mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-04-19 22:02:06 +00:00
* Fix GPTQ autotune data type to be compatible with Torch 2.4.0 * Update poetry lock file * Fix small PaliGemma logprob differences after the torch update
262 lines
9.8 KiB
Python
262 lines
9.8 KiB
Python
# https://github.com/fpgaminer/GPTQ-triton
|
|
"""
|
|
Mostly the same as the autotuner in Triton, but with a few changes like using 40 runs instead of 100.
|
|
"""
|
|
|
|
import builtins
|
|
import math
|
|
import time
|
|
from typing import Dict
|
|
|
|
import triton
|
|
|
|
|
|
class Autotuner(triton.KernelInterface):
|
|
def __init__(
|
|
self,
|
|
fn,
|
|
arg_names,
|
|
configs,
|
|
key,
|
|
reset_to_zero,
|
|
prune_configs_by: Dict = None,
|
|
nearest_power_of_two: bool = False,
|
|
):
|
|
"""
|
|
:param prune_configs_by: a dict of functions that are used to prune configs, fields:
|
|
'perf_model': performance model used to predicate running time with different configs, returns running time
|
|
'top_k': number of configs to bench
|
|
'prune_num_stages_by'(optional): a function used to prune num_stages. It take configs:List[Config] as its input, and returns pruned configs.
|
|
'nearest_power_of_two'(optional): whether to round key arguments to the nearest power of two when caching tuning results
|
|
"""
|
|
if not configs:
|
|
self.configs = [triton.Config({}, num_warps=4, num_stages=2)]
|
|
else:
|
|
self.configs = configs
|
|
self.key_idx = [arg_names.index(k) for k in key]
|
|
self.nearest_power_of_two = nearest_power_of_two
|
|
self.cache = {}
|
|
# hook to reset all required tensor to zeros before relaunching a kernel
|
|
self.hook = lambda args: 0
|
|
if reset_to_zero is not None:
|
|
self.reset_idx = [arg_names.index(k) for k in reset_to_zero]
|
|
|
|
def _hook(args):
|
|
for i in self.reset_idx:
|
|
args[i].zero_()
|
|
|
|
self.hook = _hook
|
|
self.arg_names = arg_names
|
|
# prune configs
|
|
if prune_configs_by:
|
|
perf_model, top_k = (
|
|
prune_configs_by["perf_model"],
|
|
prune_configs_by["top_k"],
|
|
)
|
|
if "early_config_prune" in prune_configs_by:
|
|
early_config_prune = prune_configs_by["early_config_prune"]
|
|
else:
|
|
perf_model, top_k, early_config_prune = None, None, None
|
|
self.perf_model, self.configs_top_k = perf_model, top_k
|
|
self.early_config_prune = early_config_prune
|
|
self.fn = fn
|
|
|
|
def _bench(self, *args, config, **meta):
|
|
# check for conflicts, i.e. meta-parameters both provided
|
|
# as kwargs and by the autotuner
|
|
conflicts = meta.keys() & config.kwargs.keys()
|
|
if conflicts:
|
|
raise ValueError(
|
|
f"Conflicting meta-parameters: {', '.join(conflicts)}."
|
|
" Make sure that you don't re-define auto-tuned symbols."
|
|
)
|
|
# augment meta-parameters with tunable ones
|
|
current = dict(meta, **config.kwargs)
|
|
|
|
def kernel_call():
|
|
if config.pre_hook:
|
|
config.pre_hook(self.nargs)
|
|
self.hook(args)
|
|
self.fn.run(
|
|
*args,
|
|
num_warps=config.num_warps,
|
|
num_stages=config.num_stages,
|
|
**current,
|
|
)
|
|
|
|
try:
|
|
# In testings using only 40 reps seems to be close enough and it appears to be what PyTorch uses
|
|
# PyTorch also sets fast_flush to True, but I didn't see any speedup so I'll leave the default
|
|
return triton.testing.do_bench(
|
|
kernel_call, quantiles=(0.5, 0.2, 0.8), rep=40
|
|
)
|
|
except triton.OutOfResources:
|
|
return [float("inf"), float("inf"), float("inf")]
|
|
|
|
def run(self, *args, **kwargs):
|
|
self.nargs = dict(zip(self.arg_names, args))
|
|
if len(self.configs) > 1:
|
|
key = tuple(args[i] for i in self.key_idx)
|
|
|
|
# This reduces the amount of autotuning by rounding the keys to the nearest power of two
|
|
# In my testing this gives decent results, and greatly reduces the amount of tuning required
|
|
if self.nearest_power_of_two:
|
|
key = tuple([2 ** int(math.log2(x) + 0.5) for x in key])
|
|
|
|
if key not in self.cache:
|
|
# prune configs
|
|
pruned_configs = self.prune_configs(kwargs)
|
|
bench_start = time.time()
|
|
timings = {
|
|
config: self._bench(*args, config=config, **kwargs)
|
|
for config in pruned_configs
|
|
}
|
|
bench_end = time.time()
|
|
self.bench_time = bench_end - bench_start
|
|
self.cache[key] = builtins.min(timings, key=timings.get)
|
|
self.hook(args)
|
|
self.configs_timings = timings
|
|
config = self.cache[key]
|
|
else:
|
|
config = self.configs[0]
