mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-04-19 13:52:07 +00:00
* (vllm) updated vllm rocm kernels * revert silu * update partition size * remove grouped_topk * (nit) remove log * add flash decoding
342 lines
10 KiB
Python
342 lines
10 KiB
Python
import os
|
|
from typing import Optional
|
|
import torch
|
|
from text_generation_server.layers.attention.kv_cache import KVCache, KVScales
|
|
from text_generation_server.utils.import_utils import SYSTEM
|
|
from text_generation_server.layers.attention import Seqlen
|
|
from text_generation_server.utils.log import log_master
|
|
from text_generation_server.models.globals import (
|
|
ATTENTION,
|
|
BLOCK_SIZE,
|
|
)
|
|
from loguru import logger
|
|
import vllm._custom_ops as ops
|
|
|
|
major, minor = torch.cuda.get_device_capability()
|
|
is_sm75 = major == 7 and minor == 5
|
|
|
|
_PARTITION_SIZE_V1V2 = 1024
|
|
_PARTITION_SIZE_CUSTOM = 256
|
|
|
|
_GPU_ARCH = torch.cuda.get_device_properties("cuda").gcnArchName
|
|
_ON_MI250_MI300 = any(
|
|
arch in _GPU_ARCH for arch in ["gfx90a", "gfx940", "gfx941", "gfx942"]
|
|
)
|
|
|
|
use_triton = os.getenv("ROCM_USE_FLASH_ATTN_V2_TRITON", "").lower() in {"true", "1"}
|
|
ENGINE = "triton" if use_triton else "ck"
|
|
|
|
use_rocm_custom_paged_attn = os.getenv("ROCM_USE_CUSTOM_PAGED_ATTN", "1") != "0"
|
|
|
|
|
|
def _use_rocm_custom_paged_attention(
|
|
qtype: torch.dtype,
|
|
head_size: int,
|
|
block_size: int,
|
|
gqa_ratio: int,
|
|
max_seq_len: int,
|
|
) -> bool:
|
|
# rocm custom page attention not support on navi (gfx1*)
|
|
return (
|
|
use_rocm_custom_paged_attn
|
|
and _ON_MI250_MI300
|
|
and (qtype == torch.half or qtype == torch.bfloat16)
|
|
and (head_size == 64 or head_size == 128)
|
|
and (block_size == 16 or block_size == 32)
|
|
and (gqa_ratio >= 1 and gqa_ratio <= 16)
|
|
and max_seq_len <= 131072
|
|
)
|
|
|
|
|
|
def paged_attention(
|
|
query: torch.Tensor,
|
|
kv_cache: KVCache,
|
|
kv_head_mapping: torch.Tensor,
|
|
softmax_scale: float,
|
|
block_tables: torch.Tensor,
|
|
seqlen: Seqlen,
|
|
max_s: int,
|
|
*,
|
|
kv_scales: KVScales,
|
|
softcap: Optional[float] = None,
|
|
):
|
|
# Adapted from: https://github.com/vllm-project/vllm/blob/f8a1e39fae05ca610be8d5a78be9d40f5274e5fc/vllm/model_executor/layers/attention.py
|
|
# Copyright 2023 The vLLM team. All rights
|
|
# reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
if ATTENTION == "flashdecoding":
|
|
max_q = 1
|
|
max_k = max_s
|
|
import flash_attn_2_cuda
|
|
|
|
if softcap is None:
|
|
softcap = 0.0
|
|
out = flash_attn_2_cuda.varlen_fwd(
|
|
query,
|
|
kv_cache.key,
|
|
kv_cache.value,
|
|
None,
|
|
seqlen.cu_seqlen_q,
|
|
seqlen.cu_seqlen_k,
|
|
None, # pad_k
|
|
None,
|
|
block_tables,
|
|
None,
|
|
max_q,
|
|
max_k,
|
|
0.0, # dropout
|
|
softmax_scale,
|
|
False, # zero_tensors
|
|
True, # causal
|
|
-1, # Window_left
|
|
-1, # Window right
|
|
softcap,
|
|
