mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-04-19 13:52:07 +00:00
* Gaudi: Use exponential growth to replace BATCH_BUCKET_SIZE Signed-off-by: yuanwu <yuan.wu@intel.com> * Remove debug modifications Signed-off-by: yuanwu <yuan.wu@intel.com> --------- Signed-off-by: yuanwu <yuan.wu@intel.com> |
||
---|---|---|
.. | ||
examples/docker_commands | ||
server | ||
Makefile | ||
README.md | ||
tgi-entrypoint.sh |
Text-generation-inference - Gaudi backend
Description
This is the TGI backend for Intel Gaudi. This backend is composed of the tgi server optimized for Gaudi hardware.
Build your own image
The simplest way to build TGI with the Gaudi backend is to use the provided Makefile
:
Option 1: From the project root directory:
make -C backends/gaudi image
Option 2: From the Gaudi backend directory:
cd backends/gaudi
make image
You can now run the server with the following command:
Option 1: Sharded:
model=meta-llama/Llama-3.1-8B-Instruct
hf_token=$(cat ${HOME}/.cache/huggingface/token)
volume=${HOME}/.cache/huggingface
docker run --runtime=habana --ipc=host --cap-add=sys_nice \
-p 8080:80 -v $volume:/data \
-e LOG_LEVEL=debug -e HF_TOKEN=$hf_token \
tgi-gaudi --model-id $model \
--sharded true --num-shard 8 \
--max-input-tokens 512 --max-total-tokens 1024 --max-batch-size 8 --max-batch-prefill-tokens 2048
Option 2: Non-sharded:
model=meta-llama/Llama-3.1-8B-Instruct
hf_token=$(cat ${HOME}/.cache/huggingface/token)
volume=${HOME}/.cache/huggingface
docker run --runtime=habana --ipc=host --cap-add=sys_nice \
-p 8080:80 -v $volume:/data \
-e LOG_LEVEL=debug -e HF_TOKEN=$hf_token \
tgi-gaudi --model-id $model \
--max-input-tokens 512 --max-total-tokens 1024 --max-batch-size 4 --max-batch-prefill-tokens 2048
Contributing
Local Development
This is useful if you want to run the server locally for better debugging.
make -C backends/gaudi run-local-dev-container
Then run the following command inside the container to install tgi for gaudi:
make -C backends/gaudi local-dev-install
Add rust to path:
. "$HOME/.cargo/env"
Option 1: Run the server (sharded model):
LOG_LEVEL=debug text-generation-launcher \
--model-id meta-llama/Llama-3.1-8B-Instruct \
--sharded true \
--num-shard 8 \
--max-input-tokens 512 \
--max-total-tokens 1024 \
--max-batch-size 8 \
--max-batch-prefill-tokens 2048
Option 2: Run the server (non-sharded model):
LOG_LEVEL=debug text-generation-launcher \
--model-id meta-llama/Llama-3.1-8B-Instruct \
--max-input-tokens 512 \
--max-total-tokens 1024 \
--max-batch-size 4 \
--max-batch-prefill-tokens 2048
You can then test the server with the following curl command from another terminal (can be outside the container):
curl 127.0.0.1:8080/generate \
-X POST \
-d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":20}}' \
-H 'Content-Type: application/json'