - 1000,
|
|
torch.finfo(hidden_states.dtype).max,
|
|
)
|
|
hidden_states = torch.clamp(
|
|
hidden_states, min=-clamp_value, max=clamp_value
|
|
)
|
|
|
|
outputs = (hidden_states,)
|
|
|
|
if use_cache:
|
|
outputs = outputs + (present_key_value_state,) + attention_outputs
|
|
else:
|
|
outputs = outputs + attention_outputs
|
|
|
|
return outputs # hidden-states, present_key_value_states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
|
|
|
|
|
|
class T5PreTrainedModel(PreTrainedModel):
|
|
"""
|
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
|
models.
|
|
"""
|
|
|
|
config_class = T5Config
|
|
|
|
def _shift_right(self, input_ids):
|
|
decoder_start_token_id = self.config.decoder_start_token_id
|
|
pad_token_id = self.config.pad_token_id
|
|
|
|
assert decoder_start_token_id is not None, (
|
|
"self.model.config.decoder_start_token_id has to be defined. In T5 it is usually set to the pad_token_id."
|
|
" See T5 docs for more information"
|
|
)
|
|
|
|
# shift inputs to the right
|
|
if is_torch_fx_proxy(input_ids):
|
|
# Item assignment is not supported natively for proxies.
|
|
shifted_input_ids = torch.full(
|
|
input_ids.shape[:-1] + (1,), decoder_start_token_id
|
|
)
|
|
shifted_input_ids = torch.cat(
|
|
[shifted_input_ids, input_ids[..., :-1]], dim=-1
|
|
)
|
|
else:
|
|
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
|
|
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone()
|
|
shifted_input_ids[..., 0] = decoder_start_token_id
|
|
|
|
assert (
|
|
pad_token_id is not None
|
|
), "self.model.config.pad_token_id has to be defined."
|
|
# replace possible -100 values in labels by `pad_token_id`
|
|
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
|
|
|
|
return shifted_input_ids
|
|
|
|
|
|
class T5Stack(T5PreTrainedModel):
|
|
def __init__(self, config, prefix, weights, embed_tokens):
|
|
super().__init__(config)
|
|
|
|
self.is_decoder = config.is_decoder
|
|
|
|
self.embed_tokens = embed_tokens
|
|
self.block = nn.ModuleList(
|
|
[
|
|
T5Block(
|
|
config,
|
|
prefix=f"{prefix}.block.{layer_id}",
|
|
weights=weights,
|
|
has_relative_attention_bias=(layer_id == 0),
|
|
)
|
|
for layer_id in range(config.num_layers)
|
|
]
|
|
)
|
|
self.final_layer_norm = T5LayerNorm(
|
|
prefix=f"{prefix}.final_layer_norm",
|
|
weights=weights,
|
|
eps=config.layer_norm_epsilon,
|
|
)
|
|
self.dropout = nn.Dropout(config.dropout_rate)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids=None,
|
|
attention_mask=None,
|
|
encoder_hidden_states=None,
|
|
encoder_attention_mask=None,
|
|
inputs_embeds=None,
|
|
head_mask=None,
|
|
cross_attn_head_mask=None,
|
|
past_key_values=None,
|
|
use_cache=None,
|
|
output_attentions=None,
|
|
output_hidden_states=None,
|
|
return_dict=None,
|
|
):
|
|
# Model parallel
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
output_attentions = (
|
|
output_attentions
|
|
if output_attentions is not None
|
|
else self.config.output_attentions
|
|
)
|
|
output_hidden_states = (
|
|
output_hidden_states
|
|
if output_hidden_states is not None
|
|
else self.config.output_hidden_states
|
|
)
|
|
return_dict = (
|
|
return_dict if return_dict is not None else self.config.use_return_dict
|
|
)
|
|
|
|
if input_ids is not None and inputs_embeds is not None:
|
|
err_msg_prefix = "decoder_" if self.is_decoder else ""
|
|
raise ValueError(
|
|
f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time"
|
|
)
|
|
elif input_ids is not None:
|
|
input_shape = input_ids.size()
|
|
input_ids = input_ids.view(-1, input_shape[-1])
|
|
elif inputs_embeds is not None:
|
|
input_shape = inputs_embeds.size()[:-1]
|
|
else:
|
|
err_msg_prefix = "decoder_" if self.is_decoder else ""
|
|
raise ValueError(
|
|
f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds"
|
|
)
|
|
|
|
if inputs_embeds is None:
|
|
assert (
|
|
self.embed_tokens is not None
|
|
), "You have to initialize the model with valid token embeddings"
|
|
