mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-04-23 07:52:06 +00:00
* wip
wip
refacto
refacto
Initial setup for CXX binding to TRTLLM
Working FFI call for TGI and TRTLLM backend
Remove unused parameters annd force tokenizer name to be set
Overall build TRTLLM and deps through CMake build system
Enable end to end CMake build
First version loading engines and making it ready for inference
Remembering to check how we can detect support for chunked context
Move to latest TensorRT-LLM version
Specify which default log level to use depending on CMake build type
make leader executor mode working
unconditionally call InitializeBackend on the FFI layer
bind to CUDA::nvml to retrieve compute capabilities at runtime
updated logic and comment to detect cuda compute capabilities
implement the Stream method to send new tokens through a callback
use spdlog release 1.14.1 moving forward
update trtllm to latest version a96cccafcf6365c128f004f779160951f8c0801c
correctly tell cmake to build dependent tensorrt-llm required libraries
create cmake install target to put everything relevant in installation folder
add auth_token CLI argument to provide hf hub authentification token
allow converting huggingface::tokenizers error to TensorRtLlmBackendError
use correct include for spdlog
include guard to build example in cmakelists
working setup of the ffi layer
remove fmt import
use external fmt lib
end to end ffi flow working
make sure to track include/ffi.h to trigger rebuild from cargo
impl the rust backend which currently cannot move the actual computation in background thread
expose shutdown function at ffi layer
impl RwLock scenario for TensorRtLllmBackend
oops missing c++ backend definitions
compute the number of maximum new tokens for each request independently
make sure the context is not dropped in the middle of the async decoding.
remove unnecessary log
add all the necessary plumbery to return the generated content
update invalid doc in cpp file
correctly forward back the log probabilities
remove unneeded scope variable for now
refactor Stream impl for Generation to factorise code
expose the internal missing start/queue timestamp
forward tgi parameters rep/freq penalty
add some more validation about grammar not supported
define a shared struct to hold the result of a decoding step
expose information about potential error happening while decoding
remove logging
add logging in case of decoding error
make sure executor_worker is provided
add initial Dockerfile for TRTLLM backend
add some more information in CMakeLists.txt to correctly install executorWorker
add some more information in CMakeLists.txt to correctly find and install nvrtc wrapper
simplify prebuilt trtllm libraries name definition
do the same name definition stuff for tensorrt_llm_executor_static
leverage pkg-config to probe libraries paths and reuse new install structure from cmake
fix bad copy/past missing nvinfer linkage direction
align all the linker search dependency
add missing pkgconfig folder for MPI in Dockerfile
correctly setup linking search path for runtime layer
fix missing / before tgi lib path
adding missing ld_library_path for cuda stubs in Dockerfile
update tgi entrypoint
commenting out Python part for TensorRT installation
refactored docker image
move to TensorRT-LLM v0.11.0
make docker linter happy with same capitalization rule
fix typo
refactor the compute capabilities detection along with num gpus
update TensorRT-LLM to latest version
update TensorRT install script to latest
update build.rs to link to cuda 12.5
add missing dependant libraries for linking
clean up a bit
install to decoder_attention target
add some custom stuff for nccl linkage
fix envvar CARGO_CFG_TARGET_ARCH set at runtime vs compile time
use std::env::const::ARCH
make sure variable live long enough...
look for cuda 12.5
add some more basic info in README.md
* Rebase.
* Fix autodocs.
* Let's try to enable trtllm backend.
* Ignore backends/v3 by default.
* Fixing client.
* Fix makefile + autodocs.
* Updating the schema thing + redocly.
* Fix trtllm lint.
* Adding pb files ?
* Remove cargo fmt temporarily.
* ?
* Tmp.
* Remove both check + clippy ?
* Backporting telemetry.
* Backporting 457fb0a1
* Remove PB from git.
