mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-04-22 15:32:08 +00:00
1109 lines
40 KiB
Rust
1109 lines
40 KiB
Rust
/// HTTP Server logic
|
|
use crate::health::Health;
|
|
use crate::infer::{InferError, InferResponse, InferStreamResponse};
|
|
use crate::validation::ValidationError;
|
|
use crate::{
|
|
BestOfSequence, ChatCompletion, ChatCompletionChoice, ChatCompletionChunk, ChatCompletionDelta,
|
|
ChatRequest, CompatGenerateRequest, Details, ErrorResponse, FinishReason, GenerateParameters,
|
|
GenerateRequest, GenerateResponse, HubModelInfo, HubTokenizerConfig, Infer, Info, Message,
|
|
PrefillToken, SimpleToken, StreamDetails, StreamResponse, Token, TokenizeResponse, Validation,
|
|
};
|
|
use axum::extract::Extension;
|
|
use axum::http::{HeaderMap, Method, StatusCode};
|
|
use axum::response::sse::{Event, KeepAlive, Sse};
|
|
use axum::response::{IntoResponse, Response};
|
|
use axum::routing::{get, post};
|
|
use axum::{http, Json, Router};
|
|
use axum_tracing_opentelemetry::middleware::OtelAxumLayer;
|
|
use futures::stream::StreamExt;
|
|
use futures::Stream;
|
|
use metrics_exporter_prometheus::{Matcher, PrometheusBuilder, PrometheusHandle};
|
|
use std::convert::Infallible;
|
|
use std::net::SocketAddr;
|
|
use std::sync::atomic::AtomicBool;
|
|
use std::sync::Arc;
|
|
use text_generation_client::{ShardInfo, ShardedClient};
|
|
use tokenizers::Tokenizer;
|
|
use tokio::signal;
|
|
use tokio::time::Instant;
|
|
use tower_http::cors::{AllowOrigin, CorsLayer};
|
|
use tracing::{info_span, instrument, Instrument};
|
|
use utoipa::OpenApi;
|
|
use utoipa_swagger_ui::SwaggerUi;
|
|
|
|
/// Generate tokens if `stream == false` or a stream of token if `stream == true`
|
|
#[utoipa::path(
|
|
post,
|
|
tag = "Text Generation Inference",
|
|
path = "/",
|
|
request_body = CompatGenerateRequest,
|
|
responses(
|
|
(status = 200, description = "Generated Text",
|
|
content(
|
|
("application/json" = GenerateResponse),
|
|
("text/event-stream" = StreamResponse),
|
|
)),
|
|
(status = 424, description = "Generation Error", body = ErrorResponse,
|
|
example = json ! ({"error": "Request failed during generation"})),
|
|
(status = 429, description = "Model is overloaded", body = ErrorResponse,
|
|
example = json ! ({"error": "Model is overloaded"})),
|
|
(status = 422, description = "Input validation error", body = ErrorResponse,
|
|
example = json ! ({"error": "Input validation error"})),
|
|
(status = 500, description = "Incomplete generation", body = ErrorResponse,
|
|
example = json ! ({"error": "Incomplete generation"})),
|
|
)
|
|
)]
|
|
#[instrument(skip(infer, req))]
|
|
async fn compat_generate(
|
|
Extension(default_return_full_text): Extension<bool>,
|
|
infer: Extension<Infer>,
|
|
compute_type: Extension<ComputeType>,
|
|
Json(mut req): Json<CompatGenerateRequest>,
|
|
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
|
|
// default return_full_text given the pipeline_tag
|
|
if req.parameters.return_full_text.is_none() {
|
|
req.parameters.return_full_text = Some(default_return_full_text)
|
|
}
|
|
|
|
// switch on stream
|
|
if req.stream {
|
|
Ok(generate_stream(infer, compute_type, Json(req.into()))
|
|
.await
|
|
.into_response())
|
|
} else {
|
|
let (headers, Json(generation)) = generate(infer, compute_type, Json(req.into())).await?;
|
|
// wrap generation inside a Vec to match api-inference
|
|
Ok((headers, Json(vec![generation])).into_response())
|
|
}
|
|
}
|
|
|
|
/// Text Generation Inference endpoint info
|
|
#[utoipa::path(
|
|
get,
|
|
tag = "Text Generation Inference",
|
|
path = "/info",
|
|
responses((status = 200, description = "Served model info", body = Info))
|
|
)]
|
|
#[instrument]
|
|
async fn get_model_info(info: Extension<Info>) -> Json<Info> {
|
|
Json(info.0)
|
|
}
|
|
|
|
#[utoipa::path(
|
|
get,
|
|
tag = "Text Generation Inference",
|
|
path = "/health",
|
|
responses(
|
|
(status = 200, description = "Everything is working fine"),
|
|
(status = 503, description = "Text generation inference is down", body = ErrorResponse,
|
|
example = json ! ({"error": "unhealthy", "error_type": "healthcheck"})),
|
|
)
|
|
)]
|
|
#[instrument(skip(health))]
|
|
/// Health check method
|
|
async fn health(mut health: Extension<Health>) -> Result<(), (StatusCode, Json<ErrorResponse>)> {
|
|
match health.check().await {
|
|
true => Ok(()),
|
|
false => Err((
|
|
StatusCode::SERVICE_UNAVAILABLE,
|
|
