mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-05-01 06:52:11 +00:00
# What does this PR do? Upgrade all relevant versions and dependencies. <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil -->
693 lines
23 KiB
Rust
693 lines
23 KiB
Rust
/// Inspired by https://github.com/hatoo/oha/blob/bb989ea3cd77727e7743e7daa60a19894bb5e901/src/monitor.rs
|
|
use crate::generation::{Decode, Message, Prefill};
|
|
use crossterm::event::{KeyCode, KeyEvent, KeyModifiers};
|
|
use text_generation_client::ClientError;
|
|
use tokio::sync::mpsc;
|
|
use tui::backend::Backend;
|
|
use tui::layout::{Alignment, Constraint, Direction, Layout};
|
|
use tui::style::{Color, Modifier, Style};
|
|
use tui::text::{Line, Span};
|
|
use tui::widgets::{
|
|
Axis, BarChart, Block, Borders, Chart, Dataset, Gauge, GraphType, Paragraph, Tabs,
|
|
};
|
|
use tui::{symbols, Frame};
|
|
|
|
/// TUI powered App
|
|
pub(crate) struct App {
|
|
pub(crate) running: bool,
|
|
pub(crate) data: Data,
|
|
completed_runs: Vec<usize>,
|
|
completed_batch: usize,
|
|
current_batch: usize,
|
|
current_tab: usize,
|
|
touched_tab: bool,
|
|
zoom: bool,
|
|
is_error: bool,
|
|
tokenizer_name: String,
|
|
sequence_length: u32,
|
|
decode_length: u32,
|
|
n_run: usize,
|
|
receiver: mpsc::Receiver<Result<Message, ClientError>>,
|
|
}
|
|
|
|
impl App {
|
|
pub(crate) fn new(
|
|
receiver: mpsc::Receiver<Result<Message, ClientError>>,
|
|
tokenizer_name: String,
|
|
sequence_length: u32,
|
|
decode_length: u32,
|
|
n_run: usize,
|
|
batch_size: Vec<u32>,
|
|
) -> Self {
|
|
let current_tab = 0;
|
|
|
|
let completed_runs: Vec<usize> = (0..batch_size.len()).map(|_| 0).collect();
|
|
let completed_batch = 0;
|
|
let current_batch = 0;
|
|
let is_error = false;
|
|
|
|
let data = Data::new(n_run, batch_size);
|
|
|
|
Self {
|
|
running: true,
|
|
data,
|
|
completed_runs,
|
|
completed_batch,
|
|
current_batch,
|
|
current_tab,
|
|
touched_tab: false,
|
|
zoom: false,
|
|
is_error,
|
|
tokenizer_name,
|
|
sequence_length,
|
|
decode_length,
|
|
n_run,
|
|
receiver,
|
|
}
|
|
}
|
|
|
|
/// Handle crossterm key events
|
|
pub(crate) fn handle_key_event(&mut self, key_event: KeyEvent) {
|
|
match key_event {
|
|
// Increase and wrap tab
|
|
KeyEvent {
|
|
code: KeyCode::Right,
|
|
..
|
|
}
|
|
| KeyEvent {
|
|
code: KeyCode::Tab, ..
|
|
} => {
|
|
self.touched_tab = true;
|
|
self.current_tab = (self.current_tab + 1) % self.data.batch_size.len();
|
|
}
|
|
// Decrease and wrap tab
|
|
KeyEvent {
|
|
code: KeyCode::Left,
|
|
..
|
|
} => {
|
|
self.touched_tab = true;
|
|
if self.current_tab > 0 {
|
|
self.current_tab -= 1;
|
|
} else {
|
|
self.current_tab = self.data.batch_size.len() - 1;
|
|
}
|
|
}
|
|
// Zoom on throughput/latency fig
|
|
KeyEvent {
|
|
code: KeyCode::Char('+'),
|
|
..
|
|
} => {
|
|
self.zoom = true;
|
|
}
|
|
// Unzoom on throughput/latency fig
|
|
KeyEvent {
|
|
code: KeyCode::Char('-'),
|
|
..