* Fixing PB with default member backends/client
* update TensorRT-LLM to latest version
* provided None for api_key
* link against libtensorrt_llm and not libtensorrt-llm
---------
Co-authored-by: OlivierDehaene <23298448+OlivierDehaene@users.noreply.github.com>
Co-authored-by: Morgan Funtowicz <morgan@huggingface.co>
749 lines
25 KiB
Plaintext
749 lines
25 KiB
Plaintext
use axum::http::HeaderValue;
|
|
use clap::Parser;
|
|
use clap::Subcommand;
|
|
use hf_hub::api::tokio::{Api, ApiBuilder, ApiRepo};
|
|
use hf_hub::{Cache, Repo, RepoType};
|
|
use opentelemetry::sdk::propagation::TraceContextPropagator;
|
|
use opentelemetry::sdk::trace;
|
|
use opentelemetry::sdk::trace::Sampler;
|
|
use opentelemetry::sdk::Resource;
|
|
use opentelemetry::{global, KeyValue};
|
|
use opentelemetry_otlp::WithExportConfig;
|
|
use std::fs::File;
|
|
use std::io::BufReader;
|
|
use std::net::{IpAddr, Ipv4Addr, SocketAddr};
|
|
use std::path::{Path, PathBuf};
|
|
use text_generation_router::config::Config;
|
|
use text_generation_router::usage_stats;
|
|
use text_generation_router::{
|
|
server, HubModelInfo, HubPreprocessorConfig, HubProcessorConfig, HubTokenizerConfig,
|
|
};
|
|
use thiserror::Error;
|
|
use tokenizers::{processors::template::TemplateProcessing, Tokenizer};
|
|
use tower_http::cors::AllowOrigin;
|
|
use tracing_subscriber::layer::SubscriberExt;
|
|
use tracing_subscriber::util::SubscriberInitExt;
|
|
use tracing_subscriber::{filter::LevelFilter, EnvFilter, Layer};
|
|
|
|
/// App Configuration
|
|
#[derive(Parser, Debug)]
|
|
#[clap(author, version, about, long_about = None)]
|
|
struct Args {
|
|
#[command(subcommand)]
|
|
command: Option<Commands>,
|
|
|
|
#[clap(default_value = "128", long, env)]
|
|
max_concurrent_requests: usize,
|
|
#[clap(default_value = "2", long, env)]
|
|
max_best_of: usize,
|
|
#[clap(default_value = "4", long, env)]
|
|
max_stop_sequences: usize,
|
|
#[clap(default_value = "5", long, env)]
|
|
max_top_n_tokens: u32,
|
|
#[clap(default_value = "1024", long, env)]
|
|
max_input_tokens: usize,
|
|
#[clap(default_value = "2048", long, env)]
|
|
max_total_tokens: usize,
|
|
#[clap(default_value = "1.2", long, env)]
|
|
waiting_served_ratio: f32,
|
|
#[clap(default_value = "4096", long, env)]
|
|
max_batch_prefill_tokens: u32,
|
|
#[clap(long, env)]
|
|
max_batch_total_tokens: Option<u32>,
|
|
#[clap(default_value = "20", long, env)]
|
|
max_waiting_tokens: usize,
|
|
#[clap(long, env)]
|
|
max_batch_size: Option<usize>,
|
|
#[clap(default_value = "0.0.0.0", long, env)]
|
|
hostname: String,
|
|
#[clap(default_value = "3000", long, short, env)]
|
|
port: u16,
|
|
#[clap(default_value = "/tmp/text-generation-server-0", long, env)]
|
|
master_shard_uds_path: String,
|
|
#[clap(default_value = "bigscience/bloom", long, env)]
|
|
tokenizer_name: String,
|
|
#[clap(long, env)]
|
|
tokenizer_config_path: Option<String>,
|
|
#[clap(long, env)]
|
|
revision: Option<String>,
|
|
#[clap(default_value = "2", long, env)]
|
|
validation_workers: usize,
|
|
#[clap(long, env)]
|
|
json_output: bool,
|
|
#[clap(long, env)]
|
|
otlp_endpoint: Option<String>,
|
|
#[clap(default_value = "text-generation-inference.router", long, env)]
|
|
otlp_service_name: String,
|
|
#[clap(long, env)]
|
|
cors_allow_origin: Option<Vec<String>>,
|
|
#[clap(long, env)]
|
|
api_key: Option<String>,
|
|
#[clap(long, env)]
|
|
ngrok: bool,
|
|
#[clap(long, env)]
|
|
ngrok_authtoken: Option<String>,
|
|
#[clap(long, env)]
|
|
ngrok_edge: Option<String>,
|
|
#[clap(long, env, default_value_t = false)]
|
|
messages_api_enabled: bool,
|
|
