mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-04-19 22:02:06 +00:00
This change adds support for FlashInfer. FlashInfer can be enabled using `FLASH_INFER=1` and is currently only implemented in `FlashCausalLM`. Since this functionality is currently only for testing, FlashInfer is not installed anywhere yet. The FlashInfer API is quite different from FlashAttention/vLLM in that it requires more global bookkeeping: * A wrapper class needs to be contstructed (which we just call *state*). Since this is fairly expensive (due to pinned host memory allocation), we only do this once in a FlashCausalLM instance or for each CUDA Graph size. * Each model forward call needs to be wrapped in `begin_forward` and `end_forward`. This sets up data structures that can be reused for all calls to attention for that forward call. When calling attention, we need access to the state object. To avoid passing an argument down the call chain (which would require changes to all models), we use a context variable. Each model forward call is wrapped using a context manager that does all the bookkeeping for such a call: * Set the context variable to the forward call's state. * Call `begin_forward` on the state. * Yield. * Call `end_forward` on the state. * Reset the context variable. We cannot use a single shared global variable for this, since e.g. CUDA Graphs of different sizes each have their own state.
1796 lines
67 KiB
Python
1796 lines
67 KiB
Python
from contextlib import nullcontext
|
|
import math
|
|
import os
|
|
import time
|
|
import torch
|
|
import torch.distributed
|
|
|
|
import numpy as np
|
|
|
|
from loguru import logger
|
|
from dataclasses import dataclass
|
|
from opentelemetry import trace
|
|
from transformers import (
|
|
PreTrainedTokenizerBase,
|
|
AutoConfig,
|
|
AutoTokenizer,
|
|
GenerationConfig,
|
|
)
|
|
from typing import Any, ContextManager, Iterable, Optional, Tuple, List, Type, Dict
|
|
|
|
from text_generation_server.adapters import AdapterBatchData, AdapterBatchMetadata
|
|
from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE
|
|
from text_generation_server.utils.chunks import concat_text_chunks
|
|
from text_generation_server.utils.import_utils import SYSTEM
|
|
from text_generation_server.models import Model
|
|
from text_generation_server.utils.log import log_master
|
|
from text_generation_server.utils.tokens import batch_top_tokens
|
|
from text_generation_server.utils.speculate import get_speculate
|
|
from text_generation_server.utils import (
|
|
initialize_torch_distributed,
|
|
weight_files,
|
|
Weights,
|
|
)
|
|
from text_generation_server.models.types import (
|
|
Batch,
|
|
Tokens,
|
|
Generation,
|
|
GeneratedText,
|
|
)
|
|
from text_generation_server.pb import generate_pb2
|
|
from text_generation_server.models.globals import (
|
|
MEM_POOL,
|
|
FLASH_DECODING,
|
|
FLASH_INFER,
|
|
BLOCK_SIZE,
|
|
CUDA_GRAPHS,
|
|
get_adapter_to_index,
|
|
)
|
|
from text_generation_server.layers.attention import Seqlen
|
|
from text_generation_server.utils import StoppingCriteria, HeterogeneousNextTokenChooser
|
|
from text_generation_server.utils.dist import MEMORY_FRACTION
|
|
from text_generation_server.utils.quantization import get_loader
|
|
from text_generation_server.utils.segments import SegmentConcatBuilder, find_segments
|
|
|
|
from text_generation_server.utils.import_utils import (
|
|
empty_cache,
|
|
synchronize,
|
|
get_free_memory,
|
|
)
|
|
|
|
tracer = trace.get_tracer(__name__)
|
|
|
|
|
|
# Will be set in init
|
|
SLIDING_WINDOW: Optional[int] = None
|
|
|
|
|
|
def set_sliding_window(sliding_window: int):
|
|
global SLIDING_WINDOW
|
|
SLIDING_WINDOW = sliding_window
|
|
|
|
|
|
def get_sliding_windows() -> int:
|
|
global SLIDING_WINDOW
|
|
return SLIDING_WINDOW
|
|
|
|
|
|
@dataclass
|
|
class FlashCausalLMBatch(Batch):
|
|
batch_id: int
|
|
requests: List[generate_pb2.Request]
|
|
# request id -> idx in list mapping
|
|
requests_idx_mapping: Dict[int, int]
|
|
|
|
# Decoder values
|
|
input_ids: torch.Tensor
|
|
position_ids: torch.Tensor
|
|
speculative_ids: Optional[torch.Tensor]
|
|
|
|
# Flash Attention values
|
|
|
|
# tensor of length b containing the cumulative sequence lengths of the sequences in the batch, only used in prefill
|
|
cu_seqlen_prefill: Optional[torch.Tensor]
|
|
# Prefill cache indices is used to slice into the kv tensor before caching it into the paged attention buffers
|
|
# as we only keep SLIDING_WINDOW values instead of the whole tensor
|
|
prefill_cache_indices: Optional[torch.Tensor]
|
|
|
|
# Paged Attention values
|
|
|
|
# Set when creating the batch
|
|
# CPU tensor of length b indicating the start of each sequence in slots
|
|
start_slots: torch.Tensor
|
|
# tensor of indices of the currently used slots, length = \sum_{i=0}^{b} s_i in prefill, length = b in decode
|
|
slot_indices: torch.Tensor
|
|
|
|
# list of length b of list of length s_i // block_size
|
|
block_tables: List[List[int]]
|
|
# tensor of size [b, max_total_seqlen // block_size] holding the paged attention block tables for all sequences
|
|
block_tables_tensor: torch.Tensor
|
|
# tensor of length \sum_{i=0}^{b} max_s_i holding the paged attention slots for all sequences
|
|
slots: torch.Tensor
|
|
|
|
max_seqlen: int
|
|
|
|
# Prefill metadata tensors to efficiently compute logprobs
|
|
prefill_head_indices: Optional[torch.Tensor]
|
|
prefill_next_token_indices: Optional[torch.tensor]
|
|
prefill_cu_outlens: Optional[List[int]]
|
|
|
|
# All tokens
|
|
all_input_ids: List[List[int]]
|
|
all_input_ids_tensor: torch.Tensor
|
|
|
|
# Lengths of all generations present in the batch
|
|
input_lengths: List[int]
|
|
input_lengths_tensor: torch.Tensor
|
|
prefix_offsets: List[Optional[int]]
|
|
read_offsets: List[Optional[int]]
|
|
|
|
# Generation helpers
|
|
next_token_chooser: HeterogeneousNextTokenChooser
|
|
stopping_criterias: List[StoppingCriteria]
|
|
top_n_tokens: List[int]
|
|
top_n_tokens_tensor: torch.Tensor
|
|
|
|
# Adapter metadata for each request
|
|
adapter_meta: AdapterBatchMetadata
|
|
|
|
# Number of blocks in this batch
|
|
num_blocks: int
|
|
# Maximum number of blocks
|
|
max_blocks: int
|
|
|
|
def to_pb(self) -> generate_pb2.CachedBatch:
|
|
return generate_pb2.CachedBatch(
|
|
id=self.batch_id,
|
|
request_ids=[r.id for r in self.requests],
|
|
size=len(self),
|
|
max_tokens=self.num_blocks * BLOCK_SIZE,
|
|
)
|
|
|
|
@classmethod
|
|
def batch_tokenized_inputs(
|
|
cls, requests: Iterable[generate_pb2.Request], tokenizer
|
|
):
|
|
batch_inputs = []
|
|
max_truncation = 0
|
|
for r in requests:
|
|
batch_inputs.append(concat_text_chunks(r.input_chunks.chunks))
|
|
max_truncation = max(max_truncation, r.truncate)
|
|
|
|
batch_tokenized_inputs = tokenizer(
|
|
batch_inputs, truncation=True, max_length=max_truncation
|
|
)["input_ids"]
|
|
return batch_tokenized_inputs
|
|
|
|
@classmethod
|
|
def from_tokenized(
|
|
cls,
|
|
pb: generate_pb2.Batch,
|
|
tokenizer: PreTrainedTokenizerBase,
|
|
batch_tokenized_inputs,
|
|
dtype: torch.dtype,
|
|
device: torch.device,
|
|
) -> "FlashCausalLMBatch":
|
|
sliding_window = get_sliding_windows()
|
|
position_ids = []
|
|
cu_seqlen_prefill = [0]
|
|
start_slots = []
|
|
slot_indices = []
|
|
prefill_cache_indices = []
|
|
|
|