Json(ErrorResponse {
|
|
error: "unhealthy".to_string(),
|
|
error_type: "healthcheck".to_string(),
|
|
}),
|
|
)),
|
|
}
|
|
}
|
|
|
|
/// Generate tokens
|
|
#[utoipa::path(
|
|
post,
|
|
tag = "Text Generation Inference",
|
|
path = "/generate",
|
|
request_body = GenerateRequest,
|
|
responses(
|
|
(status = 200, description = "Generated Text", body = GenerateResponse),
|
|
(status = 424, description = "Generation Error", body = ErrorResponse,
|
|
example = json ! ({"error": "Request failed during generation"})),
|
|
(status = 429, description = "Model is overloaded", body = ErrorResponse,
|
|
example = json ! ({"error": "Model is overloaded"})),
|
|
(status = 422, description = "Input validation error", body = ErrorResponse,
|
|
example = json ! ({"error": "Input validation error"})),
|
|
(status = 500, description = "Incomplete generation", body = ErrorResponse,
|
|
example = json ! ({"error": "Incomplete generation"})),
|
|
)
|
|
)]
|
|
#[instrument(
|
|
skip_all,
|
|
fields(
|
|
parameters = ? req.parameters,
|
|
total_time,
|
|
validation_time,
|
|
queue_time,
|
|
inference_time,
|
|
time_per_token,
|
|
seed,
|
|
)
|
|
)]
|
|
async fn generate(
|
|
infer: Extension<Infer>,
|
|
Extension(ComputeType(compute_type)): Extension<ComputeType>,
|
|
Json(req): Json<GenerateRequest>,
|
|
) -> Result<(HeaderMap, Json<GenerateResponse>), (StatusCode, Json<ErrorResponse>)> {
|
|
let span = tracing::Span::current();
|
|
let start_time = Instant::now();
|
|
metrics::increment_counter!("tgi_request_count");
|
|
|
|
tracing::debug!("Input: {}", req.inputs);
|
|
|
|
let compute_characters = req.inputs.chars().count();
|
|
let mut add_prompt = None;
|
|
if req.parameters.return_full_text.unwrap_or(false) {
|
|
add_prompt = Some(req.inputs.clone());
|
|
}
|
|
|
|
let details: bool = req.parameters.details || req.parameters.decoder_input_details;
|
|
|
|
// Inference
|
|
let (response, best_of_responses) = match req.parameters.best_of {
|
|
Some(best_of) if best_of > 1 => {
|
|
let (response, best_of_responses) = infer.generate_best_of(req, best_of).await?;
|
|
(response, Some(best_of_responses))
|
|
}
|
|
_ => (infer.generate(req).await?, None),
|
|
};
|
|
|
|
// Token details
|
|
let input_length = response._input_length;
|
|
let details = match details {
|
|
true => {
|
|
// convert best_of_responses
|
|
let best_of_sequences = best_of_responses.map(|responses: Vec<InferResponse>| {
|
|
responses
|
|
.into_iter()
|
|
.map(|response: InferResponse| {
|
|
// Add prompt if return_full_text
|
|
let mut output_text = response.generated_text.text;
|
|
if let Some(prompt) = &add_prompt {
|
|
output_text = prompt.clone() + &output_text;
|
|
}
|
|
|
|
BestOfSequence {
|
|
generated_text: output_text,
|
|
finish_reason: FinishReason::from(
|
|
response.generated_text.finish_reason,
|
|
),
|
|
generated_tokens: response.generated_text.generated_tokens,
|
|
prefill: response.prefill,
|
|
tokens: response.tokens,
|
|
top_tokens: response.top_tokens,
|
|
seed: response.generated_text.seed,
|
|
}
|
|
})
|
|
.collect()
|
|
});
|
|
|
|
Some(Details {
|
|
finish_reason: FinishReason::from(response.generated_text.finish_reason),
|
|
generated_tokens: response.generated_text.generated_tokens,
|
|
prefill: response.prefill,
|
|
tokens: response.tokens,
|
|
seed: response.generated_text.seed,
|
|
best_of_sequences,
|
|
top_tokens: response.top_tokens,
|
|
})
|
|
}
|
|
false => None,
|
|
};
|
|
|
|
// Timings
|
|
let total_time = start_time.elapsed();
|
|
let validation_time = response.queued - start_time;
|
|
let queue_time = response.start - response.queued;
|
|
let inference_time = Instant::now() - response.start;
|
|
let time_per_token = inference_time / response.generated_text.generated_tokens;
|
|
|
|
// Tracing metadata
|
|
span.record("total_time", format!("{total_time:?}"));
|
|
span.record("validation_time", format!("{validation_time:?}"));
|
|
span.record("queue_time", format!("{queue_time:?}"));
|
|
span.record("inference_time", format!("{inference_time:?}"));
|
|
span.record("time_per_token", format!("{time_per_token:?}"));
|
|
span.record("seed", format!("{:?}", response.generated_text.seed));
|
|
|
|
// Headers
|
|
let mut headers = HeaderMap::new();
|
|
headers.insert("x-compute-type", compute_type.parse().unwrap());
|
|
headers.insert(
|
|
"x-compute-time",
|
|
total_time.as_millis().to_string().parse().unwrap(),
|
|
);
|
|
headers.insert(
|
|
"x-compute-characters",