|
|
} => {
|
|
self.zoom = false;
|
|
}
|
|
// Quit
|
|
KeyEvent {
|
|
code: KeyCode::Char('q'),
|
|
..
|
|
}
|
|
| KeyEvent {
|
|
code: KeyCode::Char('c'),
|
|
modifiers: KeyModifiers::CONTROL,
|
|
..
|
|
} => {
|
|
self.running = false;
|
|
}
|
|
_ => (),
|
|
}
|
|
}
|
|
|
|
/// Get all pending messages from generation task
|
|
pub(crate) fn tick(&mut self) {
|
|
while let Ok(message) = self.receiver.try_recv() {
|
|
match message {
|
|
Ok(message) => match message {
|
|
Message::Prefill(step) => self.data.push_prefill(step, self.current_batch),
|
|
Message::Decode(step) => self.data.push_decode(step, self.current_batch),
|
|
Message::EndRun => {
|
|
self.completed_runs[self.current_batch] += 1;
|
|
}
|
|
Message::EndBatch => {
|
|
self.data.end_batch(self.current_batch);
|
|
self.completed_batch += 1;
|
|
|
|
if self.current_batch < self.data.batch_size.len() - 1 {
|
|
// Only go to next tab if the user never touched the tab keys
|
|
if !self.touched_tab {
|
|
self.current_tab += 1;
|
|
}
|
|
|
|
self.current_batch += 1;
|
|
}
|
|
}
|
|
Message::Warmup => {}
|
|
},
|
|
Err(_) => self.is_error = true,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Render frame
|
|
pub fn render<B: Backend>(&mut self, f: &mut Frame<'_, B>) {
|
|
let batch_progress =
|
|
(self.completed_batch as f64 / self.data.batch_size.len() as f64).clamp(0.0, 1.0);
|
|
let run_progress =
|
|
(self.completed_runs[self.current_batch] as f64 / self.n_run as f64).clamp(0.0, 1.0);
|
|
|
|
// Vertical layout
|
|
let row5 = Layout::default()
|
|
.direction(Direction::Vertical)
|
|
.constraints(
|
|
[
|
|
Constraint::Length(1),
|
|
Constraint::Length(3),
|
|
Constraint::Length(3),
|
|
Constraint::Length(13),
|
|
Constraint::Min(10),
|
|
]
|
|
.as_ref(),
|
|
)
|
|
.split(f.size());
|
|
|
|
// Top row horizontal layout
|
|
let top = Layout::default()
|
|
.direction(Direction::Horizontal)
|
|
.constraints([Constraint::Percentage(50), Constraint::Percentage(50)].as_ref())
|
|
.split(row5[2]);
|
|
|
|
// Mid row horizontal layout
|
|
let mid = Layout::default()
|
|
.direction(Direction::Horizontal)
|
|
.constraints(
|
|
[
|
|
Constraint::Percentage(25),
|
|
Constraint::Percentage(25),
|
|
Constraint::Percentage(25),
|
|
Constraint::Percentage(25),
|
|
]
|
|
.as_ref(),
|
|
)
|
|
.split(row5[3]);
|
|
|
|
// Left mid row vertical layout
|
|
let prefill_text = Layout::default()
|
|
.direction(Direction::Vertical)
|
|
.constraints([Constraint::Length(8), Constraint::Length(5)].as_ref())
|
|
.split(mid[0]);
|
|
|
|
// Right mid row vertical layout
|
|
let decode_text = Layout::default()
|
|
.direction(Direction::Vertical)
|
|
.constraints([Constraint::Length(8), Constraint::Length(5)].as_ref())
|
|
.split(mid[2]);
|
|
let decode_text_latency = Layout::default()
|
|
.direction(Direction::Horizontal)
|
|
.constraints([Constraint::Percentage(50), Constraint::Percentage(50)].as_ref())