inputs_embeds = self.embed_tokens(input_ids)
|
|
|
|
batch_size, seq_length = input_shape
|
|
|
|
# required mask seq length can be calculated via length of past
|
|
mask_seq_length = (
|
|
past_key_values[0][0].shape[2] + seq_length
|
|
if past_key_values is not None
|
|
else seq_length
|
|
)
|
|
|
|
if use_cache is True:
|
|
assert (
|
|
self.is_decoder
|
|
), f"`use_cache` can only be set to `True` if {self} is used as a decoder"
|
|
|
|
if attention_mask is None:
|
|
attention_mask = torch.ones(
|
|
batch_size, mask_seq_length, device=inputs_embeds.device
|
|
)
|
|
if (
|
|
self.is_decoder
|
|
and encoder_attention_mask is None
|
|
and encoder_hidden_states is not None
|
|
):
|
|
encoder_seq_length = encoder_hidden_states.shape[1]
|
|
encoder_attention_mask = torch.ones(
|
|
batch_size,
|
|
encoder_seq_length,
|
|
device=inputs_embeds.device,
|
|
dtype=torch.long,
|
|
)
|
|
|
|
# initialize past_key_values with `None` if past does not exist
|
|
if past_key_values is None:
|
|
past_key_values = [None] * len(self.block)
|
|
|
|
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
|
# ourselves in which case we just need to make it broadcastable to all heads.
|
|
extended_attention_mask = self.get_extended_attention_mask(
|
|
attention_mask, input_shape
|
|
)
|
|
|
|
# If a 2D or 3D attention mask is provided for the cross-attention
|
|
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
|
if self.is_decoder and encoder_hidden_states is not None:
|
|
(
|
|
encoder_batch_size,
|
|
encoder_sequence_length,
|
|
_,
|
|
) = encoder_hidden_states.size()
|
|
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
|
if encoder_attention_mask is None:
|
|
encoder_attention_mask = torch.ones(
|
|
encoder_hidden_shape, device=inputs_embeds.device
|
|
)
|
|
encoder_extended_attention_mask = self.invert_attention_mask(
|
|
encoder_attention_mask
|
|
)
|
|
else:
|
|
encoder_extended_attention_mask = None
|
|
|
|
# Prepare head mask if needed
|
|
head_mask = self.get_head_mask(head_mask, self.config.num_layers)
|
|
cross_attn_head_mask = self.get_head_mask(
|
|
cross_attn_head_mask, self.config.num_layers
|
|
)
|
|
present_key_value_states = () if use_cache else None
|
|
all_hidden_states = () if output_hidden_states else None
|
|
all_attentions = () if output_attentions else None
|
|
all_cross_attentions = () if (output_attentions and self.is_decoder) else None
|
|
position_bias = None
|
|
encoder_decoder_position_bias = None
|
|
|
|
hidden_states = self.dropout(inputs_embeds)
|
|
|
|
for i, (layer_module, past_key_value) in enumerate(
|
|
zip(self.block, past_key_values)
|
|
):
|
|
layer_head_mask = head_mask[i]
|
|
cross_attn_layer_head_mask = cross_attn_head_mask[i]
|
|
# Model parallel
|
|
if output_hidden_states:
|
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
|
|
|
layer_outputs = layer_module(
|
|
hidden_states,
|
|
attention_mask=extended_attention_mask,
|
|
position_bias=position_bias,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
encoder_attention_mask=encoder_extended_attention_mask,
|
|
encoder_decoder_position_bias=encoder_decoder_position_bias,
|
|
layer_head_mask=layer_head_mask,
|
|
cross_attn_layer_head_mask=cross_attn_layer_head_mask,
|
|
past_key_value=past_key_value,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
)
|
|
|
|
# layer_outputs is a tuple with:
|
|
# hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
|
|
if use_cache is False:
|
|
layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:]
|
|
|
|
hidden_states, present_key_value_state = layer_outputs[:2]
|
|
|
|
# We share the position biases between the layers - the first layer store them
|
|
# layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights),
|
|
# (cross-attention position bias), (cross-attention weights)
|
|
position_bias = layer_outputs[2]
|
|
if self.is_decoder and encoder_hidden_states is not None:
|
|
encoder_decoder_position_bias = layer_outputs[
|
|