|
|
compute_characters.to_string().parse().unwrap(),
|
|
);
|
|
headers.insert(
|
|
"x-total-time",
|
|
total_time.as_millis().to_string().parse().unwrap(),
|
|
);
|
|
headers.insert(
|
|
"x-validation-time",
|
|
validation_time.as_millis().to_string().parse().unwrap(),
|
|
);
|
|
headers.insert(
|
|
"x-queue-time",
|
|
queue_time.as_millis().to_string().parse().unwrap(),
|
|
);
|
|
headers.insert(
|
|
"x-inference-time",
|
|
inference_time.as_millis().to_string().parse().unwrap(),
|
|
);
|
|
headers.insert(
|
|
"x-time-per-token",
|
|
time_per_token.as_millis().to_string().parse().unwrap(),
|
|
);
|
|
headers.insert("x-prompt-tokens", input_length.into());
|
|
headers.insert(
|
|
"x-generated-tokens",
|
|
response.generated_text.generated_tokens.into(),
|
|
);
|
|
|
|
// Metrics
|
|
metrics::increment_counter!("tgi_request_success");
|
|
metrics::histogram!("tgi_request_duration", total_time.as_secs_f64());
|
|
metrics::histogram!(
|
|
"tgi_request_validation_duration",
|
|
validation_time.as_secs_f64()
|
|
);
|
|
metrics::histogram!("tgi_request_queue_duration", queue_time.as_secs_f64());
|
|
metrics::histogram!(
|
|
"tgi_request_inference_duration",
|
|
inference_time.as_secs_f64()
|
|
);
|
|
metrics::histogram!(
|
|
"tgi_request_mean_time_per_token_duration",
|
|
time_per_token.as_secs_f64()
|
|
);
|
|
metrics::histogram!(
|
|
"tgi_request_generated_tokens",
|
|
response.generated_text.generated_tokens as f64
|
|
);
|
|
|
|
// Send response
|
|
let mut output_text = response.generated_text.text;
|
|
if let Some(prompt) = add_prompt {
|
|
output_text = prompt + &output_text;
|
|
}
|
|
|
|
tracing::debug!("Output: {}", output_text);
|
|
tracing::info!("Success");
|
|
|
|
let response = GenerateResponse {
|
|
generated_text: output_text,
|
|
details,
|
|
};
|
|
Ok((headers, Json(response)))
|
|
}
|
|
|
|
/// Generate a stream of token using Server-Sent Events
|
|
#[utoipa::path(
|
|
post,
|
|
tag = "Text Generation Inference",
|
|
path = "/generate_stream",
|
|
request_body = GenerateRequest,
|
|
responses(
|
|
(status = 200, description = "Generated Text", body = StreamResponse,
|
|
content_type = "text/event-stream"),
|
|
(status = 424, description = "Generation Error", body = ErrorResponse,
|
|
example = json ! ({"error": "Request failed during generation"}),
|
|
content_type = "text/event-stream"),
|
|
(status = 429, description = "Model is overloaded", body = ErrorResponse,
|
|
example = json ! ({"error": "Model is overloaded"}),
|
|
content_type = "text/event-stream"),
|
|
(status = 422, description = "Input validation error", body = ErrorResponse,
|
|
example = json ! ({"error": "Input validation error"}),
|
|
content_type = "text/event-stream"),
|
|
(status = 500, description = "Incomplete generation", body = ErrorResponse,
|
|
example = json ! ({"error": "Incomplete generation"}),
|
|
content_type = "text/event-stream"),
|
|
)
|
|
)]
|
|
#[instrument(
|
|
skip_all,
|
|
fields(
|
|
parameters = ? req.parameters,
|
|
total_time,
|
|
validation_time,
|
|
queue_time,
|
|
inference_time,
|
|
time_per_token,
|
|
seed,
|
|
)
|
|
)]
|
|
async fn generate_stream(
|
|
Extension(infer): Extension<Infer>,
|
|
Extension(compute_type): Extension<ComputeType>,
|
|
Json(req): Json<GenerateRequest>,
|
|
) -> (
|
|
HeaderMap,
|
|
Sse<impl Stream<Item = Result<Event, Infallible>>>,
|
|
) {
|
|
let on_message_callback = |stream_token: StreamResponse| {
|
|
let event = Event::default();
|
|
event.json_data(stream_token).unwrap()
|
|
};
|
|
let (headers, response_stream) =
|
|
generate_stream_internal(infer, compute_type, Json(req), on_message_callback).await;
|
|
let sse = Sse::new(response_stream).keep_alive(KeepAlive::default());
|
|
(headers, sse)
|
|
}
|
|
|
|
async fn generate_stream_internal(
|
|
infer: Infer,
|
|
ComputeType(compute_type): ComputeType,
|
|
Json(req): Json<GenerateRequest>,
|
|
on_message_callback: impl Fn(StreamResponse) -> Event,
|
|
) -> (HeaderMap, impl Stream<Item = Result<Event, Infallible>>) {
|
|
let span = tracing::Span::current();
|
|
let start_time = Instant::now();
|
|
metrics::increment_counter!("tgi_request_count");
|
|
|
|
tracing::debug!("Input: {}", req.inputs);
|
|
|
|
let compute_characters = req.inputs.chars().count();
|
|
|
|
let mut headers = HeaderMap::new();
|
|
headers.insert("x-compute-type", compute_type.parse().unwrap());
|
|
headers.insert(
|
|
"x-compute-characters",
|
|
