text-generation-inference/server/text_generation_server/layers/gptq/exllamav2.py
Nicolas Patry 5ab4cef67e
Fixing exl2 scratch buffer. (#1990)
# What does this PR do?

<!--
Congratulations! You've made it this far! You're not quite done yet
though.

Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.

Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.

Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->

<!-- Remove if not applicable -->

Fixes # (issue)


## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
      Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
      to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?


## Who can review?

Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.

<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @


@OlivierDehaene OR @Narsil

 -->
2024-05-31 18:01:43 +02:00

249 lines
7.4 KiB
Python

# Adapted from turboderp exllama: https://github.com/turboderp/exllamav2
from dataclasses import dataclass
from typing import Optional
import torch
import torch.nn as nn
from loguru import logger
from text_generation_server.layers.exl2 import Exl2Weight
from text_generation_server.layers.gptq import GPTQWeight
try:
from exllamav2_kernels import make_q_matrix, gemm_half_q_half
except ImportError:
logger.error("exllamav2_kernels not installed.")
raise
# Dummy tensor to pass instead of g_idx since there is no way to pass "None" to a C++ extension
none_tensor = torch.empty((1, 1), device="meta")
@dataclass
class _ExtraTensors:
"""Additional generated quantizer tensors."""
q_group_map: Optional[torch.Tensor] = None
q_invperm: Optional[torch.Tensor] = None
q_perm: Optional[torch.Tensor] = None
def ext_gemm_half_q_half(x, q_handle, q4_width, force_cuda):
"""Matrix multiplication, returns x @ q4"""
output_shape = x.shape[:-1] + (q4_width,)
x = x.view(-1, x.shape[-1])
output = torch.empty((x.shape[0], q4_width), dtype=torch.half, device=x.device)
gemm_half_q_half(x, q_handle, output, force_cuda)
return output.view(output_shape)
def make_group_map(q_groups: torch.Tensor, num_qrows: int):
gr = q_groups.tolist()
group_map = []
num_groups = len(gr) // 2
for i in range(num_groups):
bits = gr[i * 2]
if i < num_groups - 1:
qrows = gr[i * 2 + 3] - gr[i * 2 + 1]
else:
qrows = num_qrows - gr[i * 2 + 1]
rows = qrows * 32 // bits
for j in range(rows):
group_map += [i]
group_map += [rows - j]
return torch.tensor(group_map, dtype=torch.short, device=q_groups.device)
# Create Q matrix
def ext_make_q_matrix(
w: Exl2Weight | GPTQWeight,
extra: _ExtraTensors,
temp_dq,
key: Optional[str] = None,
):
"""
Create Q matrix
"""
# EXL2
if isinstance(w, Exl2Weight):
extra.q_group_map = make_group_map(w.q_groups, w.q_weight.shape[0])
extra.q_perm = torch.argsort(w.q_invperm).short()
return make_q_matrix(
w.q_weight,
extra.q_perm,
w.q_invperm,
w.q_scale,
w.q_scale_max,
w.q_groups,
extra.q_group_map,
none_tensor,
none_tensor,
none_tensor,
temp_dq,
)
# GPTQ
elif isinstance(w, GPTQWeight):
if w.scales.dtype == torch.float:
w.scales = w.scales.half()
# GPTQ with g_idx (act_order)
if w.g_idx is not None and not (w.g_idx == 0).all().item():
extra.q_perm = torch.empty(
(w.qweight.shape[0] * 8,),
dtype=torch.short,
device=w.qweight.device,
)
extra.q_invperm = torch.empty_like(extra.q_perm)
# make_q4 segfaults if g_idx is not on cpu in the act-order case. In the non act-order case, None needs to be passed for g_idx.
return make_q_matrix(
w.qweight,
extra.q_perm,
extra.q_invperm,
none_tensor,
none_tensor,
none_tensor,
none_tensor,
w.qzeros,
w.scales,
w.g_idx.cpu(),
temp_dq,
)
# GPTQ without g_idx
else:
return make_q_matrix(
w.qweight,
none_tensor,
none_tensor,
none_tensor,
none_tensor,
none_tensor,
none_tensor,
w.qzeros,
w.scales,
none_tensor,
temp_dq,
)
else:
RuntimeError("Cannot create handle")
DEVICE = None
LAYERS = []
def set_device(device):
global DEVICE
DEVICE = device
def create_exllama_buffers(max_total_tokens: int):
global LAYERS, DEVICE
# Find the size of the scratch space.
scratch_bytes = max(
layer.scratch_space_fixed(max_input_len=max_total_tokens, max_batch_size=1)
for layer in LAYERS
)
temp_dq = ExLlamaV2DeviceTensors(DEVICE, scratch_bytes)
for layer in LAYERS:
layer.post_init(temp_dq)
class QuantLinear(nn.Module):
QUANT_TYPE = "exllamav2"
"""Linear layer implementation with per-group 4-bit quantization of the weights"""
def __init__(
self,
weight: Exl2Weight | GPTQWeight,
bias: torch.Tensor,
):
super().__init__()
self.q_handle = None
self.q_tensors = weight
self.extra_tensors = _ExtraTensors()
if isinstance(weight, Exl2Weight):
self.infeatures = weight.q_invperm.shape[0]
self.outfeatures = weight.q_weight.shape[1]
elif isinstance(weight, GPTQWeight):
if weight.bits != 4:
raise ValueError(
f"Exllamav2 kernel supports only bits=4, requested bits={weight.bits}. Something is wrong in the model initialization."
)
self.infeatures = weight.qweight.shape[0] // weight.bits * 32
self.outfeatures = weight.qweight.shape[1]
self.padding = -self.outfeatures % 32
self.outfeatures = self.outfeatures + self.padding
self.device = weight.device
self.bias = bias if bias is not None else None
global LAYERS
LAYERS.append(self)
def post_init(self, temp_dq):
device = self.q_tensors.device
assert device.type == "cuda"
assert device.index is not None
temp_dq = temp_dq.get_scratch_slice(self.temp_dq_size())
# We NEED to keep a pointer on Python side, otherwise the garbage collector will mess with us,
# and `Memory access fault by GPU node-2` will EAT you.
self.temp_dq = temp_dq
self.q_handle = ext_make_q_matrix(self.q_tensors, self.extra_tensors, temp_dq)
def forward(self, x, force_cuda=False):
output = ext_gemm_half_q_half(x, self.q_handle, self.outfeatures, force_cuda)
if self.bias is not None:
output.add_(self.bias)
return output
def temp_dq_size(self):
return self.infeatures * self.outfeatures * 2 + 128
def temp_fwd_size(self, max_input_len, max_batch_size):
return self.outfeatures * max_input_len * max_batch_size * 4 + 128
def scratch_space_fixed(self, max_input_len, max_batch_size):
return self.temp_dq_size() + self.temp_fwd_size(max_input_len, max_batch_size)
class ExLlamaV2DeviceTensors:
device_idx: int
scratch_bytes: int
scratch_idx: int
scratch: torch.tensor = None
def __init__(self, device, scratch_bytes):
self.device = device
self.scratch_bytes = scratch_bytes
def prepare(self):
self.scratch = torch.empty(
(self.scratch_bytes // 2,), dtype=torch.half, device=self.device
)
def get_scratch_slice(self, size_bytes):
if self.scratch is None:
self.prepare()
size_bytes = ((size_bytes + 127) // 128) * 128
size_half = size_bytes // 2
scratch_slice = self.scratch.narrow(0, 0, size_half)
return scratch_slice