|
|
.split(decode_text[0]);
|
|
|
|
// Bottom row horizontal layout
|
|
let bottom = Layout::default()
|
|
.direction(Direction::Horizontal)
|
|
.constraints([Constraint::Percentage(50), Constraint::Percentage(50)].as_ref())
|
|
.split(row5[4]);
|
|
|
|
// Title
|
|
let title = Block::default()
|
|
.borders(Borders::NONE)
|
|
.title(format!(
|
|
"Model: {} | Sequence Length: {} | Decode Length: {}",
|
|
self.tokenizer_name, self.sequence_length, self.decode_length
|
|
))
|
|
.style(
|
|
Style::default()
|
|
.add_modifier(Modifier::BOLD)
|
|
.fg(Color::White),
|
|
);
|
|
f.render_widget(title, row5[0]);
|
|
|
|
// Helper
|
|
let helper = Block::default()
|
|
.borders(Borders::NONE)
|
|
.title("<- | tab | ->: change batch tab | q / CTRL + c: quit | +/-: zoom")
|
|
.title_alignment(Alignment::Right)
|
|
.style(Style::default().fg(Color::White));
|
|
f.render_widget(helper, row5[0]);
|
|
|
|
// Batch tabs
|
|
let titles = self
|
|
.data
|
|
.batch_size
|
|
.iter()
|
|
.map(|b| {
|
|
Line::from(vec![Span::styled(
|
|
format!("Batch: {b}"),
|
|
Style::default().fg(Color::White),
|
|
)])
|
|
})
|
|
.collect();
|
|
let tabs = Tabs::new(titles)
|
|
.block(Block::default().borders(Borders::ALL).title("Tabs"))
|
|
.select(self.current_tab)
|
|
.style(Style::default().fg(Color::LightCyan))
|
|
.highlight_style(
|
|
Style::default()
|
|
.add_modifier(Modifier::BOLD)
|
|
.bg(Color::Black),
|
|
);
|
|
f.render_widget(tabs, row5[1]);
|
|
|
|
// Total progress bar
|
|
let color = if self.is_error {
|
|
Color::Red
|
|
} else {
|
|
Color::LightGreen
|
|
};
|
|
let batch_gauge = progress_gauge(
|
|
"Total Progress",
|
|
format!("{} / {}", self.completed_batch, self.data.batch_size.len()),
|
|
batch_progress,
|
|
color,
|
|
);
|
|
f.render_widget(batch_gauge, top[0]);
|
|
|
|
// Batch progress Bar
|
|
let color = if self.is_error {
|
|
Color::Red
|
|
} else {
|
|
Color::LightBlue
|
|
};
|
|
let run_gauge = progress_gauge(
|
|
"Batch Progress",
|
|
format!(
|
|
"{} / {}",
|
|
self.completed_runs[self.current_batch], self.n_run
|
|
),
|
|
run_progress,
|
|
color,
|
|
);
|
|
f.render_widget(run_gauge, top[1]);
|
|
|
|
// Prefill text infos
|
|
let prefill_latency_block = latency_paragraph(
|
|
&mut self.data.prefill_latencies[self.current_tab],
|
|
"Prefill",
|
|
);
|
|
let prefill_throughput_block =
|
|
throughput_paragraph(&self.data.prefill_throughputs[self.current_tab], "Prefill");
|
|
|
|
f.render_widget(prefill_latency_block, prefill_text[0]);
|
|
f.render_widget(prefill_throughput_block, prefill_text[1]);
|
|
|
|
// Prefill latency histogram
|
|
let histo_width = 7;
|
|
let bins = if mid[1].width < 2 {
|
|
0
|
|
} else {
|
|
(mid[1].width as usize - 2) / (histo_width + 1)
|
|
}
|
|
.max(2);
|
|
|
|
let histo_data =
|
|
latency_histogram_data(&self.data.prefill_latencies[self.current_tab], bins);
|
|
let histo_data_str: Vec<(&str, u64)> =
|
|
