.github | ||
assets | ||
benchmark | ||
clients/python | ||
docs | ||
integration-tests | ||
launcher | ||
load_tests | ||
proto | ||
router | ||
server | ||
.dockerignore | ||
.gitignore | ||
Cargo.lock | ||
Cargo.toml | ||
Dockerfile | ||
Dockerfile_amd | ||
LICENSE | ||
Makefile | ||
README.md | ||
rust-toolchain.toml | ||
sagemaker-entrypoint.sh | ||
update_doc.py |
Text Generation Inference on Habana Gaudi
To use 🤗 text-generation-inference on Habana Gaudi/Gaudi2, follow these steps:
-
Build the Docker image located in this folder with:
docker build -t tgi_gaudi .
-
Launch a local server instance on 1 Gaudi card:
model=meta-llama/Llama-2-7b-hf volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run docker run -p 8080:80 -v $volume:/data --runtime=habana -e HABANA_VISIBLE_DEVICES=all -e OMPI_MCA_btl_vader_single_copy_mechanism=none --cap-add=sys_nice --ipc=host tgi_gaudi --model-id $model
-
Launch a local server instance on 8 Gaudi cards:
model=meta-llama/Llama-2-70b-hf volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run docker run -p 8080:80 -v $volume:/data --runtime=habana -e PT_HPU_ENABLE_LAZY_COLLECTIVES=true -e HABANA_VISIBLE_DEVICES=all -e OMPI_MCA_btl_vader_single_copy_mechanism=none --cap-add=sys_nice --ipc=host tgi_gaudi --model-id $model --sharded true --num-shard 8
-
You can then send a request:
curl 127.0.0.1:8080/generate \ -X POST \ -d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":17, "do_sample": true}}' \ -H 'Content-Type: application/json'
The first call will be slower as the model is compiled.
-
To run benchmark test, please refer TGI's benchmark tool.
To run it on the same machine, you can do the following:
docker exec -it <docker name> bash
, pick the docker started from step 3 or 4 using docker pstext-generation-benchmark -t <model-id>
, pass the model-id from docker run command- after the completion of tests, hit ctrl+c to see the performance data summary.
For gated models such as StarCoder, you will have to pass
-e HUGGING_FACE_HUB_TOKEN=<token>
to thedocker run
command above with a valid Hugging Face Hub read token.
For more information and documentation about Text Generation Inference, checkout the README of the original repo.
Not all features of TGI are currently supported as this is still a work in progress.
New changes are added for the current release:
- Sharded feature with support for DeepSpeed-inference auto tensor parallelism. Also, use HPU graphs for performance improvement.
- Torch profile.
Environment Variables Added:
Name | Value(s) | Default | Description | Usage |
---|---|---|---|---|
MAX_TOTAL_TOKENS | integer | 0 | Control the padding of input | add -e in docker run, such |
ENABLE_HPU_GRAPH | true/false | true | Enable hpu graph or not | add -e in docker run command |
PROF_WARMUPSTEP | integer | 0 | Enable/disable profile, control profile warmup step, 0 means disable profile | add -e in docker run command |
PROF_STEP | interger | 5 | Control profile step | add -e in docker run command |
PROF_PATH | string | /root/text-generation-inference | Define profile folder | add -e in docker run command |
LIMIT_HPU_GRAPH | True/False | False | Skip HPU graph usage for prefill to save memory | add -e in docker run command |
The license to use TGI on Habana Gaudi is the one of TGI: https://github.com/huggingface/text-generation-inference/blob/main/LICENSE
Please reach out to api-enterprise@huggingface.co if you have any question.