input_lengths = []
|
|
prefix_offsets = []
|
|
read_offsets = []
|
|
all_input_ids = []
|
|
requests_idx_mapping = {}
|
|
|
|
all_prefill_logprobs = True
|
|
no_prefill_logprobs = True
|
|
prefill_head_indices = []
|
|
prefill_next_token_indices = []
|
|
prefill_cu_outlens = [0]
|
|
|
|
next_token_chooser_parameters = []
|
|
stopping_criterias = []
|
|
top_n_tokens = []
|
|
|
|
adapter_indices_list = []
|
|
adapter_set = set()
|
|
|
|
# Cumulative length
|
|
cumulative_length = 0
|
|
cumulative_max_length = 0
|
|
prefill_out_cumulative_length = 0
|
|
|
|
num_blocks = 0
|
|
max_seqlen = 0
|
|
max_length = 0
|
|
max_blocks = 0
|
|
|
|
block_tables = []
|
|
slots = []
|
|
|
|
# Parse batch
|
|
for i, (r, tokenized_input) in enumerate(
|
|
zip(pb.requests, batch_tokenized_inputs)
|
|
):
|
|
# request id -> idx in list mapping
|
|
requests_idx_mapping[r.id] = i
|
|
|
|
tokenized_input = tokenized_input[-r.truncate :]
|
|
if (
|
|
tokenized_input[0] == tokenizer.bos_token_id
|
|
and tokenized_input[1] == tokenizer.bos_token_id
|
|
):
|
|
tokenized_input = tokenized_input[1:]
|
|
|
|
input_length = len(tokenized_input)
|
|
input_lengths.append(input_length)
|
|
|
|
prefix_offsets.append(input_length - 5)
|
|
read_offsets.append(input_length)
|
|
|
|
all_input_ids.append(tokenized_input)
|
|
|
|
# Position ids
|
|
request_position_ids = torch.arange(0, input_length, dtype=torch.int32)
|
|
position_ids.append(request_position_ids)
|
|
|
|
# Add cumulative lengths of all previous inputs
|
|
cu_seqlen_prefill.append(cumulative_length + input_length)
|
|
|
|
next_token_chooser_parameters.append(r.parameters)
|
|
|
|
stopping_criteria = StoppingCriteria.from_pb(
|
|
r.stopping_parameters, tokenizer
|
|
)
|
|
max_new_tokens = stopping_criteria.max_new_tokens
|
|
stopping_criterias.append(stopping_criteria)
|
|
top_n_tokens.append(r.top_n_tokens)
|
|
|
|
ADAPTER_TO_INDEX = get_adapter_to_index()
|
|
adapter_index = ADAPTER_TO_INDEX.get(r.adapter_id, 0)
|
|
adapter_indices_list.append(torch.full((input_length,), adapter_index))
|
|
adapter_set.add(adapter_index)
|
|
|
|
# Paged attention
|
|
# Remove one as the first token des not have a past
|
|
speculative_length = get_speculate()
|
|
speculative_length = 0 if speculative_length is None else speculative_length
|
|
total_tokens = input_length + max_new_tokens - 1 + speculative_length
|
|
|
|
# blocks and slots can be empty (for example in warmup)
|
|
if not r.blocks:
|
|
needed_blocks = math.ceil(total_tokens / BLOCK_SIZE)
|
|
request_blocks = [
|
|
b for b in range(num_blocks, num_blocks + needed_blocks)
|
|
]
|
|
request_slots = [
|
|
s
|
|
for b in request_blocks
|
|
for s in range(b * BLOCK_SIZE, (b + 1) * BLOCK_SIZE)
|
|
]
|
|
else:
|
|
request_blocks = r.blocks
|
|
request_slots = r.slots
|
|
|
|
block_tables.append(request_blocks)
|
|
slots.extend(request_slots[:total_tokens])
|
|
num_blocks += len(request_blocks)
|
|
start_slots.append(cumulative_max_length)
|
|
|
|
request_slot_indices = torch.arange(
|
|
cumulative_max_length,
|
|
cumulative_max_length + input_length,
|
|
dtype=torch.int64,
|
|
)
|
|
slot_indices.append(request_slot_indices)
|
|
|
|
# Create tensor to slice into the kv tensor in prefill
|
|
if sliding_window is not None:
|
|
request_prefill_cache_indices = torch.arange(
|
|
cumulative_length + max(0, input_length - sliding_window),
|
|
cumulative_length + input_length,
|
|
dtype=torch.int64,
|
|
)
|
|
prefill_cache_indices.append(request_prefill_cache_indices)
|
|
|
|
all_prefill_logprobs = all_prefill_logprobs and r.prefill_logprobs
|
|
no_prefill_logprobs = no_prefill_logprobs and not r.prefill_logprobs
|
|
|
|
if r.prefill_logprobs:
|
|
prefill_head_indices.append(request_position_ids + cumulative_length)
|
|
prefill_next_token_indices.append(
|
|
prefill_out_cumulative_length + input_length - 1
|
|
)
|
|
prefill_cu_outlens.append(prefill_out_cumulative_length + input_length)
|
|
prefill_out_cumulative_length += input_length
|
|
else:
|
|
prefill_head_indices.append(
|
|
torch.tensor(
|
|
[cumulative_length + input_length - 1], dtype=torch.int32
|
|
)
|
|
)
|
|
prefill_next_token_indices.append(prefill_out_cumulative_length)
|
|
prefill_cu_outlens.append(prefill_out_cumulative_length + 1)
|
|
prefill_out_cumulative_length += 1
|
|
|
|
# Update
|
|
cumulative_length += input_length
|
|
cumulative_max_length += total_tokens
|
|
max_seqlen = max(max_seqlen, input_length)
|
|
max_blocks = max(max_blocks, len(request_blocks))
|
|
max_length = max(
|
|
max_length, input_length + max_new_tokens + speculative_length
|
|
)
|
|
|
|
adapter_indices = torch.cat(adapter_indices_list).to(
|
|
dtype=torch.int64, device=device
|
|
)
|
|
|
|
next_token_chooser = HeterogeneousNextTokenChooser.from_pb(
|
|
next_token_chooser_parameters, dtype, device, tokenizer
|
|
)
|
|
start_slots = torch.tensor(start_slots, dtype=torch.int64)
|
|
|
|
# Padded all_input_ids_tensor
|
|
all_input_ids_tensor = np.zeros(
|
|
(len(all_input_ids), max_length), dtype=np.int64
|
|
)
|
|
for i, input_ids in enumerate(all_input_ids):
|
|
all_input_ids_tensor[i, : len(input_ids)] = input_ids
|
|
|
|
# Create tensors on device
|
|
all_input_ids_tensor = torch.tensor(
|
|
all_input_ids_tensor, dtype=torch.int64, device=device
|
|
)
|
|
|
|
if len(pb.requests) > 1:
|
|
input_ids = np.concatenate(all_input_ids, dtype=np.int64)
|
|
position_ids = torch.cat(position_ids)
|
|
slot_indices = torch.cat(slot_indices)
|
|
if sliding_window is not None:
|
|
prefill_cache_indices = torch.cat(prefill_cache_indices)
|
|
else:
|
|
input_ids = all_input_ids[0]
|
|
position_ids = position_ids[0]
|
|
slot_indices = slot_indices[0]
|
|
if sliding_window is not None:
|
|
prefill_cache_indices = prefill_cache_indices[0]
|
|
|
|
cu_seqlen_prefill = torch.tensor(
|
|
cu_seqlen_prefill, device=device, dtype=torch.int32
|
|
)
|
|
position_ids = position_ids.to(device)
|
|
slot_indices = slot_indices.to(device)
|
|
prefill_cache_indices = (
|
|
prefill_cache_indices.to(device) if sliding_window is not None else None
|
|
)
|
|
input_ids = torch.tensor(input_ids, dtype=torch.int64, device=device)
|
|
input_lengths_tensor = torch.tensor(
|
|
input_lengths, dtype=torch.int32, device=device
|
|
)
|
|
|
|
adapter_segments, adapter_segment_indices = find_segments(adapter_indices)
|
|
adapter_segments = torch.tensor(
|
|
adapter_segments, dtype=torch.int32, device=device
|
|
)
|
|
|
|
if all_prefill_logprobs:
|
|
prefill_head_indices = None
|
|
prefill_next_token_indices = cu_seqlen_prefill[1:] - 1
|
|
elif no_prefill_logprobs:
|
|
prefill_head_indices = cu_seqlen_prefill[1:] - 1
|
|
prefill_next_token_indices = None
|
|
else:
|
|
prefill_head_indices = torch.tensor(
|
|
torch.cat(prefill_head_indices), dtype=torch.int64, device=device
|
|
)
|
|
prefill_next_token_indices = torch.tensor(
|
|
prefill_next_token_indices, dtype=torch.int64, device=device
|
|
)
|
|
top_n_tokens_tensor = torch.tensor(
|
|
top_n_tokens, device=device, dtype=torch.int64
|
|
)
|
|
|
|
slots = torch.tensor(slots, dtype=torch.int64, device=device)
|
|
block_tables_tensor = torch.zeros(
|
|
(len(block_tables), max_blocks), dtype=torch.int32, device="cpu"
|
|
)
|
|
for i, request_blocks in enumerate(block_tables):
|
|
block_tables_tensor[i, : len(request_blocks)] = torch.tensor(request_blocks)