histo_data.iter().map(|(l, v)| (l.as_str(), *v)).collect();
|
|
let prefill_histogram =
|
|
latency_histogram(&histo_data_str, "Prefill").bar_width(histo_width as u16);
|
|
f.render_widget(prefill_histogram, mid[1]);
|
|
|
|
// Decode text info
|
|
let decode_latency_block = latency_paragraph(
|
|
&mut self.data.decode_latencies[self.current_tab],
|
|
"Decode Total",
|
|
);
|
|
let decode_token_latency_block = latency_paragraph(
|
|
&mut self.data.decode_token_latencies[self.current_tab],
|
|
"Decode Token",
|
|
);
|
|
let decode_throughput_block =
|
|
throughput_paragraph(&self.data.decode_throughputs[self.current_tab], "Decode");
|
|
f.render_widget(decode_latency_block, decode_text_latency[0]);
|
|
f.render_widget(decode_token_latency_block, decode_text_latency[1]);
|
|
f.render_widget(decode_throughput_block, decode_text[1]);
|
|
|
|
// Decode latency histogram
|
|
let histo_data =
|
|
latency_histogram_data(&self.data.decode_latencies[self.current_tab], bins);
|
|
let histo_data_str: Vec<(&str, u64)> =
|
|
histo_data.iter().map(|(l, v)| (l.as_str(), *v)).collect();
|
|
let decode_histogram =
|
|
latency_histogram(&histo_data_str, "Decode").bar_width(histo_width as u16);
|
|
f.render_widget(decode_histogram, mid[3]);
|
|
|
|
// Prefill latency/throughput chart
|
|
let prefill_latency_throughput_chart = latency_throughput_chart(
|
|
&self.data.prefill_batch_latency_throughput,
|
|
&self.data.batch_size,
|
|
self.zoom,
|
|
"Prefill",
|
|
);
|
|
f.render_widget(prefill_latency_throughput_chart, bottom[0]);
|
|
|
|
// Decode latency/throughput chart
|
|
let decode_latency_throughput_chart = latency_throughput_chart(
|
|
&self.data.decode_batch_latency_throughput,
|
|
&self.data.batch_size,
|
|
self.zoom,
|
|
"Decode",
|
|
);
|
|
f.render_widget(decode_latency_throughput_chart, bottom[1]);
|
|
}
|
|
}
|
|
|
|
/// App internal data struct
|
|
pub(crate) struct Data {
|
|
pub(crate) batch_size: Vec<u32>,
|
|
pub(crate) prefill_latencies: Vec<Vec<f64>>,
|
|
pub(crate) prefill_throughputs: Vec<Vec<f64>>,
|
|
pub(crate) decode_latencies: Vec<Vec<f64>>,
|
|
pub(crate) decode_token_latencies: Vec<Vec<f64>>,
|
|
pub(crate) decode_throughputs: Vec<Vec<f64>>,
|
|
pub(crate) prefill_batch_latency_throughput: Vec<(f64, f64)>,
|
|
pub(crate) decode_batch_latency_throughput: Vec<(f64, f64)>,
|
|
}
|
|
|
|
impl Data {
|
|
fn new(n_run: usize, batch_size: Vec<u32>) -> Self {
|
|
let prefill_latencies: Vec<Vec<f64>> = (0..batch_size.len())
|
|
.map(|_| Vec::with_capacity(n_run))
|
|
.collect();
|
|
let prefill_throughputs: Vec<Vec<f64>> = prefill_latencies.clone();
|
|
|
|
let decode_latencies: Vec<Vec<f64>> = prefill_latencies.clone();
|
|
let decode_token_latencies: Vec<Vec<f64>> = decode_latencies.clone();
|
|
let decode_throughputs: Vec<Vec<f64>> = prefill_throughputs.clone();
|
|
|
|
let prefill_batch_latency_throughput: Vec<(f64, f64)> =
|
|
Vec::with_capacity(batch_size.len());