#[clap(long, env, default_value_t = false)]
|
|
disable_grammar_support: bool,
|
|
#[clap(default_value = "4", long, env)]
|
|
max_client_batch_size: usize,
|
|
#[clap(long, env, default_value_t)]
|
|
disable_usage_stats: bool,
|
|
#[clap(long, env, default_value_t)]
|
|
disable_crash_reports: bool,
|
|
}
|
|
|
|
#[derive(Debug, Subcommand)]
|
|
enum Commands {
|
|
PrintSchema,
|
|
}
|
|
|
|
#[tokio::main]
|
|
async fn main() -> Result<(), RouterError> {
|
|
let args = Args::parse();
|
|
|
|
// Pattern match configuration
|
|
let Args {
|
|
max_concurrent_requests,
|
|
max_best_of,
|
|
max_stop_sequences,
|
|
max_top_n_tokens,
|
|
max_input_tokens,
|
|
max_total_tokens,
|
|
waiting_served_ratio,
|
|
max_batch_prefill_tokens,
|
|
max_batch_total_tokens,
|
|
max_waiting_tokens,
|
|
max_batch_size,
|
|
hostname,
|
|
port,
|
|
master_shard_uds_path,
|
|
tokenizer_name,
|
|
tokenizer_config_path,
|
|
revision,
|
|
validation_workers,
|
|
json_output,
|
|
otlp_endpoint,
|
|
otlp_service_name,
|
|
cors_allow_origin,
|
|
api_key,
|
|
ngrok,
|
|
ngrok_authtoken,
|
|
ngrok_edge,
|
|
messages_api_enabled,
|
|
disable_grammar_support,
|
|
max_client_batch_size,
|
|
disable_usage_stats,
|
|
disable_crash_reports,
|
|
command,
|
|
} = args;
|
|
|
|
let print_schema_command = match command {
|
|
Some(Commands::PrintSchema) => true,
|
|
None => {
|
|
// only init logging if we are not running the print schema command
|
|
init_logging(otlp_endpoint, otlp_service_name, json_output);
|
|
false
|
|
}
|
|
};
|
|
|
|
// Validate args
|
|
if max_input_tokens >= max_total_tokens {
|
|
return Err(RouterError::ArgumentValidation(
|
|
"`max_input_tokens` must be < `max_total_tokens`".to_string(),
|
|
));
|
|
}
|
|
if max_input_tokens as u32 > max_batch_prefill_tokens {
|
|
return Err(RouterError::ArgumentValidation(format!("`max_batch_prefill_tokens` must be >= `max_input_tokens`. Given: {max_batch_prefill_tokens} and {max_input_tokens}")));
|
|
}
|
|
|
|
if validation_workers == 0 {
|
|
return Err(RouterError::ArgumentValidation(
|
|
"`validation_workers` must be > 0".to_string(),
|
|
));
|
|
}
|
|
|
|
if let Some(ref max_batch_total_tokens) = max_batch_total_tokens {
|
|
if max_batch_prefill_tokens > *max_batch_total_tokens {
|
|
return Err(RouterError::ArgumentValidation(format!("`max_batch_prefill_tokens` must be <= `max_batch_total_tokens`. Given: {max_batch_prefill_tokens} and {max_batch_total_tokens}")));
|
|
}
|
|
if max_total_tokens as u32 > *max_batch_total_tokens {
|
|
return Err(RouterError::ArgumentValidation(format!("`max_total_tokens` must be <= `max_batch_total_tokens`. Given: {max_total_tokens} and {max_batch_total_tokens}")));
|
|
}
|
|
}
|
|
|
|
// CORS allowed origins
|
|
// map to go inside the option and then map to parse from String to HeaderValue
|
|
// Finally, convert to AllowOrigin
|
|
let cors_allow_origin: Option<AllowOrigin> = cors_allow_origin.map(|cors_allow_origin| {
|
|
AllowOrigin::list(
|
|
cors_allow_origin
|
|
.iter()
|
|
.map(|origin| origin.parse::<HeaderValue>().unwrap()),
|
|
)
|
|
});
|
|
|
|
// Parse Huggingface hub token
|
|
let authorization_token = std::env::var("HF_TOKEN")
|
|
.or_else(|_| std::env::var("HUGGING_FACE_HUB_TOKEN"))
|
|
.ok();
|
|
|
|
// Tokenizer instance
|
|
// This will only be used to validate payloads
|
|
let local_path = Path::new(&tokenizer_name);
|
|
|
|
// Shared API builder initialization
|
|
let api_builder = || {
|
|
let mut builder = ApiBuilder::new()
|
|
.with_progress(false)
|
|
.with_token(authorization_token);
|
|
|
|
if let Ok(cache_dir) = std::env::var("HUGGINGFACE_HUB_CACHE") {
|
|