|
|
block_tables_tensor = block_tables_tensor.to(device)
|
|
|
|
return cls(
|
|
batch_id=pb.id,
|
|
requests=pb.requests,
|
|
requests_idx_mapping=requests_idx_mapping,
|
|
input_ids=input_ids,
|
|
position_ids=position_ids,
|
|
cu_seqlen_prefill=cu_seqlen_prefill,
|
|
prefill_cache_indices=prefill_cache_indices,
|
|
start_slots=start_slots,
|
|
slot_indices=slot_indices,
|
|
block_tables=block_tables,
|
|
block_tables_tensor=block_tables_tensor,
|
|
slots=slots,
|
|
max_seqlen=max_seqlen,
|
|
prefill_head_indices=prefill_head_indices,
|
|
prefill_next_token_indices=prefill_next_token_indices,
|
|
prefill_cu_outlens=prefill_cu_outlens,
|
|
input_lengths=input_lengths,
|
|
input_lengths_tensor=input_lengths_tensor,
|
|
prefix_offsets=prefix_offsets,
|
|
read_offsets=read_offsets,
|
|
all_input_ids=all_input_ids,
|
|
all_input_ids_tensor=all_input_ids_tensor,
|
|
next_token_chooser=next_token_chooser,
|
|
stopping_criterias=stopping_criterias,
|
|
top_n_tokens=top_n_tokens,
|
|
top_n_tokens_tensor=top_n_tokens_tensor,
|
|
num_blocks=num_blocks,
|
|
max_blocks=max_blocks,
|
|
adapter_meta=AdapterBatchMetadata(
|
|
adapter_indices=adapter_indices,
|
|
adapter_set=adapter_set,
|
|
adapter_segments=adapter_segments,
|
|
segment_indices=adapter_segment_indices,
|
|
),
|
|
speculative_ids=None,
|
|
)
|
|
|
|
@classmethod
|
|
def from_pb(
|
|
cls,
|
|
pb: generate_pb2.Batch,
|
|
tokenizer: PreTrainedTokenizerBase,
|
|
dtype: torch.dtype,
|
|
device: torch.device,
|
|
) -> "FlashCausalLMBatch":
|
|
batch_tokenized_inputs = cls.batch_tokenized_inputs(pb.requests, tokenizer)
|
|
return cls.from_tokenized(pb, tokenizer, batch_tokenized_inputs, dtype, device)
|
|
|
|
@tracer.start_as_current_span("filter")
|
|
def filter(self, request_ids: List[int]) -> "FlashCausalLMBatch":
|
|
if len(request_ids) == 0:
|
|
raise ValueError("Batch must have at least one request")
|
|
# We assume that if len(requests) == len(self) then the requests are the same
|
|
if len(request_ids) == len(self):
|
|
return self
|
|
|
|
device = self.input_ids.device
|
|
|
|
# New values after filtering
|
|
requests_idx_mapping = {}
|
|
|
|
# Used to index into tensors
|
|
indices = []
|
|
|
|
# slots to keep after filtering
|
|
slot_filtering_indices = torch.zeros(
|
|
self.slots.shape[0], dtype=torch.bool, device=device
|
|
)
|
|
|
|
# Create on CPU to only move to GPU once instead of at every copy
|
|
slot_indices = torch.empty(len(request_ids), dtype=torch.int64)
|
|
max_seqlen = 0
|
|
|
|
requests = []
|
|
start_slots = []
|
|
block_tables = []
|
|
all_input_ids = []
|
|
|
|
input_lengths = []
|
|
prefix_offsets = []
|
|
read_offsets = []
|
|
|
|
stopping_criterias = []
|
|
top_n_tokens = []
|
|
adapter_set = set()
|
|
|
|
num_blocks = 0
|
|
max_blocks = 0
|
|
# Cumulative length
|
|
cumulative_max_length = 0
|
|
|
|
for i, request_id in enumerate(request_ids):
|
|
idx = self.requests_idx_mapping[request_id]
|
|
indices.append(idx)
|
|
requests_idx_mapping[request_id] = i
|
|
|
|
requests.append(self.requests[idx])
|
|
|
|
# Get length
|
|
request_input_length = self.input_lengths[idx]
|
|
max_seqlen = max(max_seqlen, request_input_length)
|
|
|
|
all_input_ids.append(self.all_input_ids[idx])
|
|
|
|
input_lengths.append(request_input_length)
|
|
prefix_offsets.append(self.prefix_offsets[idx])
|
|
read_offsets.append(self.read_offsets[idx])
|
|
|
|
stopping_criteria = self.stopping_criterias[idx]
|
|
stopping_criterias.append(stopping_criteria)
|
|
|
|
top_n_tokens.append(self.top_n_tokens[idx])
|
|
|
|
ADAPTER_TO_INDEX = get_adapter_to_index()
|
|
adapter_index = ADAPTER_TO_INDEX.get(self.requests[idx].adapter_id, 0)
|
|
adapter_set.add(adapter_index)
|
|
|
|
remaining_tokens = (
|
|
stopping_criteria.max_new_tokens - stopping_criteria.current_tokens
|
|
)
|
|
|
|
request_block_table = self.block_tables[idx]
|
|
num_blocks += len(request_block_table)
|
|
block_tables.append(request_block_table)
|
|
start_slots.append(cumulative_max_length)
|
|
|
|
# Copy to tensor (CPU)
|
|
slot_indices[i] = cumulative_max_length + request_input_length - 1
|
|
|
|
# Set slice
|
|
slot_filtering_indices[
|
|
self.start_slots[idx] : self.start_slots[idx]
|
|
+ request_input_length
|
|
+ remaining_tokens
|
|
- 1
|
|
] = True
|
|
|
|
cumulative_max_length += request_input_length + remaining_tokens - 1
|
|
|
|
max_blocks = max(max_blocks, len(request_block_table))
|
|
|
|
# Index into tensors
|
|
input_ids = self.input_ids[indices]
|
|
position_ids = self.position_ids[indices]
|
|
adapter_indices = self.adapter_meta.adapter_indices[indices]
|
|
all_input_ids_tensor = self.all_input_ids_tensor[indices]
|
|
block_tables_tensor = self.block_tables_tensor[indices]
|
|
input_lengths_tensor = self.input_lengths_tensor[indices]
|
|
slots = self.slots[slot_filtering_indices]
|
|
next_token_chooser = self.next_token_chooser.filter(indices)
|
|
top_n_tokens_tensor = self.top_n_tokens_tensor[indices]
|
|
speculative_ids = (
|
|
self.speculative_ids[indices] if self.speculative_ids is not None else None
|
|
)
|
|
|
|
start_slots = torch.tensor(start_slots, dtype=torch.int64)
|
|
|
|
# Move to GPU now that we have the whole tensor
|
|
slot_indices = slot_indices.to(device)
|
|
|
|
adapter_segments, adapter_segment_indices = find_segments(adapter_indices)
|
|
adapter_segments = torch.tensor(
|
|
adapter_segments, dtype=torch.int32, device=device
|
|
)
|
|
|
|
return type(self)(
|
|
batch_id=self.batch_id,
|
|
requests=requests,
|
|
requests_idx_mapping=requests_idx_mapping,
|
|
input_ids=input_ids,
|
|
position_ids=position_ids,
|
|
cu_seqlen_prefill=None,
|
|
prefill_cache_indices=None,
|
|
start_slots=start_slots,
|
|
slot_indices=slot_indices,
|
|
block_tables=block_tables,
|
|
block_tables_tensor=block_tables_tensor,
|
|
slots=slots,
|
|
max_seqlen=max_seqlen,
|
|
prefill_head_indices=None,
|
|
prefill_next_token_indices=None,
|
|
prefill_cu_outlens=None,
|
|
input_lengths=input_lengths,
|
|
input_lengths_tensor=input_lengths_tensor,
|
|
prefix_offsets=prefix_offsets,
|
|
read_offsets=read_offsets,
|
|
all_input_ids=all_input_ids,
|
|
all_input_ids_tensor=all_input_ids_tensor,
|
|
next_token_chooser=next_token_chooser,
|
|
stopping_criterias=stopping_criterias,
|
|
top_n_tokens=top_n_tokens,
|
|
top_n_tokens_tensor=top_n_tokens_tensor,
|
|
num_blocks=num_blocks,
|
|
max_blocks=max_blocks,
|
|
speculative_ids=speculative_ids,
|
|
adapter_meta=AdapterBatchMetadata(
|
|
adapter_indices=adapter_indices,
|
|
adapter_set=adapter_set,
|
|
adapter_segments=adapter_segments,
|
|
segment_indices=adapter_segment_indices,
|
|
),
|
|
)
|
|
|
|
@classmethod
|
|
@tracer.start_as_current_span("concatenate")
|
|
def concatenate(cls, batches: List["FlashCausalLMBatch"]) -> "FlashCausalLMBatch":
|
|
# Batch attributes
|
|
requests = []
|
|
requests_idx_mapping = {}
|
|
|
|
num_blocks = 0
|
|
total_batch_size = 0
|
|
total_slots = 0
|
|
max_blocks = 0
|
|
max_length = 0
|
|
max_seqlen = 0
|
|
for b in batches:
|
|
total_batch_size += len(b)
|
|
total_slots += len(b.slots)
|
|
num_blocks += b.num_blocks
|
|
speculative_length = (
|
|
b.speculative_ids.shape[1] if b.speculative_ids is not None else 0
|
|
)
|
|
max_blocks = max(max_blocks, b.max_blocks)
|
|
max_seqlen = max(max_seqlen, b.max_seqlen)
|
|
