mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-10-12 08:25:22 +00:00
This change adds support for prefix caching to the v3 router. This is broken up from the backend support to ease reviewing. For now prefix caching is only enabled with `USE_PREFIX_CACHING=1` in this case, the router will switch to `RadixAllocator`. This allocator uses a radix trie to keep track of prefills that were seen prior. If a new prefill is a prefix of a previously-seen prefil, the router will send a request with `prefix_len>0`, which can be used by the backend to decide to reuse KV blocks from the cache, rather than recomputing them. Even though backend support is not added in this PR, the backend will still work with prefix caching enabled. The prefix lengths are just ignored and not used.
526 lines
20 KiB
Rust
526 lines
20 KiB
Rust
use crate::client::{Batch, CachedBatch, ClientError, Generation, Health, ShardedClient};
|
|
/// Batching and inference logic
|
|
use crate::queue::{Entry, Queue};
|
|
use async_trait::async_trait;
|
|
use nohash_hasher::IntMap;
|
|
use std::sync::Arc;
|
|
use text_generation_router::infer::{Backend, GeneratedText, InferError, InferStreamResponse};
|
|
use text_generation_router::validation::ValidGenerateRequest;
|
|
use text_generation_router::{Attention, FinishReason, PrefillToken, Token};
|
|
use tokio::sync::mpsc::error::SendError;
|
|
use tokio::sync::{mpsc, Notify};
|
|
use tokio::time::Instant;
|
|
use tokio_stream::wrappers::UnboundedReceiverStream;
|
|
use tracing::{info_span, instrument, Instrument, Span};
|
|
|
|
pub struct BackendV3 {
|
|
/// Request queue
|
|
queue: Queue,
|
|
/// Notify batcher on queue appends
|
|
batching_task_notifier: Arc<Notify>,
|
|
/// Client clone, used for health checks to skip the queue
|
|
client: ShardedClient,
|
|
}
|
|
|
|
impl BackendV3 {
|
|
#[allow(clippy::too_many_arguments)]
|
|
pub(crate) fn new(
|
|
client: ShardedClient,
|
|
waiting_served_ratio: f32,
|
|
max_batch_prefill_tokens: u32,
|
|
max_batch_total_tokens: u32,
|
|
max_waiting_tokens: usize,
|
|
max_batch_size: Option<usize>,
|
|
requires_padding: bool,
|
|
window_size: Option<u32>,
|
|
speculate: u32,
|
|
) -> Self {
|
|
let prefix_caching = if let Ok(prefix_caching) = std::env::var("USE_PREFIX_CACHING") {
|
|
matches!(prefix_caching.as_str(), "true" | "1")
|
|
} else {
|
|
false
|
|
};
|
|
let attention = if let Ok(attention) = std::env::var("ATTENTION") {
|
|
attention
|
|
.parse()
|
|
.unwrap_or_else(|_| panic!("Invalid attention was specified :`{attention}`"))
|
|
} else if prefix_caching {
|
|
Attention::FlashInfer
|
|
} else {
|
|
Attention::Paged
|
|
};
|
|
let block_size = if attention == Attention::FlashDecoding {
|
|
256
|
|
} else if attention == Attention::FlashInfer {
|
|
1
|
|
} else {
|
|
16
|
|
};
|
|
|
|
let queue = Queue::new(
|
|
requires_padding,
|
|
block_size,
|
|
prefix_caching,
|
|
window_size,
|
|
speculate,
|
|
max_batch_total_tokens,
|
|
);
|
|
let batching_task_notifier = Arc::new(Notify::new());
|
|
|
|
// Spawn batching background task that contains all the inference logic
|
|
tokio::spawn(batching_task(
|
|
client.clone(),
|
|
waiting_served_ratio,
|
|
max_batch_prefill_tokens,
|
|
max_batch_total_tokens,
|
|
max_waiting_tokens,
|
|
max_batch_size,
|
|
queue.clone(),
|
|
batching_task_notifier.clone(),
|
|
));
|
|
|
|
Self {
|
|
queue,
|
|
batching_task_notifier,
|
|
client,
|
|
}
|
|
}
|
|
}
|
|
|
|
#[async_trait]
|
|
impl Backend for BackendV3 {
|
|
#[instrument(skip_all)]
|
|
fn schedule(
|
|
&self,
|
|
request: ValidGenerateRequest,
|
|
) -> Result<UnboundedReceiverStream<Result<InferStreamResponse, InferError>>, InferError> {
|
|
// MPSC channel to communicate with the background batching task