|
|
let decode_batch_latency_throughput: Vec<(f64, f64)> =
|
|
prefill_batch_latency_throughput.clone();
|
|
|
|
Self {
|
|
batch_size,
|
|
prefill_latencies,
|
|
prefill_throughputs,
|
|
decode_latencies,
|
|
decode_token_latencies,
|
|
decode_throughputs,
|
|
prefill_batch_latency_throughput,
|
|
decode_batch_latency_throughput,
|
|
}
|
|
}
|
|
|
|
fn push_prefill(&mut self, prefill: Prefill, batch_idx: usize) {
|
|
let latency = prefill.latency.as_micros() as f64 / 1000.0;
|
|
self.prefill_latencies[batch_idx].push(latency);
|
|
self.prefill_throughputs[batch_idx].push(prefill.throughput);
|
|
}
|
|
|
|
fn push_decode(&mut self, decode: Decode, batch_idx: usize) {
|
|
let latency = decode.latency.as_micros() as f64 / 1000.0;
|
|
let token_latency = decode.token_latency.as_micros() as f64 / 1000.0;
|
|
self.decode_latencies[batch_idx].push(latency);
|
|
self.decode_token_latencies[batch_idx].push(token_latency);
|
|
self.decode_throughputs[batch_idx].push(decode.throughput);
|
|
}
|
|
|
|
fn end_batch(&mut self, batch_idx: usize) {
|
|
self.prefill_batch_latency_throughput.push((
|
|
self.prefill_latencies[batch_idx].iter().sum::<f64>()
|
|
/ self.prefill_latencies[batch_idx].len() as f64,
|
|
self.prefill_throughputs[batch_idx].iter().sum::<f64>()
|
|
/ self.prefill_throughputs[batch_idx].len() as f64,
|
|
));
|
|
self.decode_batch_latency_throughput.push((
|
|
self.decode_latencies[batch_idx].iter().sum::<f64>()
|
|
/ self.decode_latencies[batch_idx].len() as f64,
|
|
self.decode_throughputs[batch_idx].iter().sum::<f64>()
|
|
/ self.decode_throughputs[batch_idx].len() as f64,
|
|
));
|
|
}
|
|
}
|
|
|
|
/// Progress bar
|
|
fn progress_gauge(title: &str, label: String, progress: f64, color: Color) -> Gauge {
|
|
Gauge::default()
|
|
.block(Block::default().title(title).borders(Borders::ALL))
|
|
.gauge_style(Style::default().fg(color))
|
|
.label(Span::raw(label))
|
|
.ratio(progress)
|
|
}
|
|
|
|
/// Throughput paragraph
|
|
fn throughput_paragraph<'a>(throughput: &Vec<f64>, name: &'static str) -> Paragraph<'a> {
|
|
// Throughput average/high/low texts
|
|
let throughput_texts = statis_spans(throughput, "tokens/secs");
|
|
|
|
// Throughput block
|
|
Paragraph::new(throughput_texts).block(
|
|
Block::default()
|
|
.title(Span::raw(format!("{name} Throughput")))
|
|
.borders(Borders::ALL),
|
|
)
|
|
}
|
|
|
|
/// Latency paragraph
|
|
fn latency_paragraph<'a>(latency: &mut Vec<f64>, name: &'static str) -> Paragraph<'a> {
|
|
// Latency average/high/low texts
|
|
let mut latency_texts = statis_spans(latency, "ms");
|
|
|
|
// Sort latency for percentiles
|
|
float_ord::sort(latency);
|
|
let latency_percentiles = crate::utils::percentiles(latency, &[50, 90, 99]);
|
|
|
|
// Latency p50/p90/p99 texts
|
|
let colors = vec![Color::LightGreen, Color::LightYellow, Color::LightRed];
|
|
for (i, (name, value)) in latency_percentiles.iter().enumerate() {