max_length = max(
|
|
max_length,
|
|
max(
|
|
input_length
|
|
+ stopping_criteria.max_new_tokens
|
|
+ speculative_length
|
|
- stopping_criteria.current_tokens
|
|
for input_length, stopping_criteria in zip(
|
|
b.input_lengths, b.stopping_criterias
|
|
)
|
|
),
|
|
)
|
|
|
|
input_ids = batches[0].input_ids.new_empty(total_batch_size)
|
|
position_ids = batches[0].position_ids.new_empty(total_batch_size)
|
|
slots = batches[0].slots.new_empty(total_slots)
|
|
slot_indices = batches[0].slot_indices.new_empty(total_batch_size)
|
|
input_lengths_tensor = batches[0].input_lengths_tensor.new_empty(
|
|
total_batch_size
|
|
)
|
|
block_tables_tensor = batches[0].block_tables_tensor.new_zeros(
|
|
(total_batch_size, max_blocks)
|
|
)
|
|
all_input_ids_tensor = batches[0].all_input_ids_tensor.new_zeros(
|
|
(total_batch_size, max_length)
|
|
)
|
|
top_n_tokens_tensor = batches[0].top_n_tokens_tensor.new_zeros(
|
|
total_batch_size,
|
|
)
|
|
total_indices_size = sum(
|
|
b.adapter_meta.adapter_indices.shape[0] for b in batches
|
|
)
|
|
adapter_indices = batches[0].adapter_meta.adapter_indices.new_empty(
|
|
total_indices_size
|
|
)
|
|
adapter_set = set()
|
|
adapter_segment_builder = SegmentConcatBuilder()
|
|
|
|
start_slots = []
|
|
block_tables = []
|
|
all_input_ids = []
|
|
|
|
input_lengths = []
|
|
prefix_offsets = []
|
|
read_offsets = []
|
|
|
|
next_token_chooser_parameters = []
|
|
fsm_grammar_states = []
|
|
stopping_criterias = []
|
|
top_n_tokens = []
|
|
|
|
# Cumulative length
|
|
cumulative_batch_size = 0
|
|
cumulative_slots = 0
|
|
cumulative_adapter_indices_size = 0
|
|
|
|
for i, batch in enumerate(batches):
|
|
requests.extend(batch.requests)
|
|
|
|
if i == 0:
|
|
requests_idx_mapping = batch.requests_idx_mapping
|
|
else:
|
|
# We need to offset the mapping for each batch by the cumulative batch size
|
|
for k, v in batch.requests_idx_mapping.items():
|
|
requests_idx_mapping[k] = v + cumulative_batch_size
|
|
|
|
start_index = cumulative_batch_size
|
|
end_index = cumulative_batch_size + len(batch)
|
|
slots_start_index = cumulative_slots
|
|
slots_end_index = cumulative_slots + len(batch.slots)
|
|
|
|
# Copy tensors (GPU)
|
|
input_ids[start_index:end_index] = batch.input_ids
|
|
position_ids[start_index:end_index] = batch.position_ids
|
|
slot_indices[start_index:end_index] = batch.slot_indices + cumulative_slots
|
|
input_lengths_tensor[start_index:end_index] = batch.input_lengths_tensor
|
|
top_n_tokens_tensor[start_index:end_index] = batch.top_n_tokens_tensor
|
|
slots[slots_start_index:slots_end_index] = batch.slots
|
|
|
|
# Copy over adapter indices
|
|
adapter_start_index = cumulative_adapter_indices_size
|
|
adapter_end_index = (
|
|
cumulative_adapter_indices_size
|
|
+ batch.adapter_meta.adapter_indices.shape[0]
|
|
)
|
|
adapter_indices[adapter_start_index:adapter_end_index] = (
|
|
batch.adapter_meta.adapter_indices
|
|
)
|
|
cumulative_adapter_indices_size = adapter_end_index
|
|
adapter_set.update(batch.adapter_meta.adapter_set)
|
|
adapter_segment_builder.concat(
|
|
batch.adapter_meta.adapter_segments, batch.adapter_meta.segment_indices
|
|
)
|
|
|
|
all_input_ids_tensor[
|
|
start_index:end_index, : batch.all_input_ids_tensor.shape[1]
|
|
] = batch.all_input_ids_tensor[:, :max_length]
|
|
|
|
block_tables_tensor[
|
|
start_index:end_index, : batch.block_tables_tensor.shape[1]
|
|
] = batch.block_tables_tensor[:, :max_blocks]
|
|
|
|
start_slots.append(batch.start_slots + cumulative_slots)
|
|
|
|
block_tables.extend(batch.block_tables)
|
|
all_input_ids.extend(batch.all_input_ids)
|
|
|
|
input_lengths.extend(batch.input_lengths)
|
|
prefix_offsets.extend(batch.prefix_offsets)
|
|
read_offsets.extend(batch.read_offsets)
|
|
|
|
next_token_chooser_parameters.extend([r.parameters for r in batch.requests])
|
|
fsm_grammar_states.extend(batch.next_token_chooser.fsm_grammar_states)
|
|
stopping_criterias.extend(batch.stopping_criterias)
|
|
|
|
top_n_tokens.extend(batch.top_n_tokens)
|
|
|
|
# Update
|
|
cumulative_batch_size += len(batch)
|
|
cumulative_slots += len(batch.slots)
|
|
|
|
start_slots = torch.concat(start_slots)
|
|
|
|
next_token_chooser = HeterogeneousNextTokenChooser.from_pb(
|
|
next_token_chooser_parameters,
|
|
dtype=batches[0].next_token_chooser.dtype,
|
|
device=batches[0].next_token_chooser.device,
|
|
tokenizer=batches[0].next_token_chooser.tokenizer,
|
|
fsm_grammar_states=fsm_grammar_states,
|
|
)
|
|
|
|
speculative_ids = (
|
|
torch.cat([b.speculative_ids for b in batches], dim=0)
|
|
if batches[0].speculative_ids is not None
|
|
else None
|
|
)
|
|
|
|
adapter_segments, adapter_segment_indices = adapter_segment_builder.build()
|
|
|
|
return cls(
|
|
batch_id=batches[0].batch_id,
|
|
requests=requests,
|
|
requests_idx_mapping=requests_idx_mapping,
|
|
input_ids=input_ids,
|
|
position_ids=position_ids,
|
|
cu_seqlen_prefill=None,
|
|
prefill_cache_indices=None,
|
|
start_slots=start_slots,
|
|
slot_indices=slot_indices,
|
|
block_tables=block_tables,
|
|
block_tables_tensor=block_tables_tensor,
|
|
slots=slots,
|
|
max_seqlen=max_seqlen,
|
|
prefill_head_indices=None,
|
|
prefill_next_token_indices=None,
|
|
prefill_cu_outlens=None,
|
|
input_lengths=input_lengths,
|
|
input_lengths_tensor=input_lengths_tensor,
|
|
prefix_offsets=prefix_offsets,
|
|
read_offsets=read_offsets,
|
|
all_input_ids=all_input_ids,
|
|
all_input_ids_tensor=all_input_ids_tensor,
|
|
next_token_chooser=next_token_chooser,
|
|
stopping_criterias=stopping_criterias,
|
|
top_n_tokens=top_n_tokens,
|
|
top_n_tokens_tensor=top_n_tokens_tensor,
|
|
num_blocks=num_blocks,
|
|
max_blocks=max_blocks,
|
|
speculative_ids=speculative_ids,
|
|
adapter_meta=AdapterBatchMetadata(
|
|
adapter_indices=adapter_indices,
|
|
adapter_set=adapter_set,
|
|
adapter_segments=adapter_segments,
|
|
segment_indices=adapter_segment_indices,
|
|
),
|
|
)
|
|
|
|
def __len__(self):
|
|
return len(self.requests)
|
|
|
|
|
|
ADAPTER_LAYERS = [
|
|
"q_proj",
|
|
"k_proj",
|
|
"v_proj",
|
|
"o_proj",
|
|
"gate_proj",
|
|
"up_proj",
|
|
"down_proj",
|
|
]
|
|
ROW_PARALLEL = {"o_proj", "down_proj", "lm_head"}
|
|
|
|
|
|
class FlashCausalLM(Model):
|
|
def __init__(
|
|
self,
|
|
model_id: str,
|
|
model_class,
|
|
revision: Optional[str] = None,
|
|
quantize: Optional[str] = None,
|
|
speculator: Optional[str] = None,
|
|
dtype: Optional[torch.dtype] = None,
|
|
trust_remote_code: bool = False,
|
|
lora_adapter_ids: Optional[list] = [],
|
|
tokenizer_class: PreTrainedTokenizerBase = AutoTokenizer,
|
|
config_class: PreTrainedTokenizerBase = AutoConfig,
|
|
default_dtype=torch.float16,
|
|
aliases=None,
|
|
# Used for Santacoder override of config
|
|
num_kv_heads: Optional[int] = None,
|
|
# Deepseek V2 uses different QK and V dims.
|
|
head_size: Optional[int] = None,
|
|
skip_special_tokens: bool = True,
|
|
):
|
|
self.process_group, rank, world_size = initialize_torch_distributed()
|
|
if torch.cuda.is_available():
|
|
device = torch.device(f"cuda:{rank}")
|
|
dtype = default_dtype if dtype is None else dtype
|
|
elif SYSTEM == "ipex":
|
|
if hasattr(torch, "xpu") and torch.xpu.is_available():
|
|
device = torch.device(f"xpu:{rank}")
|
|
dtype = default_dtype if dtype is None else dtype
|
|
else:
|
|
device = torch.device("cpu")
