mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-04-21 14:52:20 +00:00
# What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil -->
420 lines
17 KiB
Python
420 lines
17 KiB
Python
import os
|
|
import torch
|
|
from torch import nn
|
|
|
|
from text_generation_server.utils.import_utils import SYSTEM
|
|
|
|
if SYSTEM == "cuda":
|
|
from flash_attn.layers.rotary import RotaryEmbedding
|
|
import rotary_emb
|
|
elif SYSTEM == "rocm":
|
|
from vllm import pos_encoding_ops
|
|
|
|
|
|
def _create_inv_freq(dim, base, device):
|
|
inv_freq = 1.0 / (
|
|
base ** (torch.arange(0, dim, 2, device=device, dtype=torch.float32) / dim)
|
|
)
|
|
return inv_freq
|
|
|
|
|
|
def _get_rope_config(config):
|
|
if os.getenv("ROPE_SCALING", None) is not None:
|
|
rope_scaling = {
|
|
"type": os.environ["ROPE_SCALING"],
|
|
"factor": float(os.environ["ROPE_FACTOR"]),
|
|
}
|
|
return rope_scaling
|
|
return getattr(config, "rope_scaling", None)
|
|
|
|
|
|
class PositionRotaryEmbedding(nn.Module):
|
|
def __init__(self, inv_freq, scaling_factor):
|
|
super().__init__()
|
|
self.inv_freq = inv_freq
|
|
self._seq_len_cached = 0
|
|
self._cos_cached = None
|
|
self._sin_cached = None
|
|
self._cos_k_cached = None
|
|
self._sin_k_cached = None
|
|
self.scaling_factor = scaling_factor
|
|
self.dynamic_args = None
|
|
|
|
def forward(
|
|
self,
|
|
query: torch.Tensor,
|
|
key: torch.Tensor,
|
|
cos: torch.Tensor,
|
|
sin: torch.Tensor,
|
|
):
|
|
# Such controlflows may add some overhead.
|
|
if SYSTEM == "cuda":
|
|
rotary_dim = cos.shape[-1]
|
|
q1 = query[..., :rotary_dim]
|
|
q2 = query[..., rotary_dim : 2 * rotary_dim]
|
|
|
|
rotary_emb.apply_rotary(q1, q2, cos, sin, q1, q2, False)
|
|
|
|
k1 = key[..., :rotary_dim]
|
|
k2 = key[..., rotary_dim : 2 * rotary_dim]
|
|
|
|
rotary_emb.apply_rotary(k1, k2, cos, sin, k1, k2, False)
|
|
elif SYSTEM == "rocm":
|
|
# NOTE: On RoCm systems, we use a ROPE implementatation adapted from VLLM which launches a single kernel for both query/key, contrary to flash-attn implementation used on NVIDIA systems.
|
|
# Compiling flash-attn rotary on RoCm, it appears hipcc is unable to unroll loops, resulting in an even slower inference compared to eager: https://github.com/pytorch/pytorch/issues/113773
|
|
|
|
head_size = query.shape[-1]
|
|
|
|
# Inplace operation, updating query and key.
|
|
pos_encoding_ops.rotary_embedding(query, key, head_size, cos, sin, True)
|
|
elif SYSTEM == "xpu":
|
|
ipex.llm.functional.rotary_embedding(
|
|
query, key, sin, cos, query.size(-1), True
|
|
)
|
|
else:
|
|
raise ValueError(
|
|
"Your system seem to be not supported. Please check your install or open an issue at https://github.com/huggingface/text-generation-inference/issues with a clear reproduction."