|
|
self.best_config = config
|
|
if config.pre_hook is not None:
|
|
config.pre_hook(self.nargs)
|
|
return self.fn.run(
|
|
*args,
|
|
num_warps=config.num_warps,
|
|
num_stages=config.num_stages,
|
|
**kwargs,
|
|
**config.kwargs,
|
|
)
|
|
|
|
def prune_configs(self, kwargs):
|
|
pruned_configs = self.configs
|
|
if self.early_config_prune:
|
|
pruned_configs = self.early_config_prune(self.configs, self.nargs)
|
|
if self.perf_model:
|
|
top_k = self.configs_top_k
|
|
if isinstance(top_k, float) and top_k <= 1.0:
|
|
top_k = int(len(self.configs) * top_k)
|
|
if len(pruned_configs) > top_k:
|
|
est_timing = {
|
|
config: self.perf_model(
|
|
**self.nargs,
|
|
**kwargs,
|
|
**config.kwargs,
|
|
num_stages=config.num_stages,
|
|
num_warps=config.num_warps,
|
|
)
|
|
for config in pruned_configs
|
|
}
|
|
pruned_configs = sorted(est_timing.keys(), key=lambda x: est_timing[x])[
|
|
:top_k
|
|
]
|
|
return pruned_configs
|
|
|
|
def warmup(self, *args, **kwargs):
|
|
self.nargs = dict(zip(self.arg_names, args))
|
|
for config in self.prune_configs(kwargs):
|
|
self.fn.warmup(
|
|
*args,
|
|
num_warps=config.num_warps,
|
|
num_stages=config.num_stages,
|
|
**kwargs,
|
|
**config.kwargs,
|
|
)
|
|
self.nargs = None
|
|
|
|
|
|
def autotune(
|
|
configs, key, prune_configs_by=None, reset_to_zero=None, nearest_power_of_two=False
|
|
):
|
|
"""
|
|
Decorator for auto-tuning a :code:`triton.jit`'d function.
|
|
.. highlight:: python
|
|
.. code-block:: python
|
|
@triton.autotune(configs=[
|
|
triton.Config(meta={'BLOCK_SIZE': 128}, num_warps=4),
|
|
triton.Config(meta={'BLOCK_SIZE': 1024}, num_warps=8),
|
|
],
|
|
key=['x_size'] # the two above configs will be evaluated anytime
|
|
# the value of x_size changes
|
|
)
|
|
@triton.jit
|
|
def kernel(x_ptr, x_size, **META):
|
|
BLOCK_SIZE = META['BLOCK_SIZE']
|
|
:note: When all the configurations are evaluated, the kernel will run multiple time.
|
|
This means that whatever value the kernel updates will be updated multiple times.
|
|
To avoid this undesired behavior, you can use the `reset_to_zero` argument, which
|
|
reset the value of the provided tensor to `zero` before running any configuration.
|
|
:param configs: a list of :code:`triton.Config` objects
|
|
:type configs: list[triton.Config]
|
|
:param key: a list of argument names whose change in value will trigger the evaluation of all provided configs.
|
|
:type key: list[str]
|
|
:param prune_configs_by: a dict of functions that are used to prune configs, fields:
|
|
'perf_model': performance model used to predicate running time with different configs, returns running time
|
|
'top_k': number of configs to bench
|
|
'early_config_prune'(optional): a function used to do early prune (eg, num_stages). It take configs:List[Config] as its input, and returns pruned configs.
|
|
:param reset_to_zero: a list of argument names whose value will be reset to zero before evaluating any configs.
|
|
:type reset_to_zero: list[str]
|
|
"""
|
|
|
|
def decorator(fn):
|
|
return Autotuner(
|
|
fn,
|
|
fn.arg_names,
|
|
configs,
|
|
key,
|
|
reset_to_zero,
|
|
prune_configs_by,
|
|
nearest_power_of_two,
|
|
)
|
|
|
|
return decorator
|
|
|
|
|
|
def matmul248_kernel_config_pruner(configs, nargs):
|
|
"""
|
|
The main purpose of this function is to shrink BLOCK_SIZE_* when the corresponding dimension is smaller.
|
|
"""
|
|
m = max(2 ** int(math.ceil(math.log2(nargs["M"]))), 16)
|
|
n = max(2 ** int(math.ceil(math.log2(nargs["N"]))), 16)
|
|
k = max(2 ** int(math.ceil(math.log2(nargs["K"]))), 16)
|
|
|
|
used = set()
|
|
for config in configs:
|
|
block_size_m = min(m, config.kwargs["BLOCK_SIZE_M"])
|
|
block_size_n = min(n, config.kwargs["BLOCK_SIZE_N"])
|
|
block_size_k = min(k, config.kwargs["BLOCK_SIZE_K"])
|
|
group_size_m = config.kwargs["GROUP_SIZE_M"]
|
|
|
|
if (
|
|
block_size_m,
|
|
block_size_n,
|
|
block_size_k,
|
|
group_size_m,
|
|
config.num_stages,
|
|
config.num_warps,
|
|
) in used:
|
|
continue
|
|
|
|
used.add(
|
|
(
|
|
block_size_m,
|
|
block_size_n,
|
|
block_size_k,
|
|
group_size_m,
|
|
config.num_stages,
|
|
config.num_warps,
|
|
)
|
|
)
|
|
yield triton.Config(
|
|
{
|
|
"BLOCK_SIZE_M": block_size_m,
|
|
"BLOCK_SIZE_N": block_size_n,
|
|
"BLOCK_SIZE_K": block_size_k,
|
|
"GROUP_SIZE_M": group_size_m,
|
|
},
|
|
num_stages=config.num_stages,
|
|
num_warps=config.num_warps,
|
|
)
|