|
|
let (response_tx, response_rx) = mpsc::unbounded_channel();
|
|
|
|
// Append the request to the queue
|
|
self.queue.append(Entry {
|
|
request,
|
|
response_tx,
|
|
span: Span::current(),
|
|
temp_span: None,
|
|
queue_time: Instant::now(),
|
|
batch_time: None,
|
|
block_allocation: None,
|
|
});
|
|
|
|
// Notify the background task that we have a new entry in the queue that needs
|
|
// to be batched
|
|
self.batching_task_notifier.notify_one();
|
|
|
|
// Return stream
|
|
Ok(UnboundedReceiverStream::new(response_rx))
|
|
}
|
|
|
|
async fn health(&self, current_health: bool) -> bool {
|
|
if current_health {
|
|
// Generation is healthy, we only check that the shards can allocate on device
|
|
self.client.device_health().await
|
|
} else {
|
|
self.client.model_health().await
|
|
}
|
|
.is_ok()
|
|
}
|
|
}
|
|
|
|
/// Batching logic
|
|
/// Will be launched in a background Tokio task
|
|
///
|
|
/// Batches requests and sends them to the inference server
|
|
#[allow(clippy::too_many_arguments)]
|
|
pub(crate) async fn batching_task(
|
|
mut client: ShardedClient,
|
|
waiting_served_ratio: f32,
|
|
max_batch_prefill_tokens: u32,
|
|
max_batch_total_tokens: u32,
|
|
max_waiting_tokens: usize,
|
|
max_batch_size: Option<usize>,
|
|
queue: Queue,
|
|
notifier: Arc<Notify>,
|
|
) {
|
|
// Infinite loop
|
|
loop {
|
|
// Wait for a notification from the Infer struct
|
|
notifier.notified().await;
|
|
|
|
// Get the next batch from the queue
|
|
// This batch might be smaller than the maximum batch size if there are not enough requests
|
|
// waiting in the queue
|
|
while let Some((mut entries, batch, span)) = queue
|
|
.next_batch(
|
|
None,
|
|
max_batch_size,
|
|
max_batch_prefill_tokens,
|
|
max_batch_total_tokens,
|
|
)
|
|
.await
|
|
{
|
|
let mut cached_batch = prefill(&mut client, batch, &mut entries)
|
|
.instrument(span)
|
|
.await;
|
|
let mut waiting_tokens = 1;
|
|
|
|
// We loop until we do not receive any cached batch from the inference server (== until
|
|
// all requests have met their stopping criteria)
|
|
while let Some(batch) = cached_batch {
|
|
// Get current batch info
|
|
let batch_size = batch.size;
|
|
let batch_max_tokens = batch.max_tokens;
|
|
let mut batches = vec![batch];
|
|
metrics::gauge!("tgi_batch_current_size").set(batch_size as f64);
|
|
metrics::gauge!("tgi_batch_current_max_tokens").set(batch_max_tokens as f64);
|
|
|
|
let min_size = if waiting_tokens >= max_waiting_tokens {
|
|
// If we didn't onboard any new requests since >= max_waiting_tokens, we try
|
|
// to add a new batch even though its size might be small
|
|
None
|
|
} else {
|
|
// Minimum batch size
|
|
Some((batch_size as f32 * waiting_served_ratio).floor() as usize)
|
|
};
|
|
|
|
let token_budget = max_batch_total_tokens.saturating_sub(batch_max_tokens);
|
|
let max_size =
|
|
max_batch_size.map(|max_size| max_size.saturating_sub(batch_size as usize));
|
|
|
|
// Try to get a new batch
|
|
if let Some((mut new_entries, new_batch, span)) = queue
|
|
.next_batch(min_size, max_size, max_batch_prefill_tokens, token_budget)
|
|
.await
|
|
{
|
|
// Tracking metrics
|
|
if min_size.is_some() {
|
|
metrics::counter!("tgi_batch_concat", "reason" => "backpressure")
|
|
.increment(1);
|
|
} else {
|
|
metrics::counter!("tgi_batch_concat", "reason" => "wait_exceeded")
|
|
.increment(1);
|
|
}
|
|
|
|
entries.iter_mut().for_each(|(_, entry)| {
|
|
// Create a new span to add the info that this entry is waiting
|
|
// because a new batch is being computed
|
|
let entry_waiting_span = info_span!(parent: &entry.span, "waiting");
|
|
// Add relationships
|
|
span.follows_from(&entry_waiting_span);
|
|
entry_waiting_span.follows_from(&span);