|
|
)
|
|
|
|
@classmethod
|
|
def static(cls, config, dim, base, device):
|
|
inv_freq = _create_inv_freq(dim, base, device)
|
|
scaling_factor = None
|
|
rope_scaling = _get_rope_config(config)
|
|
if rope_scaling is not None:
|
|
if rope_scaling["type"] == "linear":
|
|
pass
|
|
elif rope_scaling["type"] == "dynamic":
|
|
scaling_factor = rope_scaling["factor"]
|
|
return DynamicPositionRotaryEmbedding(
|
|
dim=dim,
|
|
max_position_embeddings=config.max_position_embeddings,
|
|
base=base,
|
|
device=inv_freq.device,
|
|
scaling_factor=scaling_factor,
|
|
)
|
|
elif rope_scaling["type"] == "yarn":
|
|
scaling_factor = rope_scaling["factor"]
|
|
return YarnPositionRotaryEmbedding(
|
|
dim=2 * inv_freq.shape[0],
|
|
max_position_embeddings=rope_scaling[
|
|
"original_max_position_embeddings"
|
|
],
|
|
base=10000.0,
|
|
device=inv_freq.device,
|
|
scaling_factor=scaling_factor,
|
|
extrapolation_factor=1,
|
|
attn_factor=1,
|
|
beta_fast=32,
|
|
beta_slow=1,
|
|
)
|
|
elif rope_scaling["type"] == "su":
|
|
short_factor = torch.tensor(
|
|
rope_scaling["short_factor"], dtype=torch.float32, device=device
|
|
)
|
|
short_inv_freq = 1.0 / (
|
|
short_factor
|
|
* base
|
|
** (
|
|
torch.arange(0, dim, 2, device=device, dtype=torch.float32)
|
|
/ dim
|
|
)
|
|
)
|
|
long_factor = torch.tensor(
|
|
rope_scaling["long_factor"], dtype=torch.float32, device=device
|
|
)
|
|
long_inv_freq = 1.0 / (
|
|
long_factor
|
|
* base
|
|
** (
|
|
torch.arange(0, dim, 2, device=device, dtype=torch.float32)
|
|
/ dim
|
|
)
|
|
)
|
|
|
|
original_max_position_embeddings = (
|
|
config.original_max_position_embeddings
|
|
)
|
|
max_position_embeddings = config.max_position_embeddings
|
|
if max_position_embeddings <= original_max_position_embeddings:
|
|
scaling_factor = 1.0
|
|
else:
|
|
scale = max_position_embeddings / original_max_position_embeddings
|
|
scaling_factor = math.sqrt(
|
|
1 + math.log(scale) / math.log(original_max_position_embeddings)
|
|
)
|
|
|
|
return SuRotaryEmbedding(
|
|
short_inv_freq=short_inv_freq,
|
|
long_inv_freq=long_inv_freq,
|
|
scaling_factor=scaling_factor,
|
|
original_max_position_embeddings=original_max_position_embeddings,
|
|
)
|
|
else:
|
|
raise NotImplementedError(
|
|
f"rope scaling type {rope_scaling['type']} is not implemented or invalid"
|
|
)
|
|
return cls(inv_freq, scaling_factor)
|
|
|
|
@classmethod
|
|
def load(cls, config, prefix, weights):
|
|
# XXX: Always load this in float32 !
|
|
dtype = weights.dtype
|
|
weights.dtype = torch.float32
|
|
inv_freq = weights.get_tensor(f"{prefix}.inv_freq")
|
|
weights.dtype = dtype
|
|
|
|
scaling_factor = None
|
|
rope_scaling = _get_rope_config(config)
|
|
if rope_scaling is not None:
|
|
scaling_factor = rope_scaling["factor"]
|
|
if rope_scaling["type"] == "linear":
|
|
pass
|
|
elif rope_scaling["type"] == "dynamic":
|
|
return DynamicPositionRotaryEmbedding(
|
|
dim=2 * inv_freq.shape[0],
|
|
max_position_embeddings=config.max_position_embeddings,
|
|
base=10000.0,
|
|
device=inv_freq.device,
|
|
scaling_factor=scaling_factor,
|
|
)
|
|
elif rope_scaling["type"] == "yarn":
|
|
return YarnPositionRotaryEmbedding(
|
|
dim=2 * inv_freq.shape[0],
|
|
max_position_embeddings=rope_scaling[
|
|
"original_max_position_embeddings"
|
|
],
|
|
base=10000.0,
|
|
device=inv_freq.device,
|
|
scaling_factor=scaling_factor,
|
|
extrapolation_factor=1,
|
|
attn_factor=1,
|
|
beta_fast=32,
|
|
beta_slow=1,
|
|
)
|
|
else:
|
|
raise NotImplementedError(
|
|
f"rope scaling type {rope_scaling['type']} is not implemented or invalid"
|
|
)
|
|
return cls(inv_freq, scaling_factor)
|
|
|
|
def _update_cos_sin_cache(self, dtype, device, seqlen):
|
|
# Reset the tables if the sequence length has changed,
|
|
# or if we're on a new device (possibly due to tracing for instance)
|
|
if (
|
|
seqlen > self._seq_len_cached
|
|
or self._cos_cached.device != device
|
|
or self._cos_cached.dtype != dtype
|
|
):
|
|
self._seq_len_cached = seqlen
|
|
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
|
|
if self.scaling_factor is not None:
|
|
t /= self.scaling_factor
|
|
# Don't do einsum, it converts fp32 to fp16
|
|
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
|
|
|
freqs = torch.outer(t, self.inv_freq.to(device=t.device))
|
|
self._cos_cached = torch.cos(freqs).to(dtype)
|
|
self._sin_cached = torch.sin(freqs).to(dtype)
|
|
|
|
def get_cos_sin(self, position_ids: torch.Tensor, max_s: int, dtype: torch.dtype):
|
|
"""
|
|
Return cos and sin for the asked position ids
|
|
"""
|
|
if SYSTEM == "rocm":