|
|
# Float16 doesn't exist on target.
|
|
dtype = torch.bfloat16 if dtype is None else dtype
|
|
else:
|
|
raise NotImplementedError(f"{model_class} is only available on GPU")
|
|
|
|
tokenizer = tokenizer_class.from_pretrained(
|
|
model_id,
|
|
revision=revision,
|
|
padding_side="left",
|
|
truncation_side="left",
|
|
trust_remote_code=trust_remote_code,
|
|
)
|
|
try:
|
|
generation_config = GenerationConfig.from_pretrained(
|
|
model_id, revision=revision, trust_remote_code=trust_remote_code
|
|
)
|
|
if isinstance(generation_config.eos_token_id, (list, set)):
|
|
# TODO Huge hack
|
|
tokenizer._eos_token_ids = set(generation_config.eos_token_id)
|
|
except Exception:
|
|
pass
|
|
|
|
config = config_class.from_pretrained(
|
|
model_id, revision=revision, trust_remote_code=trust_remote_code
|
|
)
|
|
config.quantize = quantize
|
|
config.speculator = speculator
|
|
|
|
torch.distributed.barrier(group=self.process_group)
|
|
|
|
weights_loader = get_loader(quantize, model_id, revision)
|
|
filenames = weight_files(model_id, revision=revision, extension=".safetensors")
|
|
weights = Weights(
|
|
filenames,
|
|
device,
|
|
dtype,
|
|
process_group=self.process_group,
|
|
aliases=aliases,
|
|
weights_loader=weights_loader,
|
|
)
|
|
|
|
prefix = ""
|
|
model = model_class(prefix, config, weights)
|
|
torch.distributed.barrier(group=self.process_group)
|
|
|
|
# VLM models define the config we care about in their text_config
|
|
text_config = getattr(config, "text_config", None)
|
|
if text_config is not None:
|
|
config = text_config
|
|
|
|
if getattr(config, "sliding_window", None) is not None:
|
|
set_sliding_window(config.sliding_window)
|
|
else:
|
|
config.sliding_window = None
|
|
|
|
self.num_layers = config.num_hidden_layers
|
|
self.num_heads = config.num_attention_heads
|
|
# Validation is done in the model itself
|
|
if num_kv_heads is None:
|
|
num_kv_heads = getattr(config, "num_key_value_heads", None)
|
|
# GPT-2 workaround
|
|
if num_kv_heads is None:
|
|
num_kv_heads = getattr(config, "n_head", None)
|
|
if num_kv_heads is None:
|
|
raise ValueError("Cannot get the number of key/value heads")
|
|
self.num_kv_heads = (
|
|
num_kv_heads // self.process_group.size()
|
|
if num_kv_heads > 1
|
|
else num_kv_heads
|
|
)
|
|
assert self.num_kv_heads > 0
|
|
|
|
if head_size is None:
|
|
# Some models use GQA and different sizes for o_proj
|
|
# and q_proj, that allows for that.
|
|
if hasattr(config, "head_dim"):
|
|
self.head_size = config.head_dim
|
|
else:
|
|
self.head_size = config.hidden_size // config.num_attention_heads
|
|
else:
|
|
self.head_size = head_size
|
|
|
|
self.cuda_graphs = {}
|
|
self.kv_cache = []
|
|
|
|
if FLASH_INFER:
|
|
from text_generation_server.layers.attention.flash_infer import (
|
|
create_prefill_state,
|
|
create_decode_state,
|
|
)
|
|
|
|
self.prefill_state = create_prefill_state(device=device)
|
|
|
|
if not CUDA_GRAPHS:
|
|
self.decode_state = create_decode_state(
|
|
device=device,
|
|
num_heads=self.num_heads,
|
|
num_kv_heads=self.num_kv_heads,
|
|
)
|
|
|
|
super().__init__(
|
|
model_id=model_id,
|
|
model=model,
|
|
tokenizer=tokenizer,
|
|
requires_padding=False,
|
|
dtype=dtype,
|
|
device=device,
|
|
rank=rank,
|
|
world_size=world_size,
|
|
sliding_window=config.sliding_window,
|
|
)
|
|
|
|
@property
|
|
def batch_type(self) -> Type[FlashCausalLMBatch]:
|
|
return FlashCausalLMBatch
|
|
|
|
def max_past(self) -> int:
|
|
return getattr(self.model, "max_past", None)
|
|
|
|
def init_kv_cache(
|
|
self,
|
|
num_blocks: int,
|
|
num_layers: int,
|
|
num_heads: int,
|
|
head_size: int,
|
|
dtype: torch.dtype,
|
|
device: torch.device,
|
|
):
|
|
self.kv_cache = []
|
|
empty_cache()
|
|
|
|
element_size = torch.tensor([], dtype=dtype).element_size()
|
|
if SYSTEM == "ipex" and device.type == "xpu":
|
|
x = 1
|
|
else:
|
|
x = BLOCK_SIZE // element_size
|
|
|
|
if FLASH_DECODING or FLASH_INFER:
|
|
self.kv_cache = [
|
|
(
|
|
torch.empty(
|
|
(num_blocks, BLOCK_SIZE, num_heads, head_size),
|
|
dtype=dtype,
|
|
device=device,
|
|
),
|
|
torch.empty(
|
|
(num_blocks, BLOCK_SIZE, num_heads, head_size),
|
|
dtype=dtype,
|
|
device=device,
|
|
),
|
|
)
|
|
for _ in range(num_layers)
|
|
]
|
|
elif SYSTEM == "ipex" and device == torch.device("cpu"):
|
|
self.kv_cache = [
|
|
(
|
|
torch.empty(
|
|
(num_blocks, num_heads, BLOCK_SIZE, head_size),
|
|
dtype=dtype,
|
|
device=device,
|
|
),
|
|
torch.empty(
|
|
(num_blocks, num_heads, BLOCK_SIZE, head_size),
|
|
dtype=dtype,
|
|
device=device,
|
|
),
|
|
)
|
|
for _ in range(num_layers)
|
|
]
|
|
else:
|
|
self.kv_cache = [
|
|
(
|
|
torch.empty(
|
|
(num_blocks, num_heads, head_size // x, BLOCK_SIZE, x),
|
|
dtype=dtype,
|
|
device=device,
|
|
),
|
|
torch.empty(
|
|
(num_blocks, num_heads, head_size, BLOCK_SIZE),
|
|
dtype=dtype,
|
|
device=device,
|
|
),
|
|
)
|
|
for _ in range(num_layers)
|
|
]
|
|
|
|
def cuda_graph_warmup(self, bs: int, max_s: int, max_bt: int):
|
|
input_ids = torch.zeros(bs, dtype=torch.int64, device=self.device)
|
|
position_ids = torch.zeros(bs, dtype=torch.int32, device=self.device)
|
|
slots = torch.arange(bs, dtype=torch.int64, device=self.device)
|
|
input_lengths = torch.ones(bs, dtype=torch.int32, device=self.device) * max_s
|
|
block_tables = (
|
|
torch.arange(max_bt, dtype=torch.int32, device=self.device)
|
|
.repeat(bs)
|
|
.reshape((bs, max_bt))
|
|
)
|
|
|
|
self.cuda_graphs[bs] = {
|
|
"input_ids": input_ids,
|
|
"position_ids": position_ids,
|
|
"kv_cache": self.kv_cache,
|
|
"block_tables": block_tables,
|
|
"slots": slots,
|
|
"input_lengths": input_lengths,
|
|
}
|
|
input_lengths_ = Seqlen(input_lengths=input_lengths)
|
|
graph = torch.cuda.CUDAGraph()
|
|
self.cuda_graphs[bs]["graph"] = graph
|
|
|
|
if FLASH_INFER:
|
|
from text_generation_server.layers.attention.flash_infer import (
|
|
create_decode_state_cuda_graphs,
|
|
)
|
|
|
|
block_tables_ptr = torch.zeros(
|
|
bs + 1, dtype=torch.int32, device=self.device
|
|
)
|
|
last_page_len = torch.ones(bs, dtype=torch.int32, device=self.device)
|
|
state = create_decode_state_cuda_graphs(
|
|
device=input_ids.device,
|
|
block_tables=block_tables.view(-1),
|
|
block_tables_ptr=block_tables_ptr,
|
|
last_page_len=last_page_len,
|
|
num_heads=self.num_heads,
|
|
num_kv_heads=self.num_kv_heads,
|
|
)
|
|
self.cuda_graphs[bs]["state"] = state
|
|
else:
|
|
state = None
|
|
|
|
torch.cuda.synchronize()
|
|
# Run once outside to warmup
|
|
with self._forward_context(
|
|
block_tables=block_tables,
|
|
cu_seqlen_prefill=None,
|
|
input_lengths=input_lengths,
|
|
state=state,
|
|
):
|
|
self.model.forward(
|
|
input_ids=input_ids,
|
|
position_ids=position_ids,
|
|
cu_seqlen_prefill=None,
|
|
kv_cache=self.kv_cache,
|
|
block_tables=block_tables,
|
|
slots=slots,
|
|
input_lengths=input_lengths_,
|
|
max_s=max_s,
|
|
prefill_cache_indices=None,
|
|
lm_head_indices=None,
|
|
)
|
|
|
|
torch.cuda.synchronize()
|
|
|
|
with torch.cuda.graph(graph, pool=MEM_POOL):
|
|
input_lengths = Seqlen(input_lengths=input_lengths)
|
|
logits, speculative_logits = self.model.forward(
|
|
input_ids=input_ids,
|
|
position_ids=position_ids,
|
|
cu_seqlen_prefill=None,
|
|
kv_cache=self.kv_cache,
|
|
block_tables=block_tables,
|
|
slots=slots,
|
|
input_lengths=input_lengths,
|
|
max_s=max_s,
|
|
prefill_cache_indices=None,
|
|
lm_head_indices=None,
|
|
)
|
|
self.cuda_graphs[bs]["logits"] = logits
|
|
self.cuda_graphs[bs]["speculative_logits"] = speculative_logits
|
|
torch.cuda.synchronize()
|
|
|
|
def warmup(self, batch: FlashCausalLMBatch):
|
|
# The warmup batch is the biggest batch we could ever receive
|
|
empty_cache()
|
|
|
|
try:
|
|
self.init_kv_cache(
|
|
batch.num_blocks,
|
|
self.num_layers,
|
|
self.num_kv_heads,
|
|
self.head_size,
|
|
self.dtype,
|
|
self.device,
|
|
)
|
|
max_bt = batch.max_blocks
|
|
max_s = max_bt * BLOCK_SIZE
|
|
|
|
if SYSTEM == "rocm" and os.environ.get("PYTORCH_TUNABLEOP_ENABLED", False):
|
|
torch.cuda.tunable.tuning_enable(False)
|
|
_, batch, _ = self.generate_token(batch)
|
|
except torch.cuda.OutOfMemoryError as e:
|
|
raise RuntimeError(
|
|
f"Not enough memory to handle {len(batch.input_ids)} prefill tokens. "
|
|
f"You need to decrease `--max-batch-prefill-tokens`"
|
|
) from e
|
|
|
|
synchronize(self.device)
|
|
|
|
# Inspired by the original implementation in [vllm](https://github.com/vllm-project/vllm)
|
|
# Calculate the number of blocks that can be allocated with the free memory
|
|
dtype_size = torch.tensor([], dtype=self.dtype).element_size()
|
|
cache_block_size = BLOCK_SIZE * self.num_kv_heads * self.head_size
|
|
total_cache_size = self.num_layers * cache_block_size * 2 * dtype_size
|
|
|
|
free_memory = get_free_memory(self.device, MEMORY_FRACTION)
|
|
batch_num_blocks = batch.num_blocks if batch is not None else 0
|
|
|
|
num_blocks = (
|
|
# Leave 5% for some wiggle room
|
|
int((free_memory * 0.95) // total_cache_size)