|
|
// Update entry
|
|
entry.temp_span = Some(entry_waiting_span);
|
|
});
|
|
|
|
// Generate one token for this new batch to have the attention past in cache
|
|
let new_cached_batch = prefill(&mut client, new_batch, &mut new_entries)
|
|
.instrument(span)
|
|
.await;
|
|
// Reset waiting counter
|
|
waiting_tokens = 1;
|
|
// Extend current batch with the new batch
|
|
if let Some(new_cached_batch) = new_cached_batch {
|
|
entries.extend(new_entries);
|
|
batches.push(new_cached_batch);
|
|
}
|
|
}
|
|
|
|
// Create span for this batch to add context to inference calls
|
|
let next_batch_size = entries.len();
|
|
let next_batch_span =
|
|
info_span!(parent: None, "batch", batch_size = next_batch_size);
|
|
entries.iter_mut().for_each(|(_, entry)| {
|
|
// Create a new span to link the batch back to this entry
|
|
let entry_batch_span = info_span!(parent: &entry.span, "infer");
|
|
// Add relationships
|
|
next_batch_span.follows_from(&entry_batch_span);
|
|
entry_batch_span.follows_from(&next_batch_span);
|
|
// Update entry
|
|
entry.temp_span = Some(entry_batch_span);
|
|
});
|
|
|
|
cached_batch = decode(&mut client, batches, &mut entries)
|
|
.instrument(next_batch_span)
|
|
.await;
|
|
waiting_tokens += 1;
|
|
}
|
|
metrics::gauge!("tgi_batch_current_size").set(0.0);
|
|
metrics::gauge!("tgi_batch_current_max_tokens").set(0.0);
|
|
}
|
|
}
|
|
}
|
|
|
|
#[instrument(skip_all)]
|
|
async fn prefill(
|
|
client: &mut ShardedClient,
|
|
batch: Batch,
|
|
entries: &mut IntMap<u64, Entry>,
|
|
) -> Option<CachedBatch> {
|
|
let start_time = Instant::now();
|
|
let batch_id = batch.id;
|
|
metrics::counter!("tgi_batch_inference_count", "method" => "prefill").increment(1);
|
|
|
|
match client.prefill(batch).await {
|
|
Ok((generations, next_batch, timings)) => {
|
|
let start_filtering_time = Instant::now();
|
|
// Send generated tokens and filter stopped entries
|
|
filter_send_generations(generations, entries);
|
|
|
|
// Filter next batch and remove requests that were stopped
|
|
let next_batch = filter_batch(client, next_batch, entries).await;
|
|
|
|
metrics::histogram!("tgi_batch_forward_duration", "method" => "prefill")
|
|
.record(timings.forward.as_secs_f64());
|
|
metrics::histogram!("tgi_batch_decode_duration", "method" => "prefill")
|
|
.record(timings.decode.as_secs_f64());
|
|
metrics::histogram!("tgi_batch_filter_duration", "method" => "prefill")
|
|
.record(start_filtering_time.elapsed().as_secs_f64());
|
|
metrics::histogram!("tgi_batch_inference_duration", "method" => "prefill")
|
|
.record(start_time.elapsed().as_secs_f64());
|
|
metrics::counter!("tgi_batch_inference_success", "method" => "prefill").increment(1);
|
|
next_batch
|
|
}
|
|
// If we have an error, we discard the whole batch
|
|
Err(err) => {
|
|
let _ = client.clear_cache(Some(batch_id)).await;
|
|
send_errors(err, entries);
|
|
metrics::counter!("tgi_batch_inference_failure", "method" => "prefill").increment(1);
|
|
None
|
|
}
|
|
}
|
|
}
|
|
|
|
#[instrument(skip_all)]
|
|
async fn decode(
|
|
client: &mut ShardedClient,
|
|
batches: Vec<CachedBatch>,
|
|
entries: &mut IntMap<u64, Entry>,
|
|
) -> Option<CachedBatch> {
|
|
let start_time = Instant::now();
|
|
let batch_ids: Vec<u64> = batches.iter().map(|b| b.id).collect();
|
|
metrics::counter!("tgi_batch_inference_count", "method" => "decode").increment(1);
|
|
|
|
match client.decode(batches).await {
|
|
Ok((generations, next_batch, timings)) => {
|
|
let start_filtering_time = Instant::now();
|
|
// Send generated tokens and filter stopped entries
|
|
filter_send_generations(generations, entries);
|
|
|
|
// Filter next batch and remove requests that were stopped
|
|