compute_characters.to_string().parse().unwrap(),
|
|
);
|
|
headers.insert("X-Accel-Buffering", "no".parse().unwrap());
|
|
|
|
let stream = async_stream::stream! {
|
|
// Inference
|
|
let mut end_reached = false;
|
|
let mut error = false;
|
|
|
|
let mut add_prompt = None;
|
|
if req.parameters.return_full_text.unwrap_or(false) {
|
|
add_prompt = Some(req.inputs.clone());
|
|
}
|
|
let details = req.parameters.details;
|
|
|
|
let best_of = req.parameters.best_of.unwrap_or(1);
|
|
if best_of != 1 {
|
|
let err = InferError::from(ValidationError::BestOfStream);
|
|
metrics::increment_counter!("tgi_request_failure", "err" => "validation");
|
|
tracing::error!("{err}");
|
|
yield Ok(Event::from(err));
|
|
} else if req.parameters.decoder_input_details {
|
|
let err = InferError::from(ValidationError::PrefillDetailsStream);
|
|
metrics::increment_counter!("tgi_request_failure", "err" => "validation");
|
|
tracing::error!("{err}");
|
|
yield Ok(Event::from(err));
|
|
} else {
|
|
match infer.generate_stream(req).instrument(info_span!(parent: &span, "async_stream")).await {
|
|
// Keep permit as long as generate_stream lives
|
|
Ok((_permit, _input_length, mut response_stream)) => {
|
|
let mut index = 0;
|
|
// Server-Sent Event stream
|
|
while let Some(response) = response_stream.next().await {
|
|
index += 1;
|
|
match response {
|
|
Ok(response) => {
|
|
match response {
|
|
// Prefill is ignored
|
|
InferStreamResponse::Prefill(_) => {}
|
|
// Yield event for every new token
|
|
InferStreamResponse::Intermediate{
|
|
token,
|
|
top_tokens,
|
|
} => {
|
|
tracing::debug!(parent: &span, "Token: {:?}", token);
|
|
|
|
// StreamResponse
|
|
let stream_token = StreamResponse {
|
|
index,
|
|
token,
|
|
top_tokens,
|
|
generated_text: None,
|
|
details: None,
|
|
};
|
|
let event = on_message_callback(stream_token);
|
|
yield Ok(event);
|
|
}
|
|
// Yield event for last token and compute timings
|
|
InferStreamResponse::End {
|
|
token,
|
|
generated_text,
|
|
start,
|
|
queued,
|
|
top_tokens,
|
|
} => {
|
|
// Token details
|
|
let details = match details {
|
|
true => Some(StreamDetails {
|
|
finish_reason: FinishReason::from(generated_text.finish_reason),
|
|
generated_tokens: generated_text.generated_tokens,
|
|
seed: generated_text.seed,
|
|
}),
|
|
false => None,
|
|
};
|
|
|
|
// Timings
|
|
let total_time = start_time.elapsed();
|
|
let validation_time = queued - start_time;
|
|
let queue_time = start - queued;
|
|
let inference_time = Instant::now() - start;
|
|
let time_per_token = inference_time / generated_text.generated_tokens;
|
|
|
|
// Tracing metadata
|
|
span.record("total_time", format!("{total_time:?}"));
|
|
span.record("validation_time", format!("{validation_time:?}"));
|
|
span.record("queue_time", format!("{queue_time:?}"));
|
|
span.record("inference_time", format!("{inference_time:?}"));
|
|
span.record("time_per_token", format!("{time_per_token:?}"));
|
|
span.record("seed", format!("{:?}", generated_text.seed));
|
|
|
|
// Metrics
|
|
metrics::increment_counter!("tgi_request_success");
|
|
metrics::histogram!("tgi_request_duration", total_time.as_secs_f64());
|
|
metrics::histogram!("tgi_request_validation_duration", validation_time.as_secs_f64());
|
|
metrics::histogram!("tgi_request_queue_duration", queue_time.as_secs_f64());
|
|
metrics::histogram!("tgi_request_inference_duration", inference_time.as_secs_f64());
|
|
metrics::histogram!("tgi_request_mean_time_per_token_duration", time_per_token.as_secs_f64());
|
|
metrics::histogram!("tgi_request_generated_tokens", generated_text.generated_tokens as f64);
|
|
|
|
// StreamResponse
|
|
end_reached = true;
|
|
|
|
let mut output_text = generated_text.text;
|
|
if let Some(prompt) = add_prompt {
|
|
output_text = prompt + &output_text;
|
|
}
|
|
|
|
tracing::debug!(parent: &span, "Output: {}", output_text);
|
|
tracing::info!(parent: &span, "Success");
|
|
|
|
let stream_token = StreamResponse {
|
|
index,
|
|
token,
|
|
top_tokens,
|
|
generated_text: Some(output_text),
|
|
details
|
|
};
|
|
|
|
|
|
let event = on_message_callback(stream_token);
|
|
yield Ok(event);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
// yield error
|
|
Err(err) => {
|
|
error = true;
|
|
yield Ok(Event::from(err));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
},
|
|
// yield error
|
|
Err(err) => {
|
|
error = true;
|
|
yield Ok(Event::from(err));
|
|
}
|
|
}
|
|
// Check if generation reached the end