builder = builder.with_cache_dir(cache_dir.into());
|
|
}
|
|
|
|
builder
|
|
};
|
|
|
|
// Decide if we need to use the API based on the revision and local path
|
|
let use_api = revision.is_some() || !local_path.exists() || !local_path.is_dir();
|
|
|
|
// Initialize API if needed
|
|
#[derive(Clone)]
|
|
enum Type {
|
|
Api(Api),
|
|
Cache(Cache),
|
|
None,
|
|
}
|
|
let api = if use_api {
|
|
if std::env::var("HF_HUB_OFFLINE") == Ok("1".to_string()) {
|
|
let cache = std::env::var("HUGGINGFACE_HUB_CACHE")
|
|
.map_err(|_| ())
|
|
.map(|cache_dir| Cache::new(cache_dir.into()))
|
|
.unwrap_or_else(|_| Cache::default());
|
|
|
|
tracing::warn!("Offline mode active using cache defaults");
|
|
Type::Cache(cache)
|
|
} else {
|
|
tracing::info!("Using the Hugging Face API");
|
|
match api_builder().build() {
|
|
Ok(api) => Type::Api(api),
|
|
Err(_) => {
|
|
tracing::warn!("Unable to build the Hugging Face API");
|
|
Type::None
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
Type::None
|
|
};
|
|
|
|
// Load tokenizer and model info
|
|
let (
|
|
tokenizer_filename,
|
|
config_filename,
|
|
tokenizer_config_filename,
|
|
preprocessor_config_filename,
|
|
processor_config_filename,
|
|
model_info,
|
|
) = match api {
|
|
Type::None => (
|
|
Some(local_path.join("tokenizer.json")),
|
|
Some(local_path.join("config.json")),
|
|
Some(local_path.join("tokenizer_config.json")),
|
|
Some(local_path.join("preprocessor_config.json")),
|
|
Some(local_path.join("processor_config.json")),
|
|
None,
|
|
),
|
|
Type::Api(api) => {
|
|
let api_repo = api.repo(Repo::with_revision(
|
|
tokenizer_name.to_string(),
|
|
RepoType::Model,
|
|
revision.clone().unwrap_or_else(|| "main".to_string()),
|
|
));
|
|
|
|
let tokenizer_filename = match api_repo.get("tokenizer.json").await {
|
|
Ok(tokenizer_filename) => Some(tokenizer_filename),
|
|
Err(_) => get_base_tokenizer(&api, &api_repo).await,
|
|
};
|
|
let config_filename = api_repo.get("config.json").await.ok();
|
|
let tokenizer_config_filename = api_repo.get("tokenizer_config.json").await.ok();
|
|
let preprocessor_config_filename = api_repo.get("preprocessor_config.json").await.ok();
|
|
let processor_config_filename = api_repo.get("processor_config.json").await.ok();
|
|
|
|
let model_info = if let Some(model_info) = get_model_info(&api_repo).await {
|
|
Some(model_info)
|
|
} else {
|
|
tracing::warn!("Could not retrieve model info from the Hugging Face hub.");
|
|
None
|
|
};
|
|
(
|
|
tokenizer_filename,
|
|
config_filename,
|
|
tokenizer_config_filename,
|
|
preprocessor_config_filename,
|
|
processor_config_filename,
|
|
model_info,
|
|
)
|
|
}
|
|
Type::Cache(cache) => {
|
|
let repo = cache.repo(Repo::with_revision(
|
|
tokenizer_name.to_string(),
|
|
RepoType::Model,
|
|
revision.clone().unwrap_or_else(|| "main".to_string()),
|
|
));
|
|
(
|
|
repo.get("tokenizer.json"),
|
|
repo.get("config.json"),
|
|
repo.get("tokenizer_config.json"),
|
|
repo.get("preprocessor_config.json"),
|
|
repo.get("processor_config.json"),
|
|
None,
|
|
)
|
|
}
|
|
};
|
|
let config: Option<Config> = config_filename.and_then(|filename| {
|
|
std::fs::read_to_string(filename)
|
|
.ok()
|
|
.as_ref()
|
|
.and_then(|c| {
|
|
let config: Result<Config, _> = serde_json::from_str(c);
|
|
if let Err(err) = &config {
|
|
tracing::warn!("Could not parse config {err:?}");
|
|
}
|
|
config.ok()
|
|
})
|
|
});
|
|
let model_info = model_info.unwrap_or_else(|| HubModelInfo {
|
|
model_id: tokenizer_name.to_string(),
|
|
sha: None,
|
|
pipeline_tag: None,
|
|
});
|
|
|
|
// Read the JSON contents of the file as an instance of 'HubTokenizerConfig'.