|
|
# Add batch.num_blocks as we allocated it above, so it is included in the peak memory.
|
|
+ batch_num_blocks
|
|
)
|
|
|
|
del batch
|
|
|
|
self.init_kv_cache(
|
|
num_blocks,
|
|
self.num_layers,
|
|
self.num_kv_heads,
|
|
self.head_size,
|
|
self.dtype,
|
|
self.device,
|
|
)
|
|
|
|
if SYSTEM == "rocm":
|
|
if (
|
|
os.environ.get("PYTORCH_TUNABLEOP_ENABLED") is None
|
|
or os.environ.get("PYTORCH_TUNABLEOP_ENABLED") == "1"
|
|
):
|
|
torch.cuda.tunable.enable()
|
|
|
|
if os.environ.get("PYTORCH_TUNABLEOP_TUNING") != "0":
|
|
torch.cuda.tunable.tuning_enable(True)
|
|
|
|
if os.environ.get("PYTORCH_TUNABLEOP_SEQLENS") is not None:
|
|
tuning_sequences = [
|
|
int(val)
|
|
for val in os.environ["PYTORCH_TUNABLEOP_SEQLENS"].split(",")
|
|
]
|
|
elif CUDA_GRAPHS is not None:
|
|
tuning_sequences = CUDA_GRAPHS
|
|
else:
|
|
# For seqlen = 1, we dispatch to LLMM1 kernel.
|
|
tuning_sequences = [2, 3, 4, 5, 6, 7]
|
|
|
|
tunableop_filepath = os.path.join(
|
|
HUGGINGFACE_HUB_CACHE,
|
|
f"tunableop_{self.model_id.replace('/', '-')}_tp{self.world_size}_rank{self.rank}.csv",
|
|
)
|
|
|
|
log_master(
|
|
logger.info,
|
|
f"PyTorch TunableOp (https://github.com/fxmarty/pytorch/tree/2.3-patched/aten/src/ATen/cuda/tunable) is enabled. The warmup may take several minutes, picking the ROCm optimal matrix multiplication kernel for the target lengths {', '.join([str(seqlen) for seqlen in tuning_sequences])}, with typical 5-8% latency improvement for small sequence lengths. The picked GEMMs are saved in the file {tunableop_filepath}. To disable TunableOp, please launch TGI with `PYTORCH_TUNABLEOP_ENABLED=0`.",
|
|
)
|
|
|
|
if os.path.isfile(tunableop_filepath):
|
|
log_master(
|
|
logger.info,
|
|
f"The file {tunableop_filepath} already exists and will be reused.",
|
|
)
|
|
torch.cuda.tunable.read_file(tunableop_filepath)
|
|
|
|
os.makedirs(HUGGINGFACE_HUB_CACHE, exist_ok=True)
|
|
|
|
for seqlen in tuning_sequences:
|
|
log_master(logger.info, f"Warming up TunableOp for seqlen={seqlen}")
|
|
self.tunableop_warmup(seqlen)
|
|
torch.cuda.tunable.write_file(tunableop_filepath)
|
|
torch.cuda.tunable.tuning_enable(False)
|
|
else:
|
|
log_master(
|
|
logger.info,
|
|
"PyTorch ROCm TunableOp (https://github.com/pytorch/pytorch/tree/main/aten/src/ATen/cuda/tunable) is disabled. TunableOp brings an additional 5-8% latency improvement for small sequence lengths but requires a warmup. If necessary, please use the environment variable PYTORCH_TUNABLEOP_ENABLED=1 to enable TunableOp.",
|
|
)
|
|
|
|
if CUDA_GRAPHS:
|
|
try:
|
|
log_master(
|
|
logger.info, f"Cuda Graphs are enabled for sizes {CUDA_GRAPHS}"
|
|
)
|
|
# Warmup cuda graphs
|
|
for bs in CUDA_GRAPHS:
|
|
if self.speculate is None or self.speculate + 1 <= bs:
|
|
self.cuda_graph_warmup(bs, max_s, max_bt)
|
|
except torch.cuda.OutOfMemoryError:
|
|
logger.exception("Decode cuda graph warmup failed")
|
|
else:
|
|
log_master(
|
|
logger.info, f"Cuda Graphs are disabled (CUDA_GRAPHS={CUDA_GRAPHS})."
|
|
)
|
|
|
|
return int(num_blocks * BLOCK_SIZE)
|
|
|
|
def tunableop_warmup(self, seqlen: int):
|
|
input_ids = torch.zeros(seqlen, dtype=torch.int64, device=self.device)
|
|
position_ids = torch.zeros(seqlen, dtype=torch.int32, device=self.device)
|
|
slots = torch.arange(seqlen, dtype=torch.int64, device=self.device)
|
|
|
|
# Dummy value, some models (starcoder2) don't accept `None`.
|
|
input_lengths = torch.ones(seqlen, dtype=torch.int32, device=self.device)
|
|
input_lengths = Seqlen(input_lengths=input_lengths)
|
|
|
|
# We pass a `cu_seqlen_prefill` in order not to have to deal with paged attention cache allocation/deallocation.
|
|
self.model.forward(
|
|
input_ids=input_ids,
|
|
position_ids=position_ids,
|
|
cu_seqlen_prefill=torch.tensor(
|
|
[0, seqlen], device=self.device, dtype=torch.int32
|
|
),
|
|
kv_cache=self.kv_cache,
|
|
block_tables=None,
|
|
input_lengths=input_lengths,
|
|
slots=slots,
|
|
max_s=seqlen,
|
|
lm_head_indices=None,
|
|
prefill_cache_indices=None,
|
|
)
|
|
|
|
def forward(
|
|
self, batch: FlashCausalLMBatch, adapter_data: AdapterBatchData
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
|
# Model Forward
|
|
if batch.speculative_ids is not None:
|
|
input_ids = batch.input_ids
|
|
position_ids = batch.position_ids
|
|
cu_seqlen_prefill = batch.cu_seqlen_prefill
|
|
kv_cache = self.kv_cache
|
|
block_tables = batch.block_tables_tensor
|
|
slots = batch.slots[batch.slot_indices]
|
|
input_lengths = batch.input_lengths_tensor
|
|
max_s = batch.max_seqlen
|
|
lm_head_indices = batch.prefill_head_indices
|
|
|
|
speculative_ids = batch.speculative_ids
|
|
|
|
B, speculative_length = speculative_ids.shape
|
|
new_length = speculative_length + 1
|
|
new_input_ids = torch.cat(
|
|
[input_ids.unsqueeze(-1), speculative_ids], dim=1
|
|
).reshape(-1)
|
|
arange = torch.arange(new_length, device=position_ids.device).unsqueeze(0)
|
|
arange_int = arange.to(dtype=torch.int32)
|
|
new_position_ids = (
|
|
position_ids.unsqueeze(-1).expand(B, new_length) + arange
|
|
).view(-1)
|
|
slots = (slots.unsqueeze(-1).expand(B, new_length) + arange_int).view(-1)
|
|
input_lengths = (
|
|
input_lengths.unsqueeze(-1).expand(B, new_length) + arange_int
|
|
).view(-1)
|
|
|
|
# Add Copy the block tables for all members
|
|
block_tables = (
|
|
block_tables.unsqueeze(1)
|
|
.expand(B, new_length, -1)
|
|
.reshape(B * new_length, -1)
|
|
.contiguous()
|
|
)
|
|
max_s = max_s + speculative_length
|
|
|
|
input_ids = new_input_ids
|
|
position_ids = new_position_ids
|
|
else:
|
|
input_ids = batch.input_ids
|
|
position_ids = batch.position_ids
|
|
cu_seqlen_prefill = batch.cu_seqlen_prefill
|
|
kv_cache = self.kv_cache
|
|
block_tables = batch.block_tables_tensor
|
|
slots = batch.slots[batch.slot_indices]
|
|
input_lengths = batch.input_lengths_tensor
|
|
max_s = batch.max_seqlen
|
|
lm_head_indices = batch.prefill_head_indices
|
|
|
|
if cu_seqlen_prefill is None and self.max_past() is not None:
|
|
# In decode, not prefill, we're actually overwriting the KV-cache
|
|
# in a circular buffer mode.
|
|
# This makes sure the max_s for the decode pass is correct.
|
|
max_s = min(self.max_past(), max_s)
|
|
|
|
bs = input_ids.shape[0]
|
|
sorted_padded_bs = sorted([k for k in self.cuda_graphs.keys() if k >= bs])
|
|
if sorted_padded_bs:
|
|
# Get associated cuda graph
|
|
cuda_graph = self.cuda_graphs[sorted_padded_bs[0]]
|
|
else:
|
|
cuda_graph = None
|
|
|
|
if cu_seqlen_prefill is not None or cuda_graph is None:
|
|
with self._forward_context(
|
|
block_tables=block_tables,
|
|
cu_seqlen_prefill=cu_seqlen_prefill,
|
|
input_lengths=input_lengths,
|
|
):
|
|
input_lengths = Seqlen(input_lengths=input_lengths)
|
|
logits, speculative_logits = self.model.forward(
|
|
input_ids=input_ids,
|
|
position_ids=position_ids,
|
|
cu_seqlen_prefill=cu_seqlen_prefill,
|
|
kv_cache=kv_cache,
|
|
block_tables=block_tables,
|
|
slots=slots,
|
|
input_lengths=input_lengths,
|
|
max_s=max_s,
|
|
prefill_cache_indices=batch.prefill_cache_indices,
|
|
lm_head_indices=lm_head_indices,
|
|
adapter_data=adapter_data,
|
|
)
|
|
if batch.prefill_cache_indices is not None:
|
|
batch.prefill_cache_indices = None
|
|
return logits, speculative_logits
|
|
|
|
# Copy inputs to the static inputs of the cuda graph
|
|
# Static inputs are potentially padded
|
|
cuda_graph["input_ids"][: input_ids.shape[0]] = input_ids
|
|
cuda_graph["position_ids"][: position_ids.shape[0]] = position_ids
|
|
cuda_graph["block_tables"][
|
|
: block_tables.shape[0], : block_tables.shape[1]
|
|
] = block_tables
|
|
cuda_graph["slots"].fill_(-1)
|
|
cuda_graph["slots"][: slots.shape[0]] = slots
|
|
cuda_graph["input_lengths"].zero_()
|
|
cuda_graph["input_lengths"][: input_lengths.shape[0]] = input_lengths
|
|
|
|
state = cuda_graph.get("state")
|
|
with self._forward_context(
|
|
block_tables=block_tables,
|
|
cu_seqlen_prefill=None,
|
|
input_lengths=input_lengths,
|
|
state=state,
|
|
):
|
|
# Replay the graph
|
|
cuda_graph["graph"].replay()
|
|
|
|
# Slice output to the correct shape
|
|
speculative_logits = (
|
|
cuda_graph["speculative_logits"][:bs]
|
|
if cuda_graph["speculative_logits"] is not None
|
|
else None
|
|
)
|
|
logits = cuda_graph["logits"][:bs]
|
|
return logits, speculative_logits
|
|
|
|
@tracer.start_as_current_span("generate_token")
|
|
def generate_token(
|
|
self, batch: FlashCausalLMBatch
|
|
) -> Tuple[List[Generation], Optional[FlashCausalLMBatch], Tuple[int, int]]:
|
|
start = time.time_ns()
|
|
prefill = batch.cu_seqlen_prefill is not None
|
|
prefill_logprobs = batch.prefill_next_token_indices is not None
|
|
|
|
# Update adapter indices for speculative tokens (if present)
|
|
adapter_meta = batch.adapter_meta
|
|
if batch.speculative_ids is not None:
|
|
B, speculative_length = batch.speculative_ids.shape
|
|
new_length = speculative_length + 1
|
|
adapter_indices = (
|
|
adapter_meta.adapter_indices.unsqueeze(-1)
|
|
.expand(B, new_length)
|
|
.reshape(-1)
|
|
)
|
|
adapter_segments = adapter_meta.adapter_segments * new_length
|
|
adapter_meta = AdapterBatchMetadata(
|
|
adapter_indices=adapter_indices,
|
|
adapter_set=adapter_meta.adapter_set,
|
|
adapter_segments=adapter_segments,
|
|
segment_indices=adapter_meta.segment_indices,
|
|
)
|
|
|
|
# Assign pointers to adapter weights
|
|
# TODO(travis): don't update this if indices haven't changed
|
|
adapter_data = AdapterBatchData.from_meta(
|
|
adapter_meta,
|
|
self.layer_to_adapter_weights,
|
|
prefill,
|
|
batch.prefill_head_indices,
|
|
)
|
|
|
|
out, speculative_logits = self.forward(batch, adapter_data)
|
|
|
|
if prefill:
|
|
next_token_logits = (
|
|
out[batch.prefill_next_token_indices] if prefill_logprobs else out
|
|
)
|
|
if speculative_logits is not None:
|
|
speculative_logits = (
|
|
speculative_logits[batch.prefill_next_token_indices]
|
|
if prefill_logprobs
|
|
else speculative_logits
|
|
)
|
|
next_adapter_indices = batch.adapter_meta.adapter_indices.new_empty(
|
|
len(batch)
|
|
)
|
|
|
|
else:
|
|
next_token_logits = out
|
|
next_adapter_indices = batch.adapter_meta.adapter_indices
|
|
|
|
speculate = get_speculate()
|
|
(
|
|
next_input_ids,
|
|
next_token_logprobs,
|
|
logprobs,
|
|
accepted_ids,
|
|
speculative_ids,
|
|
) = batch.next_token_chooser(
|
|
batch.all_input_ids_tensor[:, : batch.max_seqlen],
|
|
next_token_logits,
|
|
speculate,
|
|
batch.speculative_ids,
|
|
speculative_logits,
|
|
)
|
|
|
|
batch_top_token_ids, batch_top_token_logprobs = batch_top_tokens(
|
|
batch.top_n_tokens, batch.top_n_tokens_tensor, logprobs, accepted_ids
|
|
)
|
|
|
|
if prefill:
|
|
if len(batch) > 1 and prefill_logprobs:
|
|
# We create the prefill_tokens_indices tensor that will be used to gather prefill logprobs
|
|
# When batch == 1, we will just use the batch.input_ids values directly
|
|
prefill_tokens_indices = batch.input_ids.new_zeros(len(out))
|
|
|
|
next_position_ids = batch.position_ids.new_empty(len(batch))
|
|
batch.slot_indices = batch.slot_indices[batch.cu_seqlen_prefill[1:] - 1]
|
|
# We do not need cu_seqlen_prefill anymore
|
|
batch.cu_seqlen_prefill = None
|
|
else:
|
|
prefill_logprobs = None
|
|
next_position_ids = batch.position_ids
|
|
|
|
# Cumulative length
|
|
cumulative_length = 0
|
|
|
|
# Results
|
|
generations: List[Generation] = []
|
|
stopped = True
|
|
|
|
# Zipped iterator
|
|
iterator = zip(batch.input_lengths, batch.all_input_ids, accepted_ids)
|
|
|
|
# We do two for loops as the first one can run completely asynchronously from the GPU while for the second
|
|
# one, we need to first do a GPU <-> CPU sync
|
|
# It is faster if we delay this sync for the maximum amount of time
|
|
|
|
# For each member of the batch
|
|
index = 0
|
|
for i, (input_length, all_input_ids, n_accepted_ids) in enumerate(iterator):
|
|
# Indexing metadata
|
|
start_index = cumulative_length
|
|
end_index = cumulative_length + input_length
|
|
|
|
if prefill:
|
|
# Indexing metadata
|
|
out_start_index = batch.prefill_cu_outlens[i]
|
|
out_end_index = batch.prefill_cu_outlens[i + 1]
|
|
out_length = out_end_index - out_start_index
|
|
|
|
# Initialize position_ids
|
|
# In decode, we do not need this as we can just increment position ids
|
|
next_position_ids[i] = batch.position_ids[end_index - 1]
|
|
|
|
# Initialize adapter indices
|
|
# In decode, we only have one token per row in the batch, so grab last index
|
|
next_adapter_indices[i] = batch.adapter_meta.adapter_indices[
|
|
end_index - 1
|
|
]
|
|
|
|
# Used to gather prefill logprobs
|
|
# Copy batch.input_ids to prefill_token_indices
|
|
if prefill_logprobs:
|
|
if len(batch) > 1:
|
|
prefill_tokens_indices[out_start_index : out_end_index - 1] = (
|
|
batch.input_ids[start_index + 1 : start_index + out_length]
|
|
)
|
|
else:
|
|
# Set prefill_tokens_indices to the correct slice
|
|
prefill_tokens_indices = batch.input_ids[
|
|
start_index + 1 : start_index + out_length
|
|
]
|
|
|
|
for j in range(n_accepted_ids):
|
|
batch.all_input_ids_tensor[i, input_length + j] = next_input_ids[index]
|
|
index += 1
|
|
|
|
cumulative_length += input_length
|
|
|
|
# Update values
|
|
batch.input_ids = next_input_ids[accepted_ids.cumsum(dim=-1) - 1]