|
|
// Skip if we already sent an error
|
|
if !end_reached && !error {
|
|
let err = InferError::IncompleteGeneration;
|
|
metrics::increment_counter!("tgi_request_failure", "err" => "incomplete");
|
|
tracing::error!("{err}");
|
|
yield Ok(Event::from(err));
|
|
}
|
|
}
|
|
};
|
|
|
|
(headers, stream)
|
|
}
|
|
|
|
/// Generate tokens
|
|
#[utoipa::path(
|
|
post,
|
|
tag = "Text Generation Inference",
|
|
path = "/v1/chat/completions",
|
|
request_body = ChatRequest,
|
|
responses(
|
|
(status = 200, description = "Generated Text", body = ChatCompletionChunk),
|
|
(status = 424, description = "Generation Error", body = ErrorResponse,
|
|
example = json ! ({"error": "Request failed during generation"})),
|
|
(status = 429, description = "Model is overloaded", body = ErrorResponse,
|
|
example = json ! ({"error": "Model is overloaded"})),
|
|
(status = 422, description = "Input validation error", body = ErrorResponse,
|
|
example = json ! ({"error": "Input validation error"})),
|
|
(status = 500, description = "Incomplete generation", body = ErrorResponse,
|
|
example = json ! ({"error": "Incomplete generation"})),
|
|
)
|
|
)]
|
|
#[instrument(
|
|
skip_all,
|
|
fields(
|
|
// parameters = ? req.parameters,
|
|
total_time,
|
|
validation_time,
|
|
queue_time,
|
|
inference_time,
|
|
time_per_token,
|
|
seed,
|
|
)
|
|
)]
|
|
async fn chat_completions(
|
|
Extension(infer): Extension<Infer>,
|
|
Extension(compute_type): Extension<ComputeType>,
|
|
Extension(info): Extension<Info>,
|
|
Json(req): Json<ChatRequest>,
|
|
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
|
|
metrics::increment_counter!("tgi_request_count");
|
|
|
|
let stream = req.stream;
|
|
let max_new_tokens = req.max_tokens.or(Some(100));
|
|
let repetition_penalty = req
|
|
.frequency_penalty
|
|
// rescale frequency_penalty from (-2.0, 2.0) to (0.0, 4.0)
|
|
.map(|x| x + 2.0);
|
|
let logprobs = req.logprobs.unwrap_or(false);
|
|
let seed = req.seed;
|
|
|
|
// apply chat template to flatten the request into a single input
|
|
let inputs = match infer.apply_chat_template(req.messages) {
|
|
Ok(inputs) => inputs,
|
|
Err(err) => {
|
|
metrics::increment_counter!("tgi_request_failure", "err" => "validation");
|
|
tracing::error!("{err}");
|
|
return Err((
|
|
StatusCode::UNPROCESSABLE_ENTITY,
|
|
Json(ErrorResponse {
|
|
error: err.to_string(),
|
|
error_type: err.error_type().to_string(),
|
|
}),
|
|
));
|
|
}
|
|
};
|
|
|
|
// build the request passing some parameters
|
|
let generate_request = GenerateRequest {
|
|
inputs: inputs.to_string(),
|
|
parameters: GenerateParameters {
|
|
best_of: None,
|
|
temperature: req.temperature,
|
|
repetition_penalty,
|
|
top_k: None,
|
|
top_p: req.top_p,
|
|
typical_p: None,
|
|
do_sample: true,
|
|
max_new_tokens,
|
|
return_full_text: None,
|
|
stop: Vec::new(),
|
|
truncate: None,
|
|
watermark: false,
|
|
details: true,
|
|
decoder_input_details: !stream,
|
|
seed,
|
|
top_n_tokens: None,
|
|
},
|
|
};
|
|
|
|
// static values that will be returned in all cases
|
|
let model_id = info.model_id.clone();
|
|
let system_fingerprint = format!("{}-{}", info.version, info.docker_label.unwrap_or("native"));
|
|
|
|
// switch on stream
|
|
if stream {
|
|
// pass this callback to the stream generation and build the required event structure
|
|
let on_message_callback = move |stream_token: StreamResponse| {
|
|
let event = Event::default();
|
|
|
|
let current_time = std::time::SystemTime::now()
|
|
.duration_since(std::time::UNIX_EPOCH)
|
|
.unwrap_or_else(|_| std::time::Duration::from_secs(0))
|
|
.as_secs();
|
|
|
|
event
|
|
.json_data(ChatCompletionChunk::new(
|
|
model_id.clone(),
|
|
system_fingerprint.clone(),
|
|
stream_token.token.text,
|
|
current_time,
|
|
stream_token.index,
|
|
logprobs.then_some(stream_token.token.logprob),
|
|
stream_token.details.map(|d| d.finish_reason.to_string()),
|
|
))
|
|
.map_or_else(
|
|
|e| {
|
|
println!("Failed to serialize ChatCompletionChunk: {:?}", e);
|
|
Event::default()
|
|
},
|
|
|data| data,
|
|
)
|
|
};
|
|
|
|
let (headers, response_stream) = generate_stream_internal(
|
|
infer,
|
|
compute_type,
|
|
Json(generate_request),
|
|
on_message_callback,
|
|
)
|
|
.await;
|
|
let sse = Sse::new(response_stream).keep_alive(KeepAlive::default());
|
|
Ok((headers, sse).into_response())
|
|
} else {
|
|
let (headers, Json(generation)) = generate(
|
|
Extension(infer),