|
|
let tokenizer_config: Option<HubTokenizerConfig> = if let Some(filename) = tokenizer_config_path
|
|
{
|
|
HubTokenizerConfig::from_file(filename)
|
|
} else {
|
|
tokenizer_config_filename.and_then(HubTokenizerConfig::from_file)
|
|
};
|
|
let tokenizer_config = tokenizer_config.unwrap_or_else(|| {
|
|
tracing::warn!("Could not find tokenizer config locally and no API specified");
|
|
HubTokenizerConfig::default()
|
|
});
|
|
let tokenizer_class = tokenizer_config.tokenizer_class.clone();
|
|
|
|
let tokenizer: Option<Tokenizer> = tokenizer_filename.and_then(|filename| {
|
|
let mut tokenizer = Tokenizer::from_file(filename).ok();
|
|
if let Some(tokenizer) = &mut tokenizer {
|
|
if let Some(class) = &tokenizer_config.tokenizer_class {
|
|
if class == "LlamaTokenizer" || class == "LlamaTokenizerFast"{
|
|
if let Ok(post_processor) = create_post_processor(tokenizer, &tokenizer_config) {
|
|
tracing::info!("Overriding LlamaTokenizer with TemplateProcessing to follow python override defined in https://github.com/huggingface/transformers/blob/4aa17d00690b7f82c95bb2949ea57e22c35b4336/src/transformers/models/llama/tokenization_llama_fast.py#L203-L205");
|
|
tokenizer.with_post_processor(post_processor);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
tokenizer
|
|
});
|
|
|
|
let preprocessor_config =
|
|
preprocessor_config_filename.and_then(HubPreprocessorConfig::from_file);
|
|
let processor_config = processor_config_filename
|
|
.and_then(HubProcessorConfig::from_file)
|
|
.unwrap_or_default();
|
|
|
|
tracing::info!("Using config {config:?}");
|
|
if tokenizer.is_none() {
|
|
tracing::warn!("Could not find a fast tokenizer implementation for {tokenizer_name}");
|
|
tracing::warn!("Rust input length validation and truncation is disabled");
|
|
}
|
|
|
|
// if pipeline-tag == text-generation we default to return_full_text = true
|
|
let compat_return_full_text = match &model_info.pipeline_tag {
|
|
None => {
|
|
tracing::warn!("no pipeline tag found for model {tokenizer_name}");
|
|
true
|
|
}
|
|
Some(pipeline_tag) => pipeline_tag.as_str() == "text-generation",
|
|
};
|
|
|
|
// Determine the server port based on the feature and environment variable.
|
|
let port = if cfg!(feature = "google") {
|
|
std::env::var("AIP_HTTP_PORT")
|
|
.map(|aip_http_port| aip_http_port.parse::<u16>().unwrap_or(port))
|
|
.unwrap_or(port)
|
|
} else {
|
|
port
|
|
};
|
|
|
|
let addr = match hostname.parse() {
|
|
Ok(ip) => SocketAddr::new(ip, port),
|
|
Err(_) => {
|
|
tracing::warn!("Invalid hostname, defaulting to 0.0.0.0");
|
|
SocketAddr::new(IpAddr::V4(Ipv4Addr::new(0, 0, 0, 0)), port)
|
|
}
|
|
};
|
|
|
|
// Only send usage stats when TGI is run in container and the function returns Some
|
|
let is_container = matches!(usage_stats::is_container(), Ok(true));
|
|
|
|
let user_agent = if !disable_usage_stats && is_container {
|
|
let reduced_args = usage_stats::Args::new(
|
|
config.clone(),
|
|
tokenizer_class,
|
|
max_concurrent_requests,
|
|
max_best_of,
|
|
max_stop_sequences,
|
|
max_top_n_tokens,
|
|
max_input_tokens,
|
|
max_total_tokens,
|
|
waiting_served_ratio,
|
|
max_batch_prefill_tokens,
|
|
max_batch_total_tokens,
|
|
max_waiting_tokens,