|
|
# For RoCm, we always use float cos/sin to avoid a cast.
|
|
# For NVIDIA, for some reason, the flash-attn rotary kernel requires cos/sin and query/key to be of same dtype: https://github.com/Dao-AILab/flash-attention/blob/017716451d446e464dde9aca3a3c1ed2209caaa9/csrc/rotary/rotary.cpp#L26
|
|
# But later on goes and cast cos/sin to float anyway: https://github.com/Dao-AILab/flash-attention/blob/017716451d446e464dde9aca3a3c1ed2209caaa9/csrc/rotary/rotary_cuda.cu#L29, which looks suboptimal.
|
|
dtype = torch.float32
|
|
|
|
self._update_cos_sin_cache(dtype, position_ids.device, max_s)
|
|
|
|
cos = torch.index_select(self._cos_cached, 0, position_ids)
|
|
sin = torch.index_select(self._sin_cached, 0, position_ids)
|
|
|
|
# Note: this unsqueeze is not necessary on RoCm + VLLM ROPE implementation, but we leave it as is to avoid yet an other controlflow.
|
|
return cos.unsqueeze(1), sin.unsqueeze(1)
|
|
|
|
|
|
class SuRotaryEmbedding(PositionRotaryEmbedding):
|
|
def __init__(
|
|
self,
|
|
short_inv_freq,
|
|
long_inv_freq,
|
|
scaling_factor,
|
|
original_max_position_embeddings,
|
|
):
|
|
super(PositionRotaryEmbedding, self).__init__()
|
|
self.short_inv_freq = short_inv_freq
|
|
self.long_inv_freq = long_inv_freq
|
|
self.scaling_factor = scaling_factor
|
|
self.original_max_position_embeddings = original_max_position_embeddings
|
|
self._seq_len_cached = 0
|
|
self._cos_cached = None
|
|
self._sin_cached = None
|
|
self._cos_k_cached = None
|
|
self._sin_k_cached = None
|
|
self.dynamic_args = None
|
|
|
|
def _update_cos_sin_cache(self, dtype, device, seqlen):
|
|
# Reset the tables if the sequence length has changed,
|
|
# or if we're on a new device (possibly due to tracing for instance)
|
|
if (
|
|
seqlen > self._seq_len_cached
|
|
or self._cos_cached.device != device
|
|
or self._cos_cached.dtype != dtype
|
|
):
|
|
self._seq_len_cached = seqlen
|
|
if seqlen > self.original_max_position_embeddings:
|
|
inv_freq = self.long_inv_freq
|
|
else:
|
|
inv_freq = self.short_inv_freq
|
|
t = torch.arange(seqlen, device=device, dtype=inv_freq.dtype)
|
|
if self.scaling_factor is not None:
|
|
t /= self.scaling_factor
|
|
# Don't do einsum, it converts fp32 to fp16
|
|
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
|
|
|
freqs = torch.outer(t, inv_freq.to(device=t.device))
|
|
self._cos_cached = torch.cos(freqs).to(dtype)
|
|
self._sin_cached = torch.sin(freqs).to(dtype)
|
|
|
|
|
|
class DynamicPositionRotaryEmbedding(PositionRotaryEmbedding):
|
|
def __init__(self, dim, max_position_embeddings, base, device, scaling_factor):
|
|
inv_freq = _create_inv_freq(dim, base, device)
|
|
super().__init__(inv_freq, scaling_factor)
|
|
self.dim = dim
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.base = base
|
|
|
|
def _update_cos_sin_cache(self, dtype, device, seqlen):
|
|
# Reset the tables if the sequence length has changed,
|
|
# or if we're on a new device (possibly due to tracing for instance)
|
|
if (
|
|
seqlen > self._seq_len_cached
|
|
or self._cos_cached.device != device
|
|
or self._cos_cached.dtype != dtype
|
|
):
|
|
if seqlen > self.max_position_embeddings:
|
|
newbase = self.base * (
|
|
(self.scaling_factor * seqlen / self.max_position_embeddings)
|
|
- (self.scaling_factor - 1)
|
|
) ** (self.dim / (self.dim - 2))
|
|
self.inv_freq = _create_inv_freq(
|
|
self.dim, newbase, self.inv_freq.device
|
|
)
|
|
self._seq_len_cached = seqlen
|
|
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
|
|
# Don't do einsum, it converts fp32 to fp16
|
|
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