|
|
batch.speculative_ids = speculative_ids
|
|
batch.position_ids = next_position_ids + accepted_ids
|
|
batch.input_lengths_tensor += accepted_ids
|
|
batch.slot_indices += accepted_ids
|
|
batch.adapter_meta.adapter_indices = next_adapter_indices
|
|
|
|
if prefill:
|
|
# adjust segment lengths to account for all request lengths being 1 during decoding
|
|
adapter_segments, _ = find_segments(batch.adapter_meta.adapter_indices)
|
|
batch.adapter_meta.adapter_segments = torch.tensor(
|
|
adapter_segments,
|
|
dtype=torch.int32,
|
|
device=batch.adapter_meta.adapter_segments.device,
|
|
)
|
|
|
|
if prefill and prefill_logprobs:
|
|
# Get prefill logprobs
|
|
prefill_logprobs_tensor = torch.log_softmax(out, -1)
|
|
prefill_logprobs = torch.gather(
|
|
prefill_logprobs_tensor, 1, prefill_tokens_indices.view(-1, 1)
|
|
)
|
|
# GPU <-> CPU sync
|
|
prefill_logprobs = prefill_logprobs.view(-1).tolist()
|
|
|
|
# GPU <-> CPU sync
|
|
next_token_logprobs = next_token_logprobs.tolist()
|
|
next_token_ids = next_input_ids.tolist()
|
|
accepted_ids = accepted_ids.tolist()
|
|
start_decode = time.time_ns()
|
|
|
|
# Zipped iterator
|
|
iterator = zip(
|
|
batch.requests,
|
|
batch.input_lengths,
|
|
batch.prefix_offsets,
|
|
batch.read_offsets,
|
|
batch.stopping_criterias,
|
|
batch.all_input_ids,
|
|
batch.next_token_chooser.do_sample,
|
|
batch.next_token_chooser.seeds,
|
|
batch.top_n_tokens,
|
|
accepted_ids,
|
|
batch_top_token_ids,
|
|
batch_top_token_logprobs,
|
|
)
|
|
|
|
# For each member of the batch
|
|
index = 0
|
|
for i, (
|
|
request,
|
|
input_length,
|
|
prefix_offset,
|
|
read_offset,
|
|
stopping_criteria,
|
|
all_input_ids,
|
|
do_sample,
|
|
seed,
|
|
top_n_tokens,
|
|
n_accepted_ids,
|
|
top_token_ids,
|
|
top_token_logprobs,
|
|
) in enumerate(iterator):
|
|
# Append next token to all tokens
|
|
next_token_texts = []
|
|
left = 0
|
|
|
|
if n_accepted_ids > 1:
|
|
log_master(logger.debug, f"Speculated ids {n_accepted_ids - 1}")
|
|
|
|
current_stopped = False
|
|
for j in range(index, index + n_accepted_ids):
|
|
# Generated token
|
|
next_token_id = next_token_ids[j]
|
|
all_input_ids.append(next_token_id)
|
|
next_token_text, prefix_offset, read_offset = self.decode_token(
|
|
all_input_ids,
|
|
prefix_offset,
|
|
read_offset,
|
|
)
|
|
next_token_texts.append(next_token_text)
|
|
|
|
stop, reason = stopping_criteria(
|
|
next_token_id,
|
|
next_token_text,
|
|
)
|
|
|
|
if stop:
|
|
left = index + n_accepted_ids - j - 1
|
|
current_stopped = True
|
|
break
|
|
else:
|
|
current_stopped = False
|
|
stopped = stopped and current_stopped
|
|
|
|
_next_token_ids = next_token_ids[index : index + n_accepted_ids - left]
|
|
_next_token_logprobs = next_token_logprobs[
|
|
index : index + n_accepted_ids - left
|
|
]
|
|
index += n_accepted_ids
|
|
|
|
# Shard generations
|
|
# All generations will be appended in the rust sharded client
|
|
if i % self.world_size == self.rank:
|
|
if stop:
|
|
# Decode generated tokens
|
|
output_text, _, _ = self.decode_token(
|
|
all_input_ids,
|
|
prefix_offset=len(all_input_ids)
|
|
- stopping_criteria.current_tokens
|
|
- 1,
|
|
read_offset=len(all_input_ids)
|
|
- stopping_criteria.current_tokens,
|
|
skip_special_tokens=True,
|
|
)
|
|
generated_text = GeneratedText(
|
|
output_text,
|
|
stopping_criteria.current_tokens,
|
|
reason,
|
|
seed if do_sample else None,
|
|
)
|
|
else:
|
|
generated_text = None
|
|
|
|
# Prefill
|
|
if prefill and request.prefill_logprobs:
|
|
out_start_index = batch.prefill_cu_outlens[i]
|
|
out_end_index = batch.prefill_cu_outlens[i + 1]
|
|
|
|
# Remove generated token to only have prefill and add nan for first prompt token
|
|
request_prefill_logprobs = [float("nan")] + prefill_logprobs[
|
|
out_start_index : out_end_index - 1
|
|
]
|
|
prefill_token_ids = all_input_ids[:-1]
|
|
prefill_texts = self.tokenizer.batch_decode(
|
|
prefill_token_ids,
|
|
clean_up_tokenization_spaces=False,
|
|
skip_special_tokens=False,
|
|
)
|
|
|
|
prefill_tokens = Tokens(
|
|
prefill_token_ids,
|
|
request_prefill_logprobs,
|
|
prefill_texts,
|
|
is_special=[],
|
|
)
|
|
else:
|
|
prefill_tokens = None
|
|
|
|
if top_n_tokens > 0:
|
|
all_top_tokens = []
|
|
for top_token_ids, top_token_logprobs in zip(
|
|
top_token_ids, top_token_logprobs
|
|
):
|
|
toptoken_texts = self.tokenizer.batch_decode(
|
|
top_token_ids,
|
|
clean_up_tokenization_spaces=False,
|
|
skip_special_tokens=False,
|
|
)
|
|
special_toptokens = [
|
|
token_id in self.all_special_ids
|
|
for token_id in top_token_ids
|
|
]
|
|
top_tokens = Tokens(
|
|
top_token_ids,
|
|
top_token_logprobs,
|
|
toptoken_texts,
|
|
special_toptokens,
|
|
)
|
|
all_top_tokens.append(top_tokens)
|
|
top_tokens = all_top_tokens
|
|
else:
|
|
top_tokens = None
|
|
|
|
generation = Generation(
|
|
request.id,
|
|
prefill_tokens,
|
|
Tokens(
|
|
_next_token_ids,
|
|
_next_token_logprobs,
|
|
next_token_texts,
|
|
[nid in self.all_special_ids for nid in _next_token_ids],
|
|
),
|
|
generated_text,
|
|
top_tokens,
|
|
)
|
|
|
|
generations.append(generation)
|
|
|
|
# accept each new token for this specific request since we may
|
|
# have more than one new token per request with speculative decoding
|
|
for next_token_id in _next_token_ids:
|
|
batch.next_token_chooser = (
|
|
batch.next_token_chooser.advance_grammar_single(i, next_token_id)
|
|
)
|
|
|
|
# Update values
|
|
batch.input_lengths[i] = input_length + n_accepted_ids
|
|
if batch.input_lengths[i] > batch.max_seqlen:
|
|
batch.max_seqlen = batch.input_lengths[i]
|
|
batch.prefix_offsets[i] = prefix_offset
|
|
batch.read_offsets[i] = read_offset
|
|
batch.all_input_ids[i] = all_input_ids
|
|
|
|
if stopped:
|
|
# No need to return a batch if we know that all requests stopped
|
|
forward_ns = start_decode - start
|
|
decode_ns = time.time_ns() - start_decode
|
|
return generations, None, (forward_ns, decode_ns)
|
|
|
|
batch.prefill_cu_outlens = None
|
|
batch.prefill_head_indices = None
|
|
batch.prefill_next_token_indices = None
|
|
|
|
forward_ns = start_decode - start
|
|
decode_ns = time.time_ns() - start_decode
|
|
return generations, batch, (forward_ns, decode_ns)
|
|
|
|
def _forward_context(
|
|
self,
|
|
*,
|
|
block_tables: torch.Tensor,
|
|
cu_seqlen_prefill: Optional[torch.Tensor],
|
|
input_lengths: torch.Tensor,
|
|
state: Optional[Any] = None,
|
|
) -> ContextManager:
|
|
if not FLASH_INFER:
|
|
return nullcontext()
|
|
|
|
from text_generation_server.layers.attention.flash_infer import (
|
|
use_decode_state,
|
|
use_prefill_state,
|
|
)
|
|
|
|
if cu_seqlen_prefill is not None:
|
|
return use_prefill_state(
|
|
state=state if state is not None else self.prefill_state,
|
|
cu_seqlens=cu_seqlen_prefill,
|
|
num_heads=self.num_heads,
|
|
num_kv_heads=self.num_kv_heads,
|
|
head_size=self.head_size,
|
|
)
|
|
else:
|
|
assert input_lengths is not None
|
|
return use_decode_state(
|
|
state=state if state is not None else self.decode_state,
|
|
input_lengths=input_lengths,
|
|
block_tables=block_tables.view(-1),
|
|
num_heads=self.num_heads,
|
|
num_kv_heads=self.num_kv_heads,
|
|
head_size=self.head_size,
|
|
page_size=BLOCK_SIZE,
|
|
)
|