False, # return softmax
|
|
None, # generator
|
|
)
|
|
return out[0]
|
|
|
|
if softcap is not None:
|
|
raise RuntimeError("Paged attention doesn't support softcapping")
|
|
|
|
# value_cache => [num_blocks, num_heads, head_size, block_size]
|
|
# block_size = kv_cache.value.shape[3]
|
|
block_size = BLOCK_SIZE
|
|
num_seqs, num_heads, head_size = query.shape
|
|
|
|
num_kv_heads = kv_cache.key.shape[1]
|
|
gqa_ratio = num_heads // num_kv_heads
|
|
use_custom = _use_rocm_custom_paged_attention(
|
|
query.dtype, head_size, block_size, gqa_ratio, max_s
|
|
)
|
|
|
|
if not use_custom:
|
|
_PARTITION_SIZE = _PARTITION_SIZE_V1V2
|
|
else:
|
|
_PARTITION_SIZE = _PARTITION_SIZE_CUSTOM
|
|
|
|
max_num_partitions = (max_s + _PARTITION_SIZE - 1) // _PARTITION_SIZE
|
|
input_lengths = seqlen.input_lengths + seqlen.cache_lengths
|
|
|
|
out = torch.empty_like(query)
|
|
|
|
# NOTE(woosuk): We use a simple heuristic to decide whether to use
|
|
# PagedAttention V1 or V2. If the number of partitions is 1, we use
|
|
# V1 to avoid the overhead of reduction. Also, if the number of
|
|
# sequences or heads is large, we use V1 since there is enough work
|
|
# to parallelize.
|
|
use_v1 = (
|
|
max_s <= 8192
|
|
and (max_num_partitions == 1 or num_seqs * num_heads > 512)
|
|
and not use_custom
|
|
)
|
|
if use_v1:
|
|
ops.paged_attention_v1(
|
|
out,
|
|
query,
|
|
kv_cache.key,
|
|
kv_cache.value,
|
|
num_kv_heads,
|
|
softmax_scale,
|
|
block_tables,
|
|
input_lengths,
|
|
block_size,
|
|
max_s,
|
|
None,
|
|
"auto",
|
|
1.0,
|
|
1.0,
|
|
)
|
|
else:
|
|
# Run PagedAttention V2.
|
|
assert _PARTITION_SIZE % block_size == 0
|
|
tmp_output = torch.empty(
|
|
size=(num_seqs, num_heads, max_num_partitions, head_size),
|
|
dtype=out.dtype,
|
|
device=out.device,
|
|
)
|
|
exp_sums = torch.empty(
|
|
size=(num_seqs, num_heads, max_num_partitions),
|
|
dtype=torch.float32,
|
|
device=out.device,
|
|
)
|
|
max_logits = torch.empty_like(exp_sums)
|
|
|
|
if not use_custom:
|
|
ops.paged_attention_v2(
|
|
out,
|
|
exp_sums,
|
|
max_logits,
|
|
tmp_output,
|
|
query,
|
|
kv_cache.key,
|
|
kv_cache.value,
|
|
num_kv_heads,
|
|
softmax_scale,
|
|
block_tables,
|
|
input_lengths,
|
|
block_size,
|
|
max_s,
|
|
None,
|
|
"auto",
|
|
1.0,
|
|
1.0,
|
|
)
|
|
else:
|
|
ops.paged_attention_rocm(
|
|
out,
|
|
exp_sums,
|
|
max_logits,
|
|
tmp_output,
|
|
query,
|
|
kv_cache.key,
|
|
kv_cache.value,
|
|
num_kv_heads,
|
|
softmax_scale,
|
|
block_tables,
|
|
input_lengths,
|
|
block_size,
|
|
max_s,
|
|
None,
|
|
"auto",
|
|
1.0,
|
|
1.0,
|
|
None,
|
|
_PARTITION_SIZE,
|
|
)
|
|
|
|
return out
|
|
|
|
|
|
if ENGINE != "triton":
|
|
try:
|
|
import flash_attn_2_cuda
|
|
|
|
log_master(
|
|
logger.info,
|
|
"ROCm: using Flash Attention 2 Composable Kernel implementation.",
|
|
)
|
|
except ImportError as e:
|
|
if major >= 8:
|
|
architecture_suffix = f"-{SYSTEM}"
|
|
raise ImportError(
|
|