|
|
max_batch_size,
|
|
revision,
|
|
validation_workers,
|
|
messages_api_enabled,
|
|
disable_grammar_support,
|
|
max_client_batch_size,
|
|
disable_usage_stats,
|
|
disable_crash_reports,
|
|
);
|
|
Some(usage_stats::UserAgent::new(reduced_args))
|
|
} else {
|
|
None
|
|
};
|
|
|
|
if let Some(ref ua) = user_agent {
|
|
let start_event =
|
|
usage_stats::UsageStatsEvent::new(ua.clone(), usage_stats::EventType::Start, None);
|
|
tokio::spawn(async move {
|
|
start_event.send().await;
|
|
});
|
|
};
|
|
|
|
// Run server
|
|
let result = server::run(
|
|
master_shard_uds_path,
|
|
model_info,
|
|
compat_return_full_text,
|
|
max_concurrent_requests,
|
|
max_best_of,
|
|
max_stop_sequences,
|
|
max_top_n_tokens,
|
|
max_input_tokens,
|
|
max_total_tokens,
|
|
waiting_served_ratio,
|
|
max_batch_prefill_tokens,
|
|
max_batch_total_tokens,
|
|
max_waiting_tokens,
|
|
max_batch_size,
|
|
tokenizer,
|
|
config,
|
|
validation_workers,
|
|
addr,
|
|
cors_allow_origin,
|
|
api_key,
|
|
ngrok,
|
|
ngrok_authtoken,
|
|
ngrok_edge,
|
|
tokenizer_config,
|
|
preprocessor_config,
|
|
processor_config,
|
|
messages_api_enabled,
|
|
disable_grammar_support,
|
|
max_client_batch_size,
|
|
print_schema_command,
|
|
)
|
|
.await;
|
|
|
|
match result {
|
|
Ok(_) => {
|
|
if let Some(ref ua) = user_agent {
|
|
let stop_event = usage_stats::UsageStatsEvent::new(
|
|
ua.clone(),
|
|
usage_stats::EventType::Stop,
|
|
None,
|
|
);
|
|
stop_event.send().await;
|
|
};
|
|
Ok(())
|
|
}
|
|
Err(e) => {
|
|
if let Some(ref ua) = user_agent {
|
|
if !disable_crash_reports {
|
|
let error_event = usage_stats::UsageStatsEvent::new(
|
|
ua.clone(),
|
|
usage_stats::EventType::Error,
|
|
Some(e.to_string()),
|
|
);
|
|
error_event.send().await;
|
|
} else {
|
|
let unknow_error_event = usage_stats::UsageStatsEvent::new(
|
|
ua.clone(),
|
|
usage_stats::EventType::Error,
|
|
Some("unknow_error".to_string()),
|
|
);
|
|
unknow_error_event.send().await;
|
|
}
|
|
};
|
|
Err(RouterError::WebServer(e))
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Init logging using env variables LOG_LEVEL and LOG_FORMAT:
|
|
/// - otlp_endpoint is an optional URL to an Open Telemetry collector
|
|
/// - otlp_service_name service name to appear in APM
|
|
/// - LOG_LEVEL may be TRACE, DEBUG, INFO, WARN or ERROR (default to INFO)
|
|
/// - LOG_FORMAT may be TEXT or JSON (default to TEXT)
|
|
/// - LOG_COLORIZE may be "false" or "true" (default to "true" or ansi supported platforms)
|
|
fn init_logging(otlp_endpoint: Option<String>, otlp_service_name: String, json_output: bool) {
|
|
let mut layers = Vec::new();
|
|
|
|
// STDOUT/STDERR layer
|
|
let ansi = std::env::var("LOG_COLORIZE") != Ok("1".to_string());
|
|
let fmt_layer = tracing_subscriber::fmt::layer()
|
|
.with_file(true)
|
|
.with_ansi(ansi)
|
|
.with_line_number(true);
|
|
|
|
let fmt_layer = match json_output {
|
|
true => fmt_layer.json().flatten_event(true).boxed(),
|
|
false => fmt_layer.boxed(),
|
|
};
|
|
layers.push(fmt_layer);
|
|
|
|
// OpenTelemetry tracing layer
|
|
if let Some(otlp_endpoint) = otlp_endpoint {
|
|
global::set_text_map_propagator(TraceContextPropagator::new());
|
|
|
|
let tracer = opentelemetry_otlp::new_pipeline()
