text-generation-inference/backends/v3/src/block_allocator.rs
Daniël de Kok 8deeaca4ff
Add support for prefix caching to the v3 router (#2392)
This change adds support for prefix caching to the v3 router. This
is broken up from the backend support to ease reviewing.

For now prefix caching is only enabled with `USE_PREFIX_CACHING=1`
in this case, the router will switch to `RadixAllocator`. This
allocator uses a radix trie to keep track of prefills that were
seen prior. If a new prefill is a prefix of a previously-seen
prefil, the router will send a request with `prefix_len>0`, which
can be used by the backend to decide to reuse KV blocks from the
cache, rather than recomputing them.

Even though backend support is not added in this PR, the backend
will still work with prefix caching enabled. The prefix lengths
are just ignored and not used.
2024-08-12 14:59:17 +02:00

211 lines
5.9 KiB
Rust

use std::{cmp::min, sync::Arc};
use tokio::sync::{mpsc, oneshot};
use crate::radix::RadixAllocator;
#[derive(Debug, Clone)]
pub(crate) struct BlockAllocation {
pub allocation_id: u64,
pub blocks: Vec<u32>,
pub slots: Vec<u32>,
/// Prefix that was cached and for which the KV does not have to
/// be recomputed.
pub prefix_len: u32,
pub(crate) block_allocator: Option<BlockAllocator>,
}
impl Drop for BlockAllocation {
fn drop(&mut self) {
if let Some(block_allocator) = self.block_allocator.as_mut() {
block_allocator.free(self.blocks.clone(), self.allocation_id)
}
}
}
#[derive(Debug, Clone)]
pub(crate) struct BlockAllocator {
/// Channel to communicate with the background task
block_allocator: mpsc::UnboundedSender<BlockAllocatorCommand>,
}
impl BlockAllocator {
pub(crate) fn new(
max_batch_total_tokens: u32,
block_size: u32,
prefix_caching: bool,
window_size: Option<u32>,
) -> Self {
// Create channel
let (sender, receiver) = mpsc::unbounded_channel();
// Launch background queue task
tokio::spawn(block_allocator_task(
max_batch_total_tokens / block_size,
block_size,
prefix_caching,
window_size,
receiver,
));
Self {
block_allocator: sender,
}
}
pub(crate) async fn allocate(
&self,
tokens: u32,
prefill_tokens: Option<Arc<Vec<u32>>>,
) -> Option<BlockAllocation> {
let (response_sender, response_receiver) = oneshot::channel();
self.block_allocator
.send(BlockAllocatorCommand::Allocate {
tokens,
prefill_tokens,
response_sender,
})
.unwrap();
response_receiver.await.unwrap().map(|mut allocation| {
allocation.block_allocator = Some(self.clone());
allocation
})
}
pub(crate) fn free(&self, blocks: Vec<u32>, allocation_id: u64) {
self.block_allocator
.send(BlockAllocatorCommand::Free {
allocation_id,
blocks,
})
.unwrap();
}
}
async fn block_allocator_task(
blocks: u32,
block_size: u32,
prefix_caching: bool,
window_size: Option<u32>,
mut receiver: mpsc::UnboundedReceiver<BlockAllocatorCommand>,
) {
let mut allocator: Box<dyn Allocator + Send> = if prefix_caching {
Box::new(RadixAllocator::new(block_size, blocks, window_size))
} else {
Box::new(SimpleAllocator::new(blocks, block_size, window_size))
};
while let Some(cmd) = receiver.recv().await {
match cmd {
BlockAllocatorCommand::Free {
blocks,
allocation_id,
} => allocator.free(blocks, allocation_id),
BlockAllocatorCommand::Allocate {
tokens,
prefill_tokens,
response_sender,
} => {
response_sender
.send(allocator.allocate(tokens, prefill_tokens))
.unwrap();
}
}
}
}
#[derive(Debug)]
enum BlockAllocatorCommand {
Free {
blocks: Vec<u32>,
allocation_id: u64,
},
Allocate {
tokens: u32,
prefill_tokens: Option<Arc<Vec<u32>>>,
response_sender: oneshot::Sender<Option<BlockAllocation>>,
},
}
pub(crate) trait Allocator {
fn allocate(
&mut self,
tokens: u32,
prefill_tokens: Option<Arc<Vec<u32>>>,
) -> Option<BlockAllocation>;
fn free(&mut self, blocks: Vec<u32>, allocation_id: u64);
}
pub struct SimpleAllocator {
free_blocks: Vec<u32>,
block_size: u32,
window_size: Option<u32>,
}
impl SimpleAllocator {
fn new(blocks: u32, block_size: u32, window_size: Option<u32>) -> Self {
SimpleAllocator {
block_size,
// Block 0 is reserved for health checks
free_blocks: (1..blocks).collect(),
window_size,
}
}
}
impl Allocator for SimpleAllocator {
fn allocate(
&mut self,
tokens: u32,
_prefill_tokens: Option<Arc<Vec<u32>>>,
) -> Option<BlockAllocation> {
// Apply window size
let (required_blocks, repeats) = {
let (tokens, repeats) = match self.window_size {
None => (tokens, 1),
Some(window_size) => {
let repeats = (tokens + window_size - 1) / window_size;
let tokens = min(tokens, window_size);
(tokens, repeats as usize)
}
};
// Pad to a multiple of block size
let required_blocks = (tokens + self.block_size - 1) / self.block_size;
(required_blocks, repeats)
};
let tokens = tokens as usize;
if required_blocks > self.free_blocks.len() as u32 {
None
} else {
let blocks = self
.free_blocks
.split_off(self.free_blocks.len() - required_blocks as usize);
let mut slots =
Vec::with_capacity((required_blocks * self.block_size * repeats as u32) as usize);
'slots: for block_id in blocks.repeat(repeats).iter() {
for s in (block_id * self.block_size)..((block_id + 1) * self.block_size) {
slots.push(s);
if slots.len() == tokens {
break 'slots;
}
}
}
Some(BlockAllocation {
allocation_id: 0,
blocks,
slots,
prefix_len: 0,
block_allocator: None,
})
}
}
fn free(&mut self, blocks: Vec<u32>, _allocation_id: u64) {
self.free_blocks.extend(blocks)
}
}