|
|
Extension(compute_type),
|
|
Json(generate_request),
|
|
)
|
|
.await?;
|
|
|
|
let current_time = std::time::SystemTime::now()
|
|
.duration_since(std::time::UNIX_EPOCH)
|
|
.unwrap_or_else(|_| std::time::Duration::from_secs(0))
|
|
.as_secs();
|
|
|
|
// build the complete response object with the full text
|
|
let response = ChatCompletion::new(
|
|
model_id,
|
|
system_fingerprint,
|
|
generation.generated_text,
|
|
current_time,
|
|
generation.details.unwrap(),
|
|
logprobs,
|
|
);
|
|
|
|
// wrap generation inside a Vec to match api-inference
|
|
Ok((headers, Json(response)).into_response())
|
|
}
|
|
}
|
|
|
|
/// Tokenize inputs
|
|
#[utoipa::path(
|
|
post,
|
|
tag = "Text Generation Inference",
|
|
path = "/tokenize",
|
|
request_body = GenerateRequest,
|
|
responses(
|
|
(status = 200, description = "Tokenized ids", body = TokenizeResponse),
|
|
(status = 404, description = "No tokenizer found", body = ErrorResponse,
|
|
example = json ! ({"error": "No fast tokenizer available"})),
|
|
)
|
|
)]
|
|
#[instrument(skip_all)]
|
|
async fn tokenize(
|
|
Extension(infer): Extension<Infer>,
|
|
Json(req): Json<GenerateRequest>,
|
|
) -> Result<Json<TokenizeResponse>, (StatusCode, Json<ErrorResponse>)> {
|
|
let input = req.inputs.clone();
|
|
let encoding = infer.tokenize(req).await?;
|
|
if let Some(encoding) = encoding {
|
|
let tokens: Vec<SimpleToken> = encoding
|
|
.get_ids()
|
|
.iter()
|
|
.zip(encoding.get_offsets())
|
|
.map(|(&id, &(start, stop))| {
|
|
let text: String = input.chars().skip(start).take(stop - start).collect();
|
|
SimpleToken {
|
|
id,
|
|
text,
|
|
start,
|
|
stop,
|
|
}
|
|
})
|
|
.collect();
|
|
Ok(Json(TokenizeResponse(tokens)))
|
|
} else {
|
|
Err((
|
|
StatusCode::NOT_FOUND,
|
|
Json(ErrorResponse {
|
|
error: "No fast tokenizer or tokenizer.json for this model".to_string(),
|
|
error_type: "no fast tokenizer".to_string(),
|
|
}),
|
|
))
|
|
}
|
|
}
|
|
|
|
/// Prometheus metrics scrape endpoint
|
|
#[utoipa::path(
|
|
get,
|
|
tag = "Text Generation Inference",
|
|
path = "/metrics",
|
|
responses((status = 200, description = "Prometheus Metrics", body = String))
|
|
)]
|
|
async fn metrics(prom_handle: Extension<PrometheusHandle>) -> String {
|
|
prom_handle.render()
|
|
}
|
|
|
|
#[derive(Clone, Debug)]
|
|
pub(crate) struct ComputeType(String);
|
|
|
|
/// Serving method
|
|
#[allow(clippy::too_many_arguments)]
|
|
pub async fn run(
|
|
model_info: HubModelInfo,
|
|
shard_info: ShardInfo,
|
|
compat_return_full_text: bool,
|
|
max_concurrent_requests: usize,
|
|
max_best_of: usize,
|
|
max_stop_sequences: usize,
|
|
max_top_n_tokens: u32,
|
|
max_input_length: usize,
|
|
max_total_tokens: usize,
|
|
batch_dimension: bool,
|
|
waiting_served_ratio: f32,
|
|
max_batch_prefill_tokens: u32,
|
|
max_batch_total_tokens: u32,
|
|
max_waiting_tokens: usize,
|
|
client: ShardedClient,
|
|
tokenizer: Option<Tokenizer>,
|
|
validation_workers: usize,
|
|
addr: SocketAddr,
|
|
allow_origin: Option<AllowOrigin>,
|
|
ngrok: bool,
|
|
ngrok_authtoken: Option<String>,
|
|
ngrok_edge: Option<String>,
|
|
tokenizer_config: HubTokenizerConfig,
|
|
messages_api_enabled: bool,
|
|
) -> Result<(), axum::BoxError> {
|
|
// OpenAPI documentation
|
|
#[derive(OpenApi)]
|
|
#[openapi(
|
|
paths(
|
|
health,
|
|
get_model_info,
|
|
compat_generate,
|
|
generate,
|
|
generate_stream,
|
|
chat_completions,
|
|
tokenize,
|
|
metrics,
|
|
),
|
|
components(
|
|
schemas(
|
|
Info,
|
|
CompatGenerateRequest,
|
|
GenerateRequest,
|
|
ChatRequest,
|
|
Message,
|
|
ChatCompletionChoice,
|
|
ChatCompletionDelta,
|
|
ChatCompletionChunk,
|
|
ChatCompletion,
|
|
GenerateParameters,
|
|
PrefillToken,
|
|
Token,
|
|
GenerateResponse,
|
|
TokenizeResponse,
|
|
SimpleToken,
|
|
BestOfSequence,
|
|
Details,
|
|
FinishReason,
|
|
StreamResponse,
|
|
StreamDetails,
|
|
ErrorResponse,
|
|
)
|
|
),
|
|
tags(
|
|
(name = "Text Generation Inference", description = "Hugging Face Text Generation Inference API")
|
|
),
|
|
info(
|
|
title = "Text Generation Inference",
|
|
license(
|
|
name = "Apache 2.0",
|
|
url = "https://www.apache.org/licenses/LICENSE-2.0"
|
|
)
|
|
)
|
|
)]
|
|
struct ApiDoc;
|
|
|
|
// Create state
|
|
let validation = Validation::new(
|
|
validation_workers,
|
|
tokenizer,
|
|
max_best_of,
|
|
max_stop_sequences,
|
|
max_top_n_tokens,
|
|
max_input_length,
|
|
max_total_tokens,
|
|
batch_dimension,
|
|
);
|
|