|
|
let span = Line::from(vec![Span::styled(
|
|
format!("{name}: {value:.2} ms"),
|
|
Style::default().fg(colors[i]),
|
|
)]);
|
|
latency_texts.push(span);
|
|
}
|
|
|
|
Paragraph::new(latency_texts).block(
|
|
Block::default()
|
|
.title(Span::raw(format!("{name} Latency")))
|
|
.borders(Borders::ALL),
|
|
)
|
|
}
|
|
|
|
/// Average/High/Low spans
|
|
fn statis_spans<'a>(data: &Vec<f64>, unit: &'static str) -> Vec<Line<'a>> {
|
|
vec![
|
|
Line::from(vec![Span::styled(
|
|
format!(
|
|
"Average: {:.2} {unit}",
|
|
data.iter().sum::<f64>() / data.len() as f64
|
|
),
|
|
Style::default().fg(Color::LightBlue),
|
|
)]),
|
|
Line::from(vec![Span::styled(
|
|
format!(
|
|
"Lowest: {:.2} {unit}",
|
|
data.iter()
|
|
.min_by(|a, b| a.total_cmp(b))
|
|
.unwrap_or(&std::f64::NAN)
|
|
),
|
|
Style::default().fg(Color::Reset),
|
|
)]),
|
|
Line::from(vec![Span::styled(
|
|
format!(
|
|
"Highest: {:.2} {unit}",
|
|
data.iter()
|
|
.max_by(|a, b| a.total_cmp(b))
|
|
.unwrap_or(&std::f64::NAN)
|
|
),
|
|
Style::default().fg(Color::Reset),
|
|
)]),
|
|
]
|
|
}
|
|
|
|
/// Latency histogram data
|
|
fn latency_histogram_data(latency: &[f64], bins: usize) -> Vec<(String, u64)> {
|
|
let histo_data: Vec<(String, u64)> = {
|
|
let histo = crate::utils::histogram(latency, bins);
|
|
histo
|
|
.into_iter()
|
|
.map(|(label, v)| (format!("{label:.2}"), v as u64))
|
|
.collect()
|
|
};
|
|
|
|
histo_data
|
|
}
|
|
|
|
/// Latency Histogram
|
|
fn latency_histogram<'a>(
|
|
histo_data_str: &'a Vec<(&'a str, u64)>,
|
|
name: &'static str,
|
|
) -> BarChart<'a> {
|
|
BarChart::default()
|
|
.block(
|
|
Block::default()
|
|
.title(format!("{name} latency histogram"))
|
|
.style(Style::default().fg(Color::LightYellow).bg(Color::Reset))
|
|
.borders(Borders::ALL),
|
|
)
|
|
.data(histo_data_str.as_slice())
|
|
}
|
|
|
|
/// Latency/Throughput chart
|
|
fn latency_throughput_chart<'a>(
|
|
latency_throughput: &'a Vec<(f64, f64)>,
|
|
batch_sizes: &'a [u32],
|
|
zoom: bool,
|
|
name: &'static str,
|
|
) -> Chart<'a> {
|
|
let latency_iter = latency_throughput.iter().map(|(l, _)| l);
|
|
let throughput_iter = latency_throughput.iter().map(|(_, t)| t);
|
|
|
|
// Get extreme values
|
|
let min_latency: f64 = *latency_iter
|
|
.clone()
|
|
.min_by(|a, b| a.total_cmp(b))
|
|
.unwrap_or(&std::f64::NAN);
|
|
let max_latency: f64 = *latency_iter
|
|
.max_by(|a, b| a.total_cmp(b))
|
|
.unwrap_or(&std::f64::NAN);
|
|
let min_throughput: f64 = *throughput_iter
|
|
.clone()
|
|
.min_by(|a, b| a.total_cmp(b))
|
|
.unwrap_or(&std::f64::NAN);
|
|
let max_throughput: f64 = *throughput_iter
|
|
.max_by(|a, b| a.total_cmp(b))
|
|
.unwrap_or(&std::f64::NAN);
|
|
|
|
// Char min max values
|
|
let min_x = if zoom {
|
|
((min_latency - 0.05 * min_latency) / 100.0).floor() * 100.0
|
|
} else {
|
|
0.0
|
|
};
|
|
let max_x = ((max_latency + 0.05 * max_latency) / 100.0).ceil() * 100.0;