"Flash Attention V2 is not installed.\n"
|
|
"Use the official Docker image (ghcr.io/huggingface/text-generation-inference:latest) "
|
|
f"or install flash attention v2 with `cd server && make install install-flash-attention-v2{architecture_suffix}`"
|
|
)
|
|
elif is_sm75:
|
|
raise ImportError(
|
|
"Flash Attention is not installed.\n"
|
|
"Use the official Docker image (ghcr.io/huggingface/text-generation-inference:latest) "
|
|
"or install flash attention with `cd server && make install install-flash-attention`"
|
|
) from e
|
|
else:
|
|
for idx in range(torch.cuda.device_count()):
|
|
name = torch.cuda.get_device_name(idx)
|
|
if "MI210" not in name and "MI250" not in name:
|
|
raise ImportError(
|
|
f"AMD GPU {torch.cuda.get_device_name(idx)} does not support flash-attention"
|
|
)
|
|
raise ImportError(
|
|
f"AMD GPU with ROCm capability {major} {minor} is not supported"
|
|
) from e
|
|
|
|
|
|
SUPPORTS_WINDOWING = False
|
|
|
|
|
|
def attention(
|
|
*,
|
|
query: torch.Tensor,
|
|
key: torch.Tensor,
|
|
value: torch.Tensor,
|
|
kv_cache: KVCache,
|
|
kv_scales: KVScales,
|
|
seqlen: Seqlen,
|
|
block_tables: torch.Tensor,
|
|
softmax_scale: float,
|
|
window_size_left: int = -1,
|
|
causal: bool = True,
|
|
softcap: Optional[float] = None,
|
|
):
|
|
if ENGINE == "ck":
|
|
if window_size_left <= 0 and window_size_left != -1:
|
|
raise ValueError("`window_size_left` must be > 0 or -1")
|
|
|
|
out = torch.empty_like(query)
|
|
|
|
if softcap is None:
|
|
softcap = 0.0
|
|
|
|
# We do not need to check window_size_left (not supported) here, so it is already checked ahead of time at model load.
|
|
return flash_attn_2_cuda.varlen_fwd(
|
|
query,
|
|
# flashdecoding: pass the KV caches, paged: pass the KV.
|
|
kv_cache.key if ATTENTION == "flashdecoding" else key,
|
|
kv_cache.value if ATTENTION == "flashdecoding" else value,
|
|
out,
|
|
seqlen.cu_seqlen_q,
|
|
seqlen.cu_seqlen_k,
|
|
None,
|
|
None,
|
|
block_tables if ATTENTION == "flashdecoding" else None,
|
|
None,
|
|
seqlen.max_q,
|
|
seqlen.max_k,
|
|
0.0,
|
|
softmax_scale,
|
|
False,
|
|
causal,
|
|
window_size_left,
|
|
0,
|
|
softcap,
|
|
False,
|
|
None,
|
|
)[0]
|
|
|
|
elif ENGINE == "triton":
|
|
from .flash_attn_triton import triton_attention
|
|
|
|
if softcap is not None:
|
|
raise NotImplementedError("softcap is only available with CK flash attn")
|
|
|
|
out = torch.empty_like(query)
|
|
|
|
# We do not need to check window_size_left (not supported) here, so it is already checked ahead of time at model load.
|
|
output, _ = triton_attention(
|
|
query,
|
|
key,
|
|
value,
|
|
out,
|
|
seqlen.cu_seqlen_q,
|
|
seqlen.cu_seqlen_q,
|
|
seqlen.max_q,
|
|
seqlen.max_k,
|
|
causal,
|
|
softmax_scale,
|
|
)
|
|
return output
|
|
|
|
else:
|
|
raise RuntimeError(f"Unknown attention engine {ENGINE}")
|
|
|
|
|
|
__all__ = [
|
|
"SUPPORTS_WINDOWING",
|
|
"attention",
|
|
"paged_attention",
|
|
]
|