|
|
.tracing()
|
|
.with_exporter(
|
|
opentelemetry_otlp::new_exporter()
|
|
.tonic()
|
|
.with_endpoint(otlp_endpoint),
|
|
)
|
|
.with_trace_config(
|
|
trace::config()
|
|
.with_resource(Resource::new(vec![KeyValue::new(
|
|
"service.name",
|
|
otlp_service_name,
|
|
)]))
|
|
.with_sampler(Sampler::AlwaysOn),
|
|
)
|
|
.install_batch(opentelemetry::runtime::Tokio);
|
|
|
|
if let Ok(tracer) = tracer {
|
|
layers.push(tracing_opentelemetry::layer().with_tracer(tracer).boxed());
|
|
init_tracing_opentelemetry::init_propagator().unwrap();
|
|
};
|
|
}
|
|
|
|
// Filter events with LOG_LEVEL
|
|
let varname = "LOG_LEVEL";
|
|
let env_filter = if let Ok(log_level) = std::env::var(varname) {
|
|
// Override to avoid simple logs to be spammed with tokio level informations
|
|
let log_level = match &log_level[..] {
|
|
"warn" => "text_generation_launcher=warn,text_generation_router=warn",
|
|
"info" => "text_generation_launcher=info,text_generation_router=info",
|
|
"debug" => "text_generation_launcher=debug,text_generation_router=debug",
|
|
log_level => log_level,
|
|
};
|
|
EnvFilter::builder()
|
|
.with_default_directive(LevelFilter::INFO.into())
|
|
.parse_lossy(log_level)
|
|
} else {
|
|
EnvFilter::new("info")
|
|
};
|
|
|
|
tracing_subscriber::registry()
|
|
.with(env_filter)
|
|
.with(layers)
|
|
.init();
|
|
}
|
|
|
|
/// get model info from the Huggingface Hub
|
|
pub async fn get_model_info(api: &ApiRepo) -> Option<HubModelInfo> {
|
|
let response = api.info_request().send().await.ok()?;
|
|
|
|
if response.status().is_success() {
|
|
let hub_model_info: HubModelInfo =
|
|
serde_json::from_str(&response.text().await.ok()?).ok()?;
|
|
if let Some(sha) = &hub_model_info.sha {
|
|
tracing::info!(
|
|
"Serving revision {sha} of model {}",
|
|
hub_model_info.model_id
|
|
);
|
|
}
|
|
Some(hub_model_info)
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
/// get base tokenizer
|
|
pub async fn get_base_tokenizer(api: &Api, api_repo: &ApiRepo) -> Option<PathBuf> {
|
|
let config_filename = api_repo.get("config.json").await.ok()?;
|
|
|
|
// Open the file in read-only mode with buffer.
|
|
let file = File::open(config_filename).ok()?;
|
|
let reader = BufReader::new(file);
|
|
|
|
// Read the JSON contents of the file as an instance of `User`.
|
|
let config: serde_json::Value = serde_json::from_reader(reader).ok()?;
|
|
|
|
if let Some(serde_json::Value::String(base_model_id)) = config.get("base_model_name_or_path") {
|
|
let api_base_repo = api.repo(Repo::with_revision(
|
|
base_model_id.to_string(),
|
|
RepoType::Model,
|
|
"main".to_string(),
|
|
));
|
|
|
|
api_base_repo.get("tokenizer.json").await.ok()
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
/// get tokenizer_config from the Huggingface Hub
|
|
pub async fn get_tokenizer_config(api_repo: &ApiRepo) -> Option<HubTokenizerConfig> {
|
|
let tokenizer_config_filename = api_repo.get("tokenizer_config.json").await.ok()?;
|
|
|
|
// Open the file in read-only mode with buffer.
|
|
let file = File::open(tokenizer_config_filename).ok()?;
|
|
let reader = BufReader::new(file);
|
|
|
|
// Read the JSON contents of the file as an instance of 'HubTokenizerConfig'.