let next_batch = filter_batch(client, next_batch, entries).await;
|
|
|
|
if let Some(concat_duration) = timings.concat {
|
|
metrics::histogram!("tgi_batch_concat_duration", "method" => "decode")
|
|
.record(concat_duration.as_secs_f64());
|
|
}
|
|
metrics::histogram!("tgi_batch_forward_duration", "method" => "decode")
|
|
.record(timings.forward.as_secs_f64());
|
|
metrics::histogram!("tgi_batch_decode_duration", "method" => "decode")
|
|
.record(timings.decode.as_secs_f64());
|
|
metrics::histogram!("tgi_batch_filter_duration", "method" => "decode")
|
|
.record(start_filtering_time.elapsed().as_secs_f64());
|
|
metrics::histogram!("tgi_batch_inference_duration", "method" => "decode")
|
|
.record(start_time.elapsed().as_secs_f64());
|
|
metrics::counter!("tgi_batch_inference_success", "method" => "decode").increment(1);
|
|
next_batch
|
|
}
|
|
// If we have an error, we discard the whole batch
|
|
Err(err) => {
|
|
for id in batch_ids {
|
|
let _ = client.clear_cache(Some(id)).await;
|
|
}
|
|
send_errors(err, entries);
|
|
metrics::counter!("tgi_batch_inference_failure", "method" => "decode").increment(1);
|
|
None
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Filter a `batch` and remove all requests not present in `entries`
|
|
#[instrument(skip_all)]
|
|
async fn filter_batch(
|
|
client: &mut ShardedClient,
|
|
next_batch: Option<CachedBatch>,
|
|
entries: &IntMap<u64, Entry>,
|
|
) -> Option<CachedBatch> {
|
|
let mut batch = next_batch?;
|
|
|
|
// No need to filter
|
|
if batch.size as usize == entries.len() {
|
|
return Some(batch);
|
|
}
|
|
|
|
let id = batch.id;
|
|
|
|
// Retain only requests that are still in entries
|
|
batch.request_ids.retain(|id| entries.contains_key(id));
|
|
|
|
if batch.request_ids.is_empty() {
|
|
// All requests have been filtered out
|
|
// Next batch is now empty
|
|
// Clear it from the Python shards cache
|
|
// We unwrap here as we need to panic since we cannot recover if this method fails
|
|
client.clear_cache(Some(id)).await.unwrap();
|
|
None
|
|
} else {
|
|
// Filter Python shard cache
|
|
// We unwrap here as we need to panic since we cannot recover if this method fails
|
|
client.filter_batch(id, batch.request_ids).await.unwrap()
|
|
}
|
|
}
|
|
|
|
/// Send one or multiple `InferStreamResponse` to Infer for all `entries`
|
|
/// and filter entries
|
|
#[instrument(skip_all)]
|
|
fn filter_send_generations(generations: Vec<Generation>, entries: &mut IntMap<u64, Entry>) {
|
|
generations.into_iter().for_each(|generation| {
|
|
let id = generation.request_id;
|
|
// Get entry
|
|
// We can `expect` here as the request id should always be in the entries
|
|
let entry = entries
|
|
.get(&id)
|
|
.expect("ID not found in entries. This is a bug.");
|
|
|
|
// Create and enter a span to link this function back to the entry
|
|
let _span = info_span!(parent: entry.temp_span.as_ref().expect("batch_span is None. This is a bug."), "send_generation", generation = ?generation).entered();
|
|
// Send generation responses back to the infer task
|
|
// If the receive an error from the Flume channel, it means that the client dropped the
|
|
// request and we need to stop generating hence why we unwrap_or(true)
|
|
let stopped = send_responses(generation, entry).map_err(|err| {
|
|
tracing::error!("Entry response channel error.");
|
|
metrics::counter!("tgi_request_failure", "err" => "dropped").increment(1);
|
|
err
|
|
}).unwrap_or(true);
|
|
if stopped {
|
|
entries.remove(&id).expect("ID not found in entries. This is a bug.");
|
|
}
|
|
});
|
|
}
|
|
|
|
/// Send responses through the `entry` response channel
|
|
fn send_responses(
|
|
generation: Generation,
|
|
entry: &Entry,
|
|