4 if output_attentions else 3
|
|
]
|
|
# append next layer key value states
|
|
if use_cache:
|
|
present_key_value_states = present_key_value_states + (
|
|
present_key_value_state,
|
|
)
|
|
|
|
if output_attentions:
|
|
all_attentions = all_attentions + (layer_outputs[3],)
|
|
if self.is_decoder:
|
|
all_cross_attentions = all_cross_attentions + (layer_outputs[5],)
|
|
|
|
hidden_states = self.final_layer_norm(hidden_states)
|
|
hidden_states = self.dropout(hidden_states)
|
|
|
|
# Add last layer
|
|
if output_hidden_states:
|
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
|
|
|
if not return_dict:
|
|
return tuple(
|
|
v
|
|
for v in [
|
|
hidden_states,
|
|
present_key_value_states,
|
|
all_hidden_states,
|
|
all_attentions,
|
|
all_cross_attentions,
|
|
]
|
|
if v is not None
|
|
)
|
|
return BaseModelOutputWithPastAndCrossAttentions(
|
|
last_hidden_state=hidden_states,
|
|
past_key_values=present_key_value_states,
|
|
hidden_states=all_hidden_states,
|
|
attentions=all_attentions,
|
|
cross_attentions=all_cross_attentions,
|
|
)
|
|
|
|
|
|
class T5ForConditionalGeneration(T5PreTrainedModel):
|
|
def __init__(self, config: T5Config, weights):
|
|
super().__init__(config)
|
|
self.model_dim = config.d_model
|
|
|
|
self.shared = TensorParallelEmbedding(prefix="shared", weights=weights)
|
|
|
|
encoder_config = copy.deepcopy(config)
|
|
encoder_config.is_decoder = False
|
|
encoder_config.use_cache = False
|
|
encoder_config.is_encoder_decoder = False
|
|
self.encoder = T5Stack(
|
|
config=encoder_config,
|
|
prefix="encoder",
|
|
weights=weights,
|
|
embed_tokens=self.shared,
|
|
)
|
|
|
|
decoder_config = copy.deepcopy(config)
|
|
decoder_config.is_decoder = True
|
|
decoder_config.is_encoder_decoder = False
|
|
decoder_config.num_layers = config.num_decoder_layers
|
|
self.decoder = T5Stack(
|
|
config=decoder_config,
|
|
prefix="decoder",
|
|
weights=weights,
|
|
embed_tokens=self.shared,
|
|
)
|
|
|
|
try:
|
|
self.lm_head = SpeculativeHead.load(
|
|
config, prefix="lm_head", weights=weights
|
|
)
|
|
except RuntimeError:
|
|
# Some models like t5-small were saved with shared weights unlike flan
|
|
# Since they are declared as the same arch we have no choice but hope
|
|
# that this is OK instead of using a proper flag.
|
|
self.lm_head = SpeculativeHead.load(
|
|
config, prefix="shared", weights=weights
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: Optional[torch.LongTensor] = None,
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
decoder_input_ids: Optional[torch.LongTensor] = None,
|
|
decoder_attention_mask: Optional[torch.BoolTensor] = None,
|
|
head_mask: Optional[torch.FloatTensor] = None,
|
|
decoder_head_mask: Optional[torch.FloatTensor] = None,
|
|
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
|
encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
labels: Optional[torch.LongTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
return_dict = (
|
|
return_dict if return_dict is not None else self.config.use_return_dict
|
|
)
|
|
|
|
# FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
|
|
if head_mask is not None and decoder_head_mask is None:
|
|
if self.config.num_layers == self.config.num_decoder_layers:
|
|
warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning)
|
|
decoder_head_mask = head_mask
|
|
|
|
# Encode if needed (training, first prediction pass)
|
|
if encoder_outputs is None:
|
|
# Convert encoder inputs in embeddings if needed
|
|
encoder_outputs = self.encoder(
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
inputs_embeds=inputs_embeds,
|
|
head_mask=head_mask,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
|
|
encoder_outputs = BaseModelOutput(
|
|
last_hidden_state=encoder_outputs[0],
|
|
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
|
|
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
|
|
)
|
|
|
|
hidden_states = encoder_outputs[0]
|
|
|
|
if (
|
|
labels is not None