|
|
let tokenizer_config: HubTokenizerConfig = serde_json::from_reader(reader)
|
|
.map_err(|e| {
|
|
tracing::warn!("Unable to parse tokenizer config: {}", e);
|
|
e
|
|
})
|
|
.ok()?;
|
|
|
|
Some(tokenizer_config)
|
|
}
|
|
|
|
/// Create a post_processor for the LlamaTokenizer
|
|
pub fn create_post_processor(
|
|
tokenizer: &Tokenizer,
|
|
tokenizer_config: &HubTokenizerConfig,
|
|
) -> Result<TemplateProcessing, tokenizers::processors::template::TemplateProcessingBuilderError> {
|
|
let add_bos_token = tokenizer_config.add_bos_token.unwrap_or(true);
|
|
let add_eos_token = tokenizer_config.add_eos_token.unwrap_or(false);
|
|
|
|
let bos_token = tokenizer_config.bos_token.as_ref();
|
|
let eos_token = tokenizer_config.eos_token.as_ref();
|
|
|
|
if add_bos_token && bos_token.is_none() {
|
|
panic!("add_bos_token = true but bos_token is None");
|
|
}
|
|
|
|
if add_eos_token && eos_token.is_none() {
|
|
panic!("add_eos_token = true but eos_token is None");
|
|
}
|
|
|
|
let mut single = Vec::new();
|
|
let mut pair = Vec::new();
|
|
let mut special_tokens = Vec::new();
|
|
|
|
if add_bos_token {
|
|
if let Some(bos) = bos_token {
|
|
let bos_token_id = tokenizer
|
|
.token_to_id(bos.as_str())
|
|
.expect("Should have found the bos token id");
|
|
special_tokens.push((bos.as_str(), bos_token_id));
|
|
single.push(format!("{}:0", bos.as_str()));
|
|
pair.push(format!("{}:0", bos.as_str()));
|
|
}
|
|
}
|
|
|
|
single.push("$A:0".to_string());
|
|
pair.push("$A:0".to_string());
|
|
|
|
if add_eos_token {
|
|
if let Some(eos) = eos_token {
|
|
let eos_token_id = tokenizer
|
|
.token_to_id(eos.as_str())
|
|
.expect("Should have found the eos token id");
|
|
special_tokens.push((eos.as_str(), eos_token_id));
|
|
single.push(format!("{}:0", eos.as_str()));
|
|
pair.push(format!("{}:0", eos.as_str()));
|
|
}
|
|
}
|
|
|
|
if add_bos_token {
|
|
if let Some(bos) = bos_token {
|
|
pair.push(format!("{}:1", bos.as_str()));
|
|
}
|
|
}
|
|
|
|
pair.push("$B:1".to_string());
|
|
|
|
if add_eos_token {
|
|
if let Some(eos) = eos_token {
|
|
pair.push(format!("{}:1", eos.as_str()));
|
|
}
|
|
}
|
|
|
|
let post_processor = TemplateProcessing::builder()
|
|
.try_single(single)?
|
|
.try_pair(pair)?
|
|
.special_tokens(special_tokens)
|
|
.build()?;
|
|
|
|
Ok(post_processor)
|
|
}
|
|
|
|
#[derive(Debug, Error)]
|
|
enum RouterError {
|
|
#[error("Argument validation error: {0}")]
|
|
ArgumentValidation(String),
|
|
#[error("WebServer error: {0}")]
|
|
WebServer(#[from] server::WebServerError),
|
|
#[error("Tokio runtime failed to start: {0}")]
|
|
Tokio(#[from] std::io::Error),
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use super::*;
|
|
use text_generation_router::TokenizerConfigToken;
|
|
|
|
#[test]
|
|
fn test_create_post_processor() {
|
|
let tokenizer_config = HubTokenizerConfig {
|
|
add_bos_token: None,
|
|
add_eos_token: None,
|
|
bos_token: Some(TokenizerConfigToken::String("<s>".to_string())),
|
|
eos_token: Some(TokenizerConfigToken::String("</s>".to_string())),
|
|
chat_template: None,
|
|
tokenizer_class: None,
|
|
completion_template: None,
|
|
};
|
|
|
|
let tokenizer =
|
|
Tokenizer::from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0", None).unwrap();
|
|
let post_processor = create_post_processor(&tokenizer, &tokenizer_config).unwrap();
|
|
|
|
let expected = TemplateProcessing::builder()
|
|
.try_single("<s>:0 $A:0")
|
|
.unwrap()
|
|
.try_pair("<s>:0 $A:0 <s>:1 $B:1")
|
|
.unwrap()
|
|
.special_tokens(vec![("<s>".to_string(), 1)])
|
|
.build()
|
|
.unwrap();
|
|
|
|
assert_eq!(post_processor, expected);
|
|
}
|
|
}
|