let generation_health = Arc::new(AtomicBool::new(false));
|
|
let health_ext = Health::new(client.clone(), generation_health.clone());
|
|
let infer = Infer::new(
|
|
client,
|
|
validation,
|
|
waiting_served_ratio,
|
|
max_batch_prefill_tokens,
|
|
max_batch_total_tokens,
|
|
max_waiting_tokens,
|
|
max_concurrent_requests,
|
|
shard_info.requires_padding,
|
|
shard_info.window_size,
|
|
shard_info.speculate,
|
|
generation_health,
|
|
tokenizer_config,
|
|
);
|
|
|
|
// Duration buckets
|
|
let duration_matcher = Matcher::Suffix(String::from("duration"));
|
|
let n_duration_buckets = 35;
|
|
let mut duration_buckets = Vec::with_capacity(n_duration_buckets);
|
|
// Minimum duration in seconds
|
|
let mut value = 0.0001;
|
|
for _ in 0..n_duration_buckets {
|
|
// geometric sequence
|
|
value *= 1.5;
|
|
duration_buckets.push(value);
|
|
}
|
|
// Input Length buckets
|
|
let input_length_matcher = Matcher::Full(String::from("tgi_request_input_length"));
|
|
let input_length_buckets: Vec<f64> = (0..100)
|
|
.map(|x| (max_input_length as f64 / 100.0) * (x + 1) as f64)
|
|
.collect();
|
|
// Generated tokens buckets
|
|
let generated_tokens_matcher = Matcher::Full(String::from("tgi_request_generated_tokens"));
|
|
let generated_tokens_buckets: Vec<f64> = (0..100)
|
|
.map(|x| (max_total_tokens as f64 / 100.0) * (x + 1) as f64)
|
|
.collect();
|
|
// Input Length buckets
|
|
let max_new_tokens_matcher = Matcher::Full(String::from("tgi_request_max_new_tokens"));
|
|
let max_new_tokens_buckets: Vec<f64> = (0..100)
|
|
.map(|x| (max_total_tokens as f64 / 100.0) * (x + 1) as f64)
|
|
.collect();
|
|
// Batch size buckets
|
|
let batch_size_matcher = Matcher::Full(String::from("tgi_batch_next_size"));
|
|
let batch_size_buckets: Vec<f64> = (0..1024).map(|x| (x + 1) as f64).collect();
|
|
// Speculated tokens buckets
|
|
let skipped_matcher = Matcher::Full(String::from("tgi_request_skipped_tokens"));
|
|
let skipped_buckets: Vec<f64> = (0..shard_info.speculate + 1).map(|x| x as f64).collect();
|
|
|
|
// Prometheus handler
|
|
let builder = PrometheusBuilder::new()
|
|
.set_buckets_for_metric(duration_matcher, &duration_buckets)
|
|
.unwrap()
|
|
.set_buckets_for_metric(input_length_matcher, &input_length_buckets)
|
|
.unwrap()
|
|
.set_buckets_for_metric(generated_tokens_matcher, &generated_tokens_buckets)
|
|
.unwrap()
|
|
.set_buckets_for_metric(max_new_tokens_matcher, &max_new_tokens_buckets)
|
|
.unwrap()
|
|
.set_buckets_for_metric(batch_size_matcher, &batch_size_buckets)
|
|
.unwrap()
|
|
.set_buckets_for_metric(skipped_matcher, &skipped_buckets)
|
|
.unwrap();
|
|
let prom_handle = builder
|
|
.install_recorder()
|
|
.expect("failed to install metrics recorder");
|
|
|
|
// CORS layer
|
|
let allow_origin = allow_origin.unwrap_or(AllowOrigin::any());
|
|
let cors_layer = CorsLayer::new()
|
|
.allow_methods([Method::GET, Method::POST])
|
|
.allow_headers([http::header::CONTENT_TYPE])
|
|
.allow_origin(allow_origin);
|
|
|
|
// Endpoint info
|
|
let info = Info {
|
|
model_id: model_info.model_id,
|
|
model_sha: model_info.sha,
|
|
model_dtype: shard_info.dtype,
|
|
model_device_type: shard_info.device_type,
|
|
model_pipeline_tag: model_info.pipeline_tag,
|
|
max_concurrent_requests,
|
|
max_best_of,
|
|
max_stop_sequences,
|
|
max_input_length,
|
|
max_total_tokens,
|
|
waiting_served_ratio,
|
|
max_batch_total_tokens,
|
|
max_waiting_tokens,
|
|
validation_workers,
|
|
version: env!("CARGO_PKG_VERSION"),
|
|
sha: option_env!("VERGEN_GIT_SHA"),
|
|
docker_label: option_env!("DOCKER_LABEL"),
|
|
};
|
|
|
|
// Configure Swagger UI
|
|
let swagger_ui = SwaggerUi::new("/docs").url("/api-doc/openapi.json", ApiDoc::openapi());
|
|
|
|
// Define base and health routes
|
|
let base_routes = Router::new()
|
|
.route("/", post(compat_generate))
|
|
.route("/", get(health))
|
|
.route("/info", get(get_model_info))
|
|
.route("/generate", post(generate))
|
|
.route("/generate_stream", post(generate_stream))
|
|
.route("/v1/chat/completions", post(chat_completions))
|
|
.route("/tokenize", post(tokenize))
|
|
.route("/health", get(health))
|
|
.route("/ping", get(health))
|
|
.route("/metrics", get(metrics));
|
|
|
|
// Conditional AWS Sagemaker route
|
|
let aws_sagemaker_route = if messages_api_enabled {
|
|
Router::new().route("/invocations", post(chat_completions)) // Use 'chat_completions' for OAI_ENABLED
|
|
} else {
|
|