|
|
|
freqs = torch.outer(t, self.inv_freq.to(device=t.device))
|
|
self._cos_cached = torch.cos(freqs).to(dtype)
|
|
self._sin_cached = torch.sin(freqs).to(dtype)
|
|
|
|
|
|
# Inverse dim formula to find dim based on number of rotations
|
|
import math
|
|
|
|
|
|
def find_correction_dim(num_rotations, dim, base=10000, max_position_embeddings=2048):
|
|
return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (
|
|
2 * math.log(base)
|
|
)
|
|
|
|
|
|
# Find dim range bounds based on rotations
|
|
def find_correction_range(
|
|
low_rot, high_rot, dim, base=10000, max_position_embeddings=2048
|
|
):
|
|
low = math.floor(find_correction_dim(low_rot, dim, base, max_position_embeddings))
|
|
high = math.ceil(find_correction_dim(high_rot, dim, base, max_position_embeddings))
|
|
return max(low, 0), min(high, dim - 1) # Clamp values just in case
|
|
|
|
|
|
def linear_ramp_mask(min, max, dim):
|
|
if min == max:
|
|
max += 0.001 # Prevent singularity
|
|
|
|
linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
|
|
ramp_func = torch.clamp(linear_func, 0, 1)
|
|
return ramp_func
|
|
|
|
|
|
def get_mscale(scale=1):
|
|
if scale <= 1:
|
|
return 1.0
|
|
return 0.1 * math.log(scale) + 1.0
|
|
|
|
|
|
class YarnPositionRotaryEmbedding(PositionRotaryEmbedding):
|
|
def __init__(
|
|
self,
|
|
dim,
|
|
max_position_embeddings,
|
|
base,
|
|
device,
|
|
scaling_factor,
|
|
*,
|
|
extrapolation_factor,
|
|
attn_factor,
|
|
beta_fast,
|
|
beta_slow,
|
|
):
|
|
inv_freq = _create_inv_freq(dim, base, device)
|
|
super().__init__(inv_freq, scaling_factor)
|
|
self.dim = dim
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.base = base
|
|
self.extrapolation_factor = extrapolation_factor
|
|
self.attn_factor = attn_factor
|
|
self.beta_fast = beta_fast
|
|
self.beta_slow = beta_slow
|
|
self.mscale = float(
|
|
get_mscale(self.scaling_factor) * self.attn_factor
|
|
) # Get n-d magnitude scaling corrected for interpolation
|
|
|
|
def _update_cos_sin_cache(self, dtype, device, seqlen):
|
|
# Reset the tables if the sequence length has changed,
|
|
# or if we're on a new device (possibly due to tracing for instance)
|
|
if (
|
|
seqlen > self._seq_len_cached
|
|
or self._cos_cached.device != device
|
|
or self._cos_cached.dtype != dtype
|
|
):
|
|
if seqlen > self.max_position_embeddings:
|
|
inv_freq_extrapolation = _create_inv_freq(
|
|
self.dim, self.base, self.inv_freq.device
|
|
)
|
|
freqs = 1.0 / inv_freq_extrapolation
|
|
inv_freq_interpolation = 1.0 / (self.scaling_factor * freqs)
|
|
low, high = find_correction_range(
|
|
self.beta_fast,
|
|
self.beta_slow,
|
|
self.dim,
|
|
self.base,
|
|
self.max_position_embeddings,
|
|
)
|
|
inv_freq_mask = (
|
|
1 - linear_ramp_mask(low, high, self.dim // 2).float().to(device)
|
|
) * self.extrapolation_factor # Get n-d rotational scaling corrected for extrapolation
|
|
inv_freq = (
|
|
inv_freq_interpolation * (1 - inv_freq_mask)
|
|
+ inv_freq_extrapolation * inv_freq_mask
|
|
)
|
|
|
|
self.inv_freq = inv_freq
|
|
self.mscale = float(
|
|
get_mscale(self.scaling_factor) * self.attn_factor
|
|
) # Get n-d magnitude scaling corrected for interpolation
|
|
|
|
self._seq_len_cached = seqlen
|
|
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
|
|
# Don't do einsum, it converts fp32 to fp16
|
|
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
|
|
|
freqs = torch.outer(t, self.inv_freq.to(device=t.device))
|
|
self._cos_cached = (torch.cos(freqs) * self.mscale).to(dtype)
|
|
self._sin_cached = (torch.sin(freqs) * self.mscale).to(dtype)
|