) -> Result<bool, Box<SendError<Result<InferStreamResponse, InferError>>>> {
|
|
// Return directly if the channel is disconnected
|
|
if entry.response_tx.is_closed() {
|
|
metrics::counter!("tgi_request_failure", "err" => "dropped").increment(1);
|
|
return Ok(true);
|
|
}
|
|
|
|
let mut stopped = false;
|
|
|
|
if let Some(prefill_tokens) = generation.prefill_tokens {
|
|
// Create Token objects
|
|
// We do that here instead of in the Python code as Rust for loops are faster
|
|
let prefill_tokens = prefill_tokens
|
|
.ids
|
|
.into_iter()
|
|
.zip(prefill_tokens.logprobs)
|
|
.zip(prefill_tokens.texts)
|
|
.map(|((id, logprob), text)| PrefillToken { id, text, logprob })
|
|
.collect();
|
|
|
|
// Send message
|
|
entry
|
|
.response_tx
|
|
.send(Ok(InferStreamResponse::Prefill(prefill_tokens)))?;
|
|
}
|
|
|
|
// Create last Token
|
|
let tokens_ = generation.tokens.expect("Non empty tokens in generation");
|
|
let n = tokens_.ids.len();
|
|
metrics::histogram!("tgi_request_skipped_tokens").record((n - 1) as f64);
|
|
let mut iterator = tokens_
|
|
.ids
|
|
.into_iter()
|
|
.zip(tokens_.logprobs)
|
|
.zip(tokens_.texts)
|
|
.zip(tokens_.is_special)
|
|
.enumerate()
|
|
.peekable();
|
|
while let Some((i, (((id, logprob), text), special))) = iterator.next() {
|
|
let token = Token {
|
|
id,
|
|
text,
|
|
logprob,
|
|
special,
|
|
};
|
|
let top_tokens = if let Some(top_tokens_) = generation.top_tokens.get(i) {
|
|
top_tokens_
|
|
.ids
|
|
.iter()
|
|
.zip(top_tokens_.logprobs.iter())
|
|
.zip(top_tokens_.texts.iter())
|
|
.zip(top_tokens_.is_special.iter())
|
|
.map(|(((&id, &logprob), text), &special)| Token {
|
|
id,
|
|
text: text.to_string(),
|
|
logprob,
|
|
special,
|
|
})
|
|
.collect()
|
|
} else {
|
|
vec![]
|
|
};
|
|
match (&generation.generated_text, iterator.peek()) {
|
|
(Some(generated_text), None) => {
|
|
// Generation has ended
|
|
stopped = true;
|
|
// Send message
|
|
entry.response_tx.send(Ok(InferStreamResponse::End {
|
|
token,
|
|
top_tokens,
|
|
generated_text: GeneratedText::from(generated_text.clone()),
|
|
queued: entry.queue_time,
|
|
start: entry.batch_time.unwrap(),
|
|
}))?;
|
|
}
|
|
_ => {
|
|
// Send message
|
|
entry
|
|
.response_tx
|
|
.send(Ok(InferStreamResponse::Intermediate { token, top_tokens }))?;
|
|
}
|
|
}
|
|
}
|
|
|
|
Ok(stopped)
|
|
}
|
|
|
|
/// Send errors to Infer for all `entries`
|
|
#[instrument(skip_all)]
|
|
fn send_errors(error: ClientError, entries: &mut IntMap<u64, Entry>) {
|
|
entries.drain().for_each(|(_, entry)| {
|
|
// Create and enter a span to link this function back to the entry
|
|
let _send_error_span = info_span!(parent: entry.temp_span.as_ref().expect("batch_span is None. This is a bug."), "send_error").entered();
|
|
let err = InferError::GenerationError(error.to_string());
|
|
metrics::counter!("tgi_request_failure", "err" => "generation").increment(1);
|
|
tracing::error!("{err}");
|
|
|
|
// unwrap_or is valid here as we don't care if the receiver is gone.
|
|
entry
|
|
.response_tx
|
|
.send(Err(err))
|
|
.unwrap_or(());
|
|
});
|
|
}
|
|
|
|
impl From<crate::client::GeneratedText> for GeneratedText {
|
|
fn from(value: crate::client::GeneratedText) -> Self {
|
|
let v3_finish_reason = crate::client::FinishReason::try_from(value.finish_reason).unwrap();
|
|
let finish_reason = match v3_finish_reason {
|
|
crate::client::FinishReason::Length => FinishReason::Length,
|
|
crate::client::FinishReason::EosToken => FinishReason::EndOfSequenceToken,
|
|
crate::client::FinishReason::StopSequence => FinishReason::StopSequence,
|
|
};
|
|
|
|
Self {
|
|
text: value.text,
|
|
generated_tokens: value.generated_tokens,
|
|
finish_reason,
|
|
seed: value.seed,
|
|
}
|
|
}
|
|
}
|