Router::new().route("/invocations", post(compat_generate)) // Use 'compat_generate' otherwise
|
|
};
|
|
|
|
let compute_type =
|
|
ComputeType(std::env::var("COMPUTE_TYPE").unwrap_or("gpu+optimized".to_string()));
|
|
|
|
// Combine routes and layers
|
|
let app = Router::new()
|
|
.merge(swagger_ui)
|
|
.merge(base_routes)
|
|
.merge(aws_sagemaker_route)
|
|
.layer(Extension(info))
|
|
.layer(Extension(health_ext.clone()))
|
|
.layer(Extension(compat_return_full_text))
|
|
.layer(Extension(infer))
|
|
.layer(Extension(compute_type))
|
|
.layer(Extension(prom_handle.clone()))
|
|
.layer(OtelAxumLayer::default())
|
|
.layer(cors_layer);
|
|
|
|
if ngrok {
|
|
#[cfg(feature = "ngrok")]
|
|
{
|
|
use ngrok::config::TunnelBuilder;
|
|
|
|
let _ = addr;
|
|
|
|
let authtoken =
|
|
ngrok_authtoken.expect("`ngrok-authtoken` must be set when using ngrok tunneling");
|
|
|
|
let edge = ngrok_edge.expect("`ngrok-edge` must be set when using ngrok tunneling");
|
|
|
|
let tunnel = ngrok::Session::builder()
|
|
.authtoken(authtoken)
|
|
.connect()
|
|
.await
|
|
.unwrap()
|
|
.labeled_tunnel()
|
|
.label("edge", edge);
|
|
|
|
let listener = tunnel.listen().await.unwrap();
|
|
|
|
// Run prom metrics and health locally too
|
|
tokio::spawn(
|
|
axum::Server::bind(&addr)
|
|
.serve(
|
|
Router::new()
|
|
.route("/health", get(health))
|
|
.route("/metrics", get(metrics))
|
|
.layer(Extension(health_ext))
|
|
.layer(Extension(prom_handle))
|
|
.into_make_service(),
|
|
)
|
|
//Wait until all requests are finished to shut down
|
|
.with_graceful_shutdown(shutdown_signal()),
|
|
);
|
|
|
|
// Run server
|
|
axum::Server::builder(listener)
|
|
.serve(app.into_make_service())
|
|
//Wait until all requests are finished to shut down
|
|
.with_graceful_shutdown(shutdown_signal())
|
|
.await?;
|
|
}
|
|
#[cfg(not(feature = "ngrok"))]
|
|
{
|
|
let _ngrok_authtoken = ngrok_authtoken;
|
|
let _ngrok_domain = ngrok_domain;
|
|
let _ngrok_username = ngrok_username;
|
|
let _ngrok_password = ngrok_password;
|
|
|
|
panic!("`text-generation-router` was compiled without the `ngrok` feature");
|
|
}
|
|
} else {
|
|
// Run server
|
|
axum::Server::bind(&addr)
|
|
.serve(app.into_make_service())
|
|
// Wait until all requests are finished to shut down
|
|
.with_graceful_shutdown(shutdown_signal())
|
|
.await?;
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
/// Shutdown signal handler
|
|
async fn shutdown_signal() {
|
|
let ctrl_c = async {
|
|
signal::ctrl_c()
|
|
.await
|
|
.expect("failed to install Ctrl+C handler");
|
|
};
|
|
|
|
#[cfg(unix)]
|
|
let terminate = async {
|
|
signal::unix::signal(signal::unix::SignalKind::terminate())
|
|
.expect("failed to install signal handler")
|
|
.recv()
|
|
.await;
|
|
};
|
|
|
|
#[cfg(not(unix))]
|
|
let terminate = std::future::pending::<()>();
|
|
|
|
tokio::select! {
|
|
_ = ctrl_c => {},
|
|
_ = terminate => {},
|
|
}
|
|
|
|
tracing::info!("signal received, starting graceful shutdown");
|
|
opentelemetry::global::shutdown_tracer_provider();
|
|
}
|
|
|
|
impl From<i32> for FinishReason {
|
|
fn from(finish_reason: i32) -> Self {
|
|
let finish_reason = text_generation_client::FinishReason::try_from(finish_reason).unwrap();
|
|
match finish_reason {
|
|
text_generation_client::FinishReason::Length => FinishReason::Length,
|
|
text_generation_client::FinishReason::EosToken => FinishReason::EndOfSequenceToken,
|
|
text_generation_client::FinishReason::StopSequence => FinishReason::StopSequence,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Convert to Axum supported formats
|
|
impl From<InferError> for (StatusCode, Json<ErrorResponse>) {
|
|
fn from(err: InferError) -> Self {
|
|
let status_code = match err {
|
|
InferError::GenerationError(_) => StatusCode::FAILED_DEPENDENCY,
|
|
InferError::Overloaded(_) => StatusCode::TOO_MANY_REQUESTS,
|
|
InferError::ValidationError(_) => StatusCode::UNPROCESSABLE_ENTITY,
|
|
InferError::IncompleteGeneration => StatusCode::INTERNAL_SERVER_ERROR,
|
|
InferError::TemplateError(_) => StatusCode::UNPROCESSABLE_ENTITY,
|
|
};
|
|
|
|
(
|
|
status_code,
|
|
Json(ErrorResponse {
|
|
error: err.to_string(),
|
|
error_type: err.error_type().to_string(),
|
|
}),
|
|
)
|
|
}
|
|
}
|
|
|
|
impl From<InferError> for Event {
|
|
fn from(err: InferError) -> Self {
|
|
Event::default()
|
|
.json_data(ErrorResponse {
|
|
error: err.to_string(),
|
|
error_type: err.error_type().to_string(),
|
|
})
|
|
.unwrap()
|
|
}
|
|
}
|