|
|
and decoder_input_ids is None
|
|
and decoder_inputs_embeds is None
|
|
):
|
|
# get decoder inputs from shifting lm labels to the right
|
|
decoder_input_ids = self._shift_right(labels)
|
|
|
|
# Decode
|
|
decoder_outputs = self.decoder(
|
|
input_ids=decoder_input_ids,
|
|
attention_mask=decoder_attention_mask,
|
|
inputs_embeds=decoder_inputs_embeds,
|
|
past_key_values=past_key_values,
|
|
encoder_hidden_states=hidden_states,
|
|
encoder_attention_mask=attention_mask,
|
|
head_mask=decoder_head_mask,
|
|
cross_attn_head_mask=cross_attn_head_mask,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
|
|
sequence_output = decoder_outputs[0]
|
|
|
|
if self.config.tie_word_embeddings:
|
|
# Rescale output before projecting on vocab
|
|
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586
|
|
sequence_output = sequence_output * (self.model_dim**-0.5)
|
|
|
|
logits, speculative_logits = self.lm_head(sequence_output)
|
|
|
|
loss = None
|
|
if labels is not None:
|
|
loss_fct = CrossEntropyLoss(ignore_index=-100)
|
|
# move labels to correct device to enable PP
|
|
labels = labels.to(lm_logits.device)
|
|
loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1))
|
|
# TODO(thom): Add z_loss https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L666
|
|
|
|
if not return_dict:
|
|
output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs
|
|
return ((loss,) + output) if loss is not None else output
|
|
|
|
return (
|
|
Seq2SeqLMOutput(
|
|
loss=loss,
|
|
logits=logits,
|
|
past_key_values=decoder_outputs.past_key_values,
|
|
decoder_hidden_states=decoder_outputs.hidden_states,
|
|
decoder_attentions=decoder_outputs.attentions,
|
|
cross_attentions=decoder_outputs.cross_attentions,
|
|
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
|
encoder_hidden_states=encoder_outputs.hidden_states,
|
|
encoder_attentions=encoder_outputs.attentions,
|
|
),
|
|
speculative_logits,
|
|
)
|
|
|
|
def prepare_inputs_for_generation(
|
|
self,
|
|
input_ids,
|
|
past_key_values=None,
|
|
attention_mask=None,
|
|
head_mask=None,
|
|
decoder_head_mask=None,
|
|
decoder_attention_mask=None,
|
|
cross_attn_head_mask=None,
|
|
use_cache=None,
|
|
encoder_outputs=None,
|
|
**kwargs,
|
|
):
|
|
# cut decoder_input_ids if past is used
|
|
if past_key_values is not None:
|
|
input_ids = input_ids[:, -1:]
|
|
|
|
return {
|
|
"decoder_input_ids": input_ids,
|
|
"past_key_values": past_key_values,
|
|
"encoder_outputs": encoder_outputs,
|
|
"attention_mask": attention_mask,
|
|
"head_mask": head_mask,
|
|
"decoder_head_mask": decoder_head_mask,
|
|
"decoder_attention_mask": decoder_attention_mask,
|
|
"cross_attn_head_mask": cross_attn_head_mask,
|
|
"use_cache": use_cache,
|
|
}
|
|
|
|
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
|
|
return self._shift_right(labels)
|
|
|
|
def _reorder_cache(self, past_key_values, beam_idx):
|
|
# if decoder past is not included in output
|
|
# speedy decoding is disabled and no need to reorder
|
|
if past_key_values is None:
|
|
logger.warning(
|
|
"You might want to consider setting `use_cache=True` to speed up decoding"
|
|
)
|
|
return past_key_values
|
|
|
|
reordered_decoder_past = ()
|
|
for layer_past_states in past_key_values:
|
|
# get the correct batch idx from layer past batch dim
|
|
# batch dim of `past` is at 2nd position
|
|
reordered_layer_past_states = ()
|
|
for layer_past_state in layer_past_states:
|
|
# need to set correct `past` for each of the four key / value states
|
|
reordered_layer_past_states = reordered_layer_past_states + (
|
|
layer_past_state.index_select(
|
|
0, beam_idx.to(layer_past_state.device)
|
|
),
|
|
)
|
|
|
|
assert reordered_layer_past_states[0].shape == layer_past_states[0].shape
|
|
assert len(reordered_layer_past_states) == len(layer_past_states)
|
|
|
|
reordered_decoder_past = reordered_decoder_past + (
|
|
reordered_layer_past_states,
|
|
)
|
|
return reordered_decoder_past
|