|
|
let step_x = (max_x - min_x) / 4.0;
|
|
|
|
// Chart min max values
|
|
let min_y = if zoom {
|
|
((min_throughput - 0.05 * min_throughput) / 100.0).floor() * 100.0
|
|
} else {
|
|
0.0
|
|
};
|
|
let max_y = ((max_throughput + 0.05 * max_throughput) / 100.0).ceil() * 100.0;
|
|
let step_y = (max_y - min_y) / 4.0;
|
|
|
|
// Labels
|
|
let mut x_labels = vec![Span::styled(
|
|
format!("{min_x:.2}"),
|
|
Style::default()
|
|
.add_modifier(Modifier::BOLD)
|
|
.fg(Color::Gray)
|
|
.bg(Color::Reset),
|
|
)];
|
|
for i in 0..3 {
|
|
x_labels.push(Span::styled(
|
|
format!("{:.2}", min_x + ((i + 1) as f64 * step_x)),
|
|
Style::default().fg(Color::Gray).bg(Color::Reset),
|
|
));
|
|
}
|
|
x_labels.push(Span::styled(
|
|
format!("{max_x:.2}"),
|
|
Style::default()
|
|
.add_modifier(Modifier::BOLD)
|
|
.fg(Color::Gray)
|
|
.bg(Color::Reset),
|
|
));
|
|
|
|
// Labels
|
|
let mut y_labels = vec![Span::styled(
|
|
format!("{min_y:.2}"),
|
|
Style::default()
|
|
.add_modifier(Modifier::BOLD)
|
|
.fg(Color::Gray)
|
|
.bg(Color::Reset),
|
|
)];
|
|
for i in 0..3 {
|
|
y_labels.push(Span::styled(
|
|
format!("{:.2}", min_y + ((i + 1) as f64 * step_y)),
|
|
Style::default().fg(Color::Gray).bg(Color::Reset),
|
|
));
|
|
}
|
|
y_labels.push(Span::styled(
|
|
format!("{max_y:.2}"),
|
|
Style::default()
|
|
.add_modifier(Modifier::BOLD)
|
|
.fg(Color::Gray)
|
|
.bg(Color::Reset),
|
|
));
|
|
|
|
// Chart dataset
|
|
let colors = color_vec();
|
|
let datasets: Vec<Dataset> = (0..latency_throughput.len())
|
|
.map(|i| {
|
|
let color_idx = i % colors.len();
|
|
|
|
Dataset::default()
|
|
.name(batch_sizes[i].to_string())
|
|
.marker(symbols::Marker::Block)
|
|
.style(Style::default().fg(colors[color_idx]))
|
|
.graph_type(GraphType::Scatter)
|
|
.data(&latency_throughput[i..(i + 1)])
|
|
})
|
|
.collect();
|
|
|
|
// Chart
|
|
Chart::new(datasets)
|
|
.style(Style::default().fg(Color::Cyan).bg(Color::Reset))
|
|
.block(
|
|
Block::default()
|
|
.title(Span::styled(
|
|
format!("{name} throughput over latency"),
|
|
Style::default().fg(Color::Gray).bg(Color::Reset),
|
|
))
|
|
.borders(Borders::ALL),
|
|
)
|
|
.x_axis(
|
|
Axis::default()
|
|
.title("ms")
|
|
.style(Style::default().fg(Color::Gray).bg(Color::Reset))
|
|
.labels(x_labels)
|
|
.bounds([min_x, max_x]),
|
|
)
|
|
.y_axis(
|
|
Axis::default()
|
|
.title("tokens/secs")
|
|
.style(Style::default().fg(Color::Gray).bg(Color::Reset))
|
|
.labels(y_labels)
|
|
.bounds([min_y, max_y]),
|
|
)
|
|
}
|
|
|
|
// Colors for latency/throughput chart
|
|
fn color_vec() -> Vec<Color> {
|
|
vec![
|
|
Color::Red,
|
|
Color::Green,
|
|
Color::Yellow,
|
|
Color::Blue,
|
|
Color::Magenta,
|
|
Color::Cyan,
|
|
Color::Gray,
|
|
Color::DarkGray,
|
|
Color::LightRed,
|
|
Color::LightGreen,
|
|
Color::LightYellow,
|
|
Color::LightBlue,
|
|
Color::LightMagenta,
|
|
Color::LightCyan,
|
